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Abstract 

In this paper, we use deep learning to make an emotion recognition 

convolution neural network by customizing the EfficientNet model 

pretrained on the ImageNet dataset. We used the FER-2013 dataset 

available in the Wolfram repository. Seven classes of emotions are 

considered in the dataset: happy, sad, angry, surprise, disgust, fear, and 

neutral. We try out different methods to tackle class imbalance. 
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1. INTRODUCTION 

Facial expressions are crucial non-verbal communication in 

our everyday lives. They indicate feelings, allowing people to 

express their emotions. Most humans have the ability to recognise 

the facial expressions of a person instantly. Here, we will train a 

neural network to do the same. This model can be applied in 

teaching autistic children, young children in general, and people 

blind to facial expressions. It can also be used to train robots to 

interact more efficiently with humans.  

2. CONVOLUTION NETWORKS 

Neural networks or artificial neural networks (ANNs) are 

inspired by the human brain, mimicking the way that biological 

neurons signal to one another. Neural networks are comprised of 

node layers; each node connects to another and has an associated 

weight and threshold. If the output of any individual node is above 

the specified threshold value, that node is activated, sending data 

to the next layer of the network.  

A multilayer perceptron (MLP) is a fully connected class of 

feedforward neural network that consists of at least three layers of 

nodes: an input layer, a hidden layer and an output layer. For basic 

binary images, using an MLP would be sufficient, but for more 

complex images having pixel dependencies throughout the model 

might be unsatisfactory. Using a convolutional neural network, 

we can capture the spatial and temporal dependencies in the 

image. 

CNNs are regularized versions of multilayer perceptrons. 

Multilayer perceptrons usually mean fully connected networks; 

that is, each neuron in one layer is connected to all neurons in the 

next layer. The “full connectivity” of these networks makes them 

prone to overfitting data. A CNN consists of different layers, such 

as an input layer, an output layer and a hidden layer consisting of 

multiple further convolutional layers, pooling layers, fully 

connected layers and normalisation layers. 

 

3. TRANSFER LEARNING 

Transfer learning is a technique where a model trained for one 

task is reused for a second related task. Rather than creating a new 

network from scratch, which may take days or weeks to train, we 

can use a pre-trained model from the Wolfram Neural Net 

Repository as a starting point and customize it accordingly.  

For this project, EfficientNet trained over the dataset 

‘ImageNet’ was modified. EfficientNets demonstrate a significant 

performance gain both in accuracy and inference time compared 

to the existing classification models trained on ImageNet. 

Furthermore, the models are successfully used in transfer learning 

on datasets such as CIFAR-100, Flowers, Birdsnap, Stanford Cars 

and others, still outperforming the existing state-of-the-art nets.  

3.1 CREATING THE NEURAL NETWORK  

We start by calling EfficientNet model pretrained on the 

dataset ‘ImageNet’. In order to train a new model, we can use this 

architecture. We remove the last Linear and Softmax layers and 

add our own layers as required to customize the net to our dataset. 

3.2 CUSTOMIZING THE NEURAL NETWORK  

After the last 2 layers of the model EfficientNet are removed, 

we construct a customized neural network by adding new layers. 

This allows the model to learn new features from our dataset.  

The layers contribute as follows: 

• LinearLayer: Adds complexity to the neural network. 

• DropoutLayer: Prevents overfitting by randomly putting off 

the neurons while training. 

• BatchNormalizationLayer: Normalizes its input data by 

learning the data mean and variance. 

• SoftMaxLayer: Contributes the activation function layer for 

multiclass classification. 

4. FER-2013 DATASET 

We used the FER-2013 dataset available in the Wolfram 

repository. It has 35887 greyscale images of faces with 

expressions categorized into one of the seven categories: happy, 

sad, angry, surprise, disgust, fear, neutral. It was made under 

challenging conditions, such as varying lighting, different head 

movements, and variances in facial features due to ethnicity, age, 

gender, facial hair, and glasses. This is important to not create a 

bias in our model. 
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Fig.1. Distribution of classes in the dataset  

4.1 DATA DISTRIBUTION OF CLASSES OF TRAIN 

AND TEST SETS 

We chose 4000 random images from each class for our sample 

dataset. 70% of this sample dataset is chosen randomly as train 

dataset and the other 30% as test dataset. The function Random 

Sample is used to ensure that the data was chosen randomly to 

ensure an accurate representation of the original dataset in the 

train and test sets. 

 

Fig.2. Distribution of classes in the sample data of train and test 

set 

5. DATA IMBALANCE 

It is evident from the graphs that the emotion class ‘disgust’ 

has a significantly less amount of data compared to the other 

classes. Most machine learning algorithms are based on the 

assumption that data is equally distributed among all classes in 

the data set. A model trained on a dataset with a bias will also be 

biased towards the majority classes; when training, the model 

learns more from the majority classes and develops a bias. The 

model would perform poorly in real-time.  We will look at a few 

different ways in which we can resolve this issue. 

5.1 UNDERSAMPLING  

In the undersampling method, we remove the excess number 

of samples from the majority classes so all classes end up with 

about the same amount of sample data. Here, the class ‘disgust’ 

only has 547 samples. By taking 500 samples from each class for 

our sample data, each of our classes ended up with the same 

amount of data. 

 

Fig.3. Distribution of classes for the sample data after 

undersampling 

The model is trained with a batch size 24 and 2 training 

rounds. 

 

Fig.4. Confusion Matrix Trained Model 

5.2 WEIGHTED CLASS TRAINING  

In this method, we weigh the loss computed for different 

samples depending on whether they belong to the majority or 

minor classes. 

 

Fig.5. Confusion Matrix – Weighted Class Training 
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 lc(x,y)=Lc={l1,c,..., lN,c) }T, where N is the batch size (1) 

 l1,c=-wn,c[pcyn,c logσ(xn,c)+(1-yn,c)log(1-σ(xn,c)] (2) 

where, we use Inverse of Number of Samples: we weigh the 

samples as the inverse of the class frequency for their respective 

classes and then normalize them over the seven classes. Sample 

weight, wn,c=1/(Number of samples in class c) , where c is the 

class number and n is the number of samples in the batch. The net 

is then trained with the custom loss. 

5.3 FOCAL LOSS TRAINING  

Focal Loss can be used when there is an extreme imbalance 

between the majority and minority classes. It is a modification of 

alpha-balanced Cross Entropy Loss. CE(pt)=-αt log(pt), where pt 

is the probability of belonging to the class (0, 1) and αt is the 

weight for each class. Large class imbalances overwhelm cross-

entropy loss and dominate the gradient. Though α balances the 

importance of positive/negative examples, it does not differentiate 

between easy/hard examples. We add a modulating factor, (1-pt)γ 

and a focusing parameter, γ to the cross entropy loss to produce 

the focal loss: FL(pt)=-(1-pt)log(pt). 

 

Fig. Fig.5. Confusion Matrix – Focal Loss Training 

6. CONCLUSION 

By comparing the results from the three methods we used to 

address the data imbalance in the dataset, the accuracies obtained 

are as follows: Undersampling gives us 0.494286 accuracy, using 

FocalLoss gives us 0.558316 and weighted sampling, 0.498982. 

We can see that using FocalLoss gave us the highest accuracy and 

F1 scores. The weighted class model performed the next best. The 

accuracies could be improved in the future with more training 

rounds and network layers. 
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