
ISSN: 2583-9292(ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, DECEMBER 2023, VOLUME: 05, ISSUE: 01
DOI: 10.xx/ijdsml.2023.xx

537

FACIAL EMOTION RECOGNITION AND HANDLING DATA IMBALANCE IN

MACHINE LEARNING

Diya Elizabeth1 and Siria Sadeddin2
1School of Mathematics, Indian Institute of Science Education and Research, Thiruvananthapuram, India

2Department of Mathematics, Universidad Nacional de Colombia, Colombia

Abstract

In this paper, we use deep learning to make an emotion recognition

convolution neural network by customizing the EfficientNet model

pretrained on the ImageNet dataset. We used the FER-2013 dataset

available in the Wolfram repository. Seven classes of emotions are

considered in the dataset: happy, sad, angry, surprise, disgust, fear, and

neutral. We try out different methods to tackle class imbalance.

Keywords:

Undersampling, Weighted Sampling, Focal Loss

1. INTRODUCTION

Facial expressions are crucial non-verbal communication in

our everyday lives. They indicate feelings, allowing people to

express their emotions. Most humans have the ability to recognise

the facial expressions of a person instantly. Here, we will train a

neural network to do the same. This model can be applied in

teaching autistic children, young children in general, and people

blind to facial expressions. It can also be used to train robots to

interact more efficiently with humans.

2. CONVOLUTION NETWORKS

Neural networks or artificial neural networks (ANNs) are

inspired by the human brain, mimicking the way that biological

neurons signal to one another. Neural networks are comprised of

node layers; each node connects to another and has an associated

weight and threshold. If the output of any individual node is above

the specified threshold value, that node is activated, sending data

to the next layer of the network.

A multilayer perceptron (MLP) is a fully connected class of

feedforward neural network that consists of at least three layers of

nodes: an input layer, a hidden layer and an output layer. For basic

binary images, using an MLP would be sufficient, but for more

complex images having pixel dependencies throughout the model

might be unsatisfactory. Using a convolutional neural network,

we can capture the spatial and temporal dependencies in the

image.

CNNs are regularized versions of multilayer perceptrons.

Multilayer perceptrons usually mean fully connected networks;

that is, each neuron in one layer is connected to all neurons in the

next layer. The “full connectivity” of these networks makes them

prone to overfitting data. A CNN consists of different layers, such

as an input layer, an output layer and a hidden layer consisting of

multiple further convolutional layers, pooling layers, fully

connected layers and normalisation layers.

3. TRANSFER LEARNING

Transfer learning is a technique where a model trained for one

task is reused for a second related task. Rather than creating a new

network from scratch, which may take days or weeks to train, we

can use a pre-trained model from the Wolfram Neural Net

Repository as a starting point and customize it accordingly.

For this project, EfficientNet trained over the dataset

‘ImageNet’ was modified. EfficientNets demonstrate a significant

performance gain both in accuracy and inference time compared

to the existing classification models trained on ImageNet.

Furthermore, the models are successfully used in transfer learning

on datasets such as CIFAR-100, Flowers, Birdsnap, Stanford Cars

and others, still outperforming the existing state-of-the-art nets.

3.1 CREATING THE NEURAL NETWORK

We start by calling EfficientNet model pretrained on the

dataset ‘ImageNet’. In order to train a new model, we can use this

architecture. We remove the last Linear and Softmax layers and

add our own layers as required to customize the net to our dataset.

3.2 CUSTOMIZING THE NEURAL NETWORK

After the last 2 layers of the model EfficientNet are removed,

we construct a customized neural network by adding new layers.

This allows the model to learn new features from our dataset.

The layers contribute as follows:

• LinearLayer: Adds complexity to the neural network.

• DropoutLayer: Prevents overfitting by randomly putting off

the neurons while training.

• BatchNormalizationLayer: Normalizes its input data by

learning the data mean and variance.

• SoftMaxLayer: Contributes the activation function layer for

multiclass classification.

4. FER-2013 DATASET

We used the FER-2013 dataset available in the Wolfram

repository. It has 35887 greyscale images of faces with

expressions categorized into one of the seven categories: happy,

sad, angry, surprise, disgust, fear, neutral. It was made under

challenging conditions, such as varying lighting, different head

movements, and variances in facial features due to ethnicity, age,

gender, facial hair, and glasses. This is important to not create a

bias in our model.

DIYA ELIZABETH AND SIRIA SADEDDIN: FACIAL EMOTION RECOGNITION AND HANDLING DATA IMBALANCE IN MACHINE LEARNING

538

Fig.1. Distribution of classes in the dataset

4.1 DATA DISTRIBUTION OF CLASSES OF TRAIN

AND TEST SETS

We chose 4000 random images from each class for our sample

dataset. 70% of this sample dataset is chosen randomly as train

dataset and the other 30% as test dataset. The function Random

Sample is used to ensure that the data was chosen randomly to

ensure an accurate representation of the original dataset in the

train and test sets.

Fig.2. Distribution of classes in the sample data of train and test

set

5. DATA IMBALANCE

It is evident from the graphs that the emotion class ‘disgust’

has a significantly less amount of data compared to the other

classes. Most machine learning algorithms are based on the

assumption that data is equally distributed among all classes in

the data set. A model trained on a dataset with a bias will also be

biased towards the majority classes; when training, the model

learns more from the majority classes and develops a bias. The

model would perform poorly in real-time. We will look at a few

different ways in which we can resolve this issue.

5.1 UNDERSAMPLING

In the undersampling method, we remove the excess number

of samples from the majority classes so all classes end up with

about the same amount of sample data. Here, the class ‘disgust’

only has 547 samples. By taking 500 samples from each class for

our sample data, each of our classes ended up with the same

amount of data.

Fig.3. Distribution of classes for the sample data after

undersampling

The model is trained with a batch size 24 and 2 training

rounds.

Fig.4. Confusion Matrix Trained Model

5.2 WEIGHTED CLASS TRAINING

In this method, we weigh the loss computed for different

samples depending on whether they belong to the majority or

minor classes.

Fig.5. Confusion Matrix – Weighted Class Training

ISSN: 2583-9292(ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, DECEMBER 2023, VOLUME: 05, ISSUE: 01

539

 lc(x,y)=Lc={l1,c,..., lN,c) }T, where N is the batch size (1)

 l1,c=-wn,c[pcyn,c logσ(xn,c)+(1-yn,c)log(1-σ(xn,c)] (2)

where, we use Inverse of Number of Samples: we weigh the

samples as the inverse of the class frequency for their respective

classes and then normalize them over the seven classes. Sample

weight, wn,c=1/(Number of samples in class c) , where c is the

class number and n is the number of samples in the batch. The net

is then trained with the custom loss.

5.3 FOCAL LOSS TRAINING

Focal Loss can be used when there is an extreme imbalance

between the majority and minority classes. It is a modification of

alpha-balanced Cross Entropy Loss. CE(pt)=-αt log(pt), where pt

is the probability of belonging to the class (0, 1) and αt is the

weight for each class. Large class imbalances overwhelm cross-

entropy loss and dominate the gradient. Though α balances the

importance of positive/negative examples, it does not differentiate

between easy/hard examples. We add a modulating factor, (1-pt)γ

and a focusing parameter, γ to the cross entropy loss to produce

the focal loss: FL(pt)=-(1-pt)log(pt).

Fig. Fig.5. Confusion Matrix – Focal Loss Training

6. CONCLUSION

By comparing the results from the three methods we used to

address the data imbalance in the dataset, the accuracies obtained

are as follows: Undersampling gives us 0.494286 accuracy, using

FocalLoss gives us 0.558316 and weighted sampling, 0.498982.

We can see that using FocalLoss gave us the highest accuracy and

F1 scores. The weighted class model performed the next best. The

accuracies could be improved in the future with more training

rounds and network layers.

ACKNOWLEDGEMENT

There are many people I would like to thank for their support.

I would first like to thank Siria Sadeddin for being my mentor, her

immense help and guidance allowed me to learn and use many

new skills which I could use to complete this project. I would also

like to express my sincere gratitude to Tuseeta Banerjee and Mads

Bahrami for their time and consideration, the TAs for being

available whenever I was in trouble, and Aravind Hanasoge and

the entire Wolfram team for conducting this program.

REFERENCES

[1] S. Sadeddin, “Face Mask Detection: Classifying Image

Data”, Available at

https://community.wolfram.com/groups/-/m/t/2139499,

Accessed on 2021.

[2] S. Sadeddin, “Loss Focal: Una Solucion Para El Desbalance

De Datos. AI En Espanol”, Available at

https://siriasadeddin.wixsite.com/siriaai/post/loss-focal-

una-soluci%C3%B3n-para-el-desbalance-de-datos,

Accessed on 2020.

[3] S. Chandler, “Machine Learning with Weighted Data”,

Available at https://community.wolfram.com/groups/-

/m/t/1223968, Accessed on 2018.

[4] I. Shrivastava, “Handling Class Imbalance by Introducing

Sample Weighting in the Loss Function. GumGum Tech

Blog”, Available at https://medium.com/gumgum-

tech/handling-class-imbalance-by-introducing-sample-

weighting-in-the-loss-function-3bdebd8203b4, Accessed on

2020.

[5] T.Y. Lin and P. Dollar, “Focal Loss for Dense Object

Detection”, Available at

https://arxiv.org/pdf/1708.02002.pdf, Accessed on 2018.

[6] S. Saxena, “Introduction to Softmax for Neural Network”,

Available at

https://www.analyticsvidhya.com/blog/2021/04/introductio

n-to-softmax-for-neural-network/, Accessed on 2021.

[7] K. Singh, “How to Improve Class Imbalance using Class

Weights in Machine Learning”, Available at

https://www.analyticsvidhya.com/blog/2020/10/improve-

class-imbalance-class-weights/, Accessed on 2020.

[8] D. Godoy, “Understanding Binary Cross-Entropy/Log Loss:

A Visual Explanation”, Available at

https://towardsdatascience.com/understanding-binary-

cross-entropy-log-loss-a-visual-explanation-a3ac6025181a,

Accessed on 2018.

[9] L. Hoeltgen, “Designing Neural Networks in Mathematica”,

Available at https://laurenthoeltgen.name/post/ml-nn-

mathematica/, Accessed on 2015.

[10] G. Singh, “Facial Emotion Classification using Deep

Learning”, Available at https://medium.com/analytics-

vidhya/facial-emotion-classification-using-deep-learning-

d08dd02a2d38, Accessed on 2019.

[11] A. Chowdhry, “Emotion Recognition With Deep Learning

On Google Colab”. Available at

https://blog.clairvoyantsoft.com/emotion-recognition-with-

deep-learning-on-google-colab-24ceb015e5, Accessed on

2021.

