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Abstract 

In situations where vast amounts of data are being gathered and 

published, machine learning is a potential solution. In order to estimate 

large-scale agricultural yields, we applied machine learning techniques 

to agronomic principles. A workflow that emphasises consistency, 

modularity, and reusability serve as a baseline for the project. To 

ensure accuracy, we worked to create predictors or traits that could be 

explained and then used machine learning without leaking any 

information. MCYFS data from the weather, remote sensing, and soil 

sensors was used to generate new functionalities. Smaller 

configuration adjustments allow us to handle many different crops and 

countries with our modular and reusable work flow design. Standard 

input data and the methodology can be utilised for repeatable tests with 

repeatable outcomes. It is from these findings that we may go on to 

refine our algorithms even further. 
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1. INTRODUCTION 

Precision agriculture aims to increase agricultural output and 

quality while minimising operating expenses and environmental 

impact (PA). Many production characteristics, including as 

weather, soil conditions, terrain, irrigation, and fertiliser 

management, have an impact on the potential growth and output. 

[1–3]. These inputs are critical for huge agricultural fields, which 

necessitate timely and precise detection via remote and proximate 

sensing systems in Pennsylvania. Ground-based vehicles, aircraft, 

satellites, and handheld radiometers can all be used to collect 

spectral, spatial, and temporal data on the things they observe. 

Weed maps are generated using remote sensing techniques 

such as satellite and aerial multi-spectral scanning, photography 

and video. For improved water management in irrigated crops, 

thermal remote sensing by aircraft thermal images has the 

potential to determine geographic variations of crop moisture 

status. A wide range of crops, including wheat, corn, and 

grapevines are now being monitored using this method. Ground-

based platforms have been developed for many various PA 

activities, including mapping soil property data, predicting 

evapotranspiration and drought stress, and even mapping the 

locations of undesirable weeds as well as determining crop water 

and nitrogen status [4]. 

Some vegetation attributes can be estimated by remote sensing 

at visible and near-infrared (vis-NIR) wavelengths [5]. The 

amount of photosynthetic/photoprotective pigments, such as 

chlorophyll, as well as the leaf area index are included in this 

measurement. Applicability, representativeness, environment and 

precision of implementation of more than 100 vegetation indices. 

Using existing vegetation indices for real-world applications 

needs careful assessment of their strengths and weaknesses as 

well as the unique area in which they will be used. Remotely 

sensed vegetation indices have been used to estimate agricultural 

yields. There has been progress in the use of wireless sensor 

networks and algorithms for integrating data from these networks 

in PA [6]. 

Growth and development of plants rely heavily on nitrogen 

(N), which is closely linked to the photosynthetic process. N, on 

the other hand, has a significant impact on both the environment 

and the economy. As a result, spectrometric investigations have 

been conducted on the optimization of fertilisation for various 

crops. Destructive and non-destructive methods of determining 

the plant N status are available. Kjeldahl method of destructive 

measurement is most commonly used, but chemical analysis is 

more time-consuming, expensive and labor-intensive [8]. 

Plant N status can be monitored non-destructively via optical 

remote sensing, which measures canopy reflectance at visible and 

near-infrared wavelengths (400–900 nm). To reduce the time and 

cost of field sample collection, preparation, and laboratory 

analysis, this measurement is done in-situ, which reduces the 

number of field samples required. Hyperspectral data from remote 

sensing has been used to create spectral indices indicative of plant 

N status [9]-[11] from hyperspectral data sets. 

The use of remote sensing in a variety of fields, including 

geology, forestry, and others, has resulted in massive data 

accumulation. The amount of data is always increasing, making it 

impossible for any one person to properly integrate, analyse, and 

make decisions based on all of it. When data is not homogeneous, 

such as when it is collected by sensors with varying spatial, 

temporal, and spectral modalities [12], this is especially true. 

When it comes to discovering patterns and rules in massive 

datasets, machine learning (ML) is an emerging technique. 

Because of the direct linkage in fertiliser management 

decisions, crop yield forecast and N status estimation are 

considered jointly here. It is common practise to use crop yield 

goals when determining N requirements, both before and during 

the growing season. An estimation of both would be useful for 

developing possible site-specific management plans for N 

fertiliser, especially during the growing season. Here, we'll 

explain how various machine learning approaches can be used to 

solve a variety of connected problems. A review of recent works 

incorporating various ML approaches into agricultural production 

prediction and N status estimate is presented. Comparative 

analyses of ML approaches applied to the identical job in PA are 

also included in this book. We'll go through some of the specifics 

of the machine learning methods employed in the research we'll 

be looking at. 

2. BACKGROUND 

Crop yield optimization at the lowest possible cost while 

maintaining a healthy ecosystem is one of the most important 
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objectives in agricultural production. There are several crop 

management and economic decisions that depend on yield 

estimation, therefore it critical to catch problems related with crop 

yield constraints early and address them effectively. 

Combinations of red, green and infrared wavelengths are used 

to calculate vegetation indexes (VIs). They are made to discover 

functional connections between the traits of crops and the data 

collected through remote sensing. It been possible to create 

numerous new vegetation indexes since the introduction of the SR 

and NDVI, like the enhanced vegetation two-band index (EVI2) 

and the normalised difference water index (NDWI), to name just 

a few [15]-[17]. Since so many indicators are available, it is 

necessary to choose and combine them effectively in order to get 

the most accurate estimate of crop production possible. 

3. PROPOSED MODEL 

Because of their complexity, ML algorithms are extremely 

expensive to develop, repair, and maintain. To better anticipate 

crop yield (mustard, wheat), machine learning algorithms merged 

input and output data. It was not possible for the regression model 

to accurately anticipate extreme values or nonlinear data because 

of the linear character of the parameters. As a result of the 

nonlinear and highly adaptive challenges in KNN, existing K-NN 

models were employed for classification for yield prediction. An 

increase in the input vector dimensions made it difficult to 

correctly classify them. Because of the limited amount of data 

available to estimate crop output, a suitable judgement could not 

be made during classification. 

Different feature groups associated with soil information were 

examined through the study of the studies such soil maps and 

types and production areas. Soil maps will show the types of 

nutrients in the soil as well as the locations where the soil may be 

located. The crop information characteristics include crop 

density, growth process in terms of weight, and leaf area index for 

crops such as mustard crops, wheat, rice, and tomato plants. 

Humidity, rainfall, precipitation, and forecaster rainfall are all 

examples of weather features. The nutritional components play a 

significant influence in the context of various environmental 

conditions. Nitrogen, potassium, magnesium, zinc, boron, etc., 

are among the nutrients. Temperature and radiation (gamma), 

shortwave radiation, solar radiation, and degree days are used to 

calculate features in the solar information. Wind speed, images, 

and pressure are all computed using fewer features. 

Specifically, we used supervised regression (see Section B of 

Supplement 1) to estimate crop yields. Learning a function that 

connects features to labels is the goal of supervised learning, 

which uses training examples that include both features and 

labels, like yield statistics. In order to train and test, we divided 

the dataset into two halves. We expanded the test set by including 

the most recent few years for each location when using the yield 

trend. It was necessary to impose this restriction since yield trend 

estimates from previous years would be included in following 

years, and this would lead to data leakage. We may have utilised 

random splits instead of the yield trend. A comparison with 

MCYFS required the same test years in all regions. 

So every nth year we added to the test set, with n determined 

by how many times we tested We allotted 70% of the data for 

training, and 30% for testing, in both situations. The training set 

was used to develop and test a model, while the test set served as 

the final assessment. Our crop calendar and indicator statistics 

were derived solely from the training data. 

By separating the training set into validation folds, we were 

able to tune the hyperparameters of feature selection (the number 

of features to pick) and prediction algorithms (e.g., the number of 

neighbours for k-nearest neighbours). We were unable to conduct 

cross validation using the yield trend because the test fold could 

end up in a bin before the training folds and that would result in 

information leakage. As a result, we employed a k-fold sliding 

validation that was time-based. 

As an example, data from 1994 to 2018 was available for NL, 

and the training years were 1994 through 2011. K-fold sliding 

validation was trained using data from 1994 to 2007 for the first 

iteration, followed by data from 1995 to 2008 for iteration 2, etc. 

until the fifth iteration, which was tested on data from 1998 to 

2011. We used k-fold cross-validation when yield trend was not 

used. 

In order to prevent data leaking during the feature selection 

and training stages, we developed pipelines consisting of scaling, 

selection, and training stages. The pipelines guaranteed that just 

the training data was used for each stage of training and 

optimization. The parameters for scaling features, the number of 

features to pick, and the feature weights for the trained model 

were learned from the training set in this manner. " In addition, 

we tuned the hyperparameters using only the training set. The 

pipeline was executed for each iteration of 5-fold sliding 

validation or 5-fold cross-validation when optimising 

hyperparameters. Because of this, all phases of the pipeline 

(feature scaling, feature selection, and training) were conducted 

with the training folds, and the trained model was assessed with 

the matching test folds. 

In terms of modularity, we aimed to make it as simple as 

possible to improve and extend the baseline. We reduced the 

amount of interdependencies among the various stages of the 

process. In order to keep the feature design process as flexible as 

possible, we used extensible data structures. Designing new 

features or upgrading current features with fresh data was the 

purpose of the project. For example, extreme weather features 

count the number of days that fall outside of the average. The 

method is generic and repeatable because of the usage of averages 

and standard deviations of indicators. Crop-specific thresholds for 

distinct indicators can be used to manually design more accurate 

and predictive features if they are available. 

It was important to us to build the workflow so that it could be 

used for various crops and nations. Standardizing filenames, file 

formats, and data columns through data homogenization allowed 

us to reduce the quantity of input needed to conduct the workflow. 

We applied the same design concepts to a variety of diverse 

projects. To run the workflow for multiple crops, countries, and 

NUTS levels, data homogenization and configuration choices 

were necessary. To avoid having to provide all of the options for 

each experiment, we set most of the setup options to appropriate 

defaults. 

3.1 PERFORMANCE EVALUATION 

The modulation factor values of ML algorithms vary 

depending on the different crop feature divisions. ANN is used 
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when the number of input elements is minimised. In order to 

obtain an accurate estimation of crop yield, the best feature was 

empirically chosen. Linear functions in large output sample 

spaces can be cumbersome, and sophisticated optimizations can 

be reduced to basic linear function optimization utilising ML 

technique regression. An ML algorithm can be used to estimate 

crop yields by using a large dataset of soil samples. Farmers were 

able to significantly boost crop yield with the use of machine 

learning techniques that were applied to field observations in the 

agriculture sector. 

Table.1. Comparison of Classification Accuracy 

Performance Metrics CNN LSTM DNN KNN 

Accuracy  78.33 74.47 79.06 78.48 

Precision 86.07 81.84 86.89 86.24 

Recall 71.86 68.32 72.54 72.00 

F-Measure 66.89 63.60 67.52 67.02 

Computation time 0.86 0.82 0.87 0.87 

The diversity of characteristics covered in this study is mostly 

based on the availability of data, and each of the studies will 

investigate PA using ML techniques that differ from the features. 

Because the data-set availability was a major factor in 

determining which features to include in the model, the more 

features included were not always more effective. As a result, 

only the most effective features were chosen for further testing. 

A wide range of machine learning (ML) approaches were 

applied to provide the best predictions for PA, including neural 

networks, random forests, KNN regression, and more. CNN, 

LSTM, and DNN are the most commonly utilised algorithms in 

PA, however there is still room for improvement. In this study, a 

number of existing models for predicting crop yields, such as 

temperature and meteorological conditions, are examined. 

After everything was said and done, the results of the 

experiment demonstrated that applying ML to the agricultural 

domain helped advance crop prediction. However, there was still 

room for improvement in the selection of features affecting 

agricultural production as a result of temperature variance. 

Studying the most important possibility, such as firstly the delay 

to border topographical areas, necessitated further explicit 

treatment. 

It then uses machine learning algorithms and features from 

deterministic crop models to determine the best statistical CO2 

fertilisation for the model... The crop yield estimation can be 

enhanced by future research if the above-mentioned aims are 

followed. Fertilizer should also be taken into account when 

calculating crop yields in order for agriculturalists to make a 

better decision in the event of poor crop yield estimation. We need 

to create and develop a model for PA based on the results of this 

study. 

4. CONCLUSION AND FUTURE WORK 

Sensing and machine learning (ML) have come a long way in 

the recent decade. It is expected that these improvements will 

continue to provide cost-effective and more complete datasets, 

coupled with more complex algorithmic solutions, that will allow 

for better crop and environment status estimates and decision-

making. There is a promising path ahead of us that has the 

potential to revolutionise crop output management. It has already 

been proven that ML approaches can be applied to a wide range 

of PA. 

Algorithms and sensors will continue to evolve in tandem, 

resulting in the following future trends: Optimized, focused use 

of sensors and existing ML algorithms for specific PA activities 

The incorporation of expert information into ML approaches 

targeted at modelling and decision making in various elements of 

PA is interconnected. The integration of several ML and signal 

processing approaches into hybrid systems to profit from the 

strengths of those techniques and compensate for their respective 

weaknesses. Fusion of information from sensors with diverse 

spatial and spectral resolutions and properties. It is possible to 

acquire active optimal data, combine information, and update 

models for high value locations using a dynamic combination of 

stationary and mobile equipment. 
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