
ISSN: xxxx-xxxx (ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, SEPTEMBER 2021, VOLUME: 02, ISSUE: 04

219

DATA REDUNDANCY REDUCTION IN LARGE DIMENSIONAL DATASETS USING

DEEP LEARNING

M. Nagavignesh
Department of Information Technology, Vels Institute of Science, Technology and Advanced Studies, India

Abstract

In this paper, the DBN pretraining procedure is not the only one that

allows effective initialization of DNNs. An alternative unsupervised

approach that performs equally well is to pretrain DNNs layer by layer

by considering each pair of layers as a de-noising auto-encoder

regularized by setting a random subset of the inputs to zero. Another

alternative is to use contractive autoencoders for the same purpose by

favoring models that is less sensitive to the input variations, i.e.,

penalizing the gradient of the activities of the hidden units with respect

to the inputs. Further, a developed the Sparse Encoding Symmetric

Machine (SESM), which has a very similar architecture to RBMs as

building blocks of a DBN. In principle, SESM may also be used to

effectively initialize the DNN training. Besides unsupervised

pretraining, the supervised pretraining, or sometimes called

discriminative pretraining, has also been shown to be effective and in

cases where labeled training data are abundant performs better than

the unsupervised pretraining techniques. The idea of the discriminative

pretraining is to start from a one-hidden-layer MLP trained with the

BP algorithm. Every time when we want to add a new hidden layer we

replace the output layer with a randomly initialized new hidden and

output layer and train the whole new MLP (or DNN) using the BP

algorithm. Different from the unsupervised pretraining techniques, the

discriminative pretraining technique requires labels.

Keywords:

Deep Networks, Data Reduction, Redundancy, High Dimensional

Datasets

1. INTRODUCTION

Until recently, most machine learning and signal processing

techniques had exploited shallow-structured architectures. These

architectures typically contain at most one or two layers of

nonlinear feature transformations. Examples of the shallow

architectures are Gaussian mixture models (GMMs), linear or

nonlinear dynamical systems, conditional random fields (CRFs),

maximum entropy (MaxEnt) models, support vector machines

(SVMs), logistic regression, kernel regression, multi-layer

perceptrons (MLPs) with a single hidden layer, and extreme

learning machines (ELMs). For instance, SVMs use a shallow

linear pattern separation model with one or zero feature

transformation layer when kernel trick is used or otherwise.

Notable exceptions are the recent kernel methods that have

been inspired by and integrated with deep learning [1]-[3].

Shallow architectures have been shown effective in solving many

simple or well-constrained problems, but their limited modeling

and representational power can cause difficulties when dealing

with more complicated real-world applications involving natural

signals such as human speech, natural sound and language, and

natural image and visual scenes.

Human information processing mechanisms (e.g., vision and

audition), however, suggest the need of deep architectures for

extracting complex structure and building internal representation

from rich sensory inputs. For example, human speech production

and perception systems are both equipped with clearly layered

hierarchical structures in transforming the information from the

waveform level to the linguistic level [4]. In a similar vein, human

visual system is also hierarchical in nature, most in the perception

side but interestingly also in the “generation” side [5]. It is natural

to believe that the state-of-the-art can be advanced in processing

these types of natural signals if efficient and effective deep

learning algorithms can be developed.

Historically, the concept of deep learning was originated from

artificial neural network research. (Hence, one may occasionally

hear the discussion of “new-generation neural networks”.) Feed-

forward neural networks or MLPs with many hidden layers,

which are often referred to as deep neural networks (DNNs), are

good examples of the models with a deep architecture. Back-

propagation (BP), popularized in 1980’s, has been a well-known

algorithm for learning the parameters of these networks.

Unfortunately, back-propagation alone did not work well in

practice then for learning networks with more than a small

number of hidden layers (see a review and analysis in [6]).

The pervasive presence of local optima in the non-convex

objective function of the deep networks is the main source of

difficulties in the learning. Back-propagation is based on local

gradient descent, and starts usually at some random initial points.

It often gets trapped in poor local optima when the batch-mode

BP algorithm is used, and the severity increases significantly as

the depth of the networks increases. This difficulty is partially

responsible for steering away most of the machine learning and

signal processing research from neural networks to shallow

models that have convex loss functions (e.g., SVMs, CRFs, and

MaxEnt models), for which global optimum can be efficiently

obtained at the cost of less modeling power.

The optimization difficulty associated with the deep models

was empirically alleviated using three techniques: a larger number

of hidden units, better learning algorithms, and better parameter

initialization techniques.

Using hidden layers with many neurons in a DNN

significantly improves the modeling power of the DNN and

creates many closely optimal configurations. Even if parameter

learning is trapped into a local optimum, the resulting DNN can

still perform quite well since the chance of having a poor local

optimum is lower than when a small number of neurons are used

in the network. Using deep and wide neural networks, however,

would cast great demand to the computational power during the

training process and this is one of the reasons why it is not until

recent years that researchers have started exploring both deep and

wide neural networks in a serious manner.

Better learning algorithms also contributed to the success of

DNNs. For example, stochastic BP algorithms are in place of the

batch-mode BP algorithms for training DNNs nowadays. This is

partly because the stochastic gradient descend (SGD) algorithm is

M NAGAVIGNESH: DATA REDUNDANCY REDUCTION IN LARGE DIMENSIONAL DATASETS USING DEEP LEARNING

220

the most efficient algorithm when training is carried out on a

single machine and the training set is large. But more importantly

the SGD algorithm can often jump out of the local optimum due

to the noisy gradients estimated from a single or a small batch of

samples. Other learning algorithms such as Hessian free [7] or

Krylov subspace methods [8] have shown a similar ability.

For the highly non-convex optimization problem of DNN

learning, it is obvious that better parameter initialization

techniques will lead to better models since optimization starts

from these initial models. What is not obvious, however, is how

to efficiently and effectively initialize DNN parameters until more

recently [9]-[10].

The DNN parameter initialization technique that attracted the

most attention is the unsupervised pretraining technique proposed

in [11]. In these papers a class of deep Bayesian probabilistic

generative models, called deep belief network (DBN), was

introduced. To learn the parameters in the DBN, a greedy, layer-

by-layer learning algorithm was developed by treating each pair

of layers in the DBN as a Restricted Boltzmann Machine (RBM)

(which we will discuss later). This allows for optimizing DBN

parameters with computational complexity linear in the depth of

the network.

It was later found out that the DBN parameters can be directly

used as the initial parameters of an MLP or DNN and result in a

better MLP or DNN than those randomly initialized after the

supervised BP training when the training set is small. As such,

DNNs learned with unsupervised DBN pre-training followed by

back-propagation fine-tuning is sometimes also called DBNs in

the literature. More recently, researchers have been more careful

in distinguishing DNNs from DBNs, and when DBN is used to

initialize the parameters of a DNN, the resulting network is called

DBN-DNN.

The DBN pretraining procedure is not the only one that allows

effective initialization of DNNs. An alternative unsupervised

approach that performs equally well is to pretrain DNNs layer by

layer by considering each pair of layers as a de-noising auto-

encoder regularized by setting a random subset of the inputs to

zero. Another alternative is to use contractive autoencoders for the

same purpose by favoring models that is less sensitive to the input

variations, i.e., penalizing the gradient of the activities of the

hidden units with respect to the inputs.

Further, a developed the Sparse Encoding Symmetric

Machine (SESM), which has a very similar architecture to RBMs

as building blocks of a DBN. In principle, SESM may also be used

to effectively initialize the DNN training. Besides unsupervised

pretraining, the supervised pretraining, or sometimes called

discriminative pretraining, has also been shown to be effective

and in cases where labeled training data are abundant performs

better than the unsupervised pretraining techniques.

The idea of the discriminative pretraining is to start from a

one-hidden-layer MLP trained with the BP algorithm. Every time

when we want to add a new hidden layer we replace the output

layer with a randomly initialized new hidden and output layer and

train the whole new MLP (or DNN) using the BP algorithm.

Different from the unsupervised pretraining techniques, the

discriminative pretraining technique requires labels.

2. MATERIAL AND METHODS

The Deep learning refers to a rather wide class of machine

learning techniques and architectures, with the hallmark of using

many layers of non-linear information processing that are

hierarchical in nature. Depending on how the architectures and

techniques are intended for use, e.g., synthesis/generation or

recognition/classification, one can broadly categorize most of the

work in this area into three classes:

• Generative deep architectures, which are intended to

capture high-order correlation of the observed or visible data

for pattern analysis or synthesis purposes, and/or

characterize the joint statistical distributions of the visible

data and their associated classes. In the latter case, the use of

Bayes rule can turn this type of architecture into a

discriminative one.

• Discriminative deep architectures, which are intended to

directly provide discriminative power for pattern

classification purposes, often by characterizing the posterior

distributions of classes conditioned on the visible data; and

• Hybrid deep architectures, where the goal is

discrimination which is assisted (often in a significant way)

with the outcomes of generative architectures via better

optimization or/and regularization, or where discriminative

criteria are used to learn the parameters in any of the deep

generative models.

Deep autoencoder is a special type of DNN whose output has

the same dimension as the input, and is used for learning efficient

encoding or representation of the original data at hidden layers.

Note that autoencoder is a nonlinear feature extraction method

without using class labels. As such the feature extracted aims at

conserving information instead of performing classification tasks,

although sometimes these two goals are correlated.

An autoencoder typically has an input layer which represents

the original data or feature (e.g., pixels in image or spectra in

speech), one or more hidden layers that represent the transformed

feature, and an output layer which matches the input layer for

reconstruction. When the number of hidden layers is greater than

one, the autoencoder is considered to be deep. The dimension of

the hidden layers can be either smaller (when the goal is feature

compression) or larger (when the goal is mapping the feature to a

higher-dimensional space) than the input dimension.

An auto-encoder is often trained using one of the many

backpropagation variants (e.g., conjugate gradient method,

steepest descent, etc.). Though often reasonably effective, there

are fundamental problems when using back-propagation to train

networks with many hidden layers. Once the errors get back-

propagated to the first few layers, they become minuscule, and

training becomes quite ineffective. Though more advanced

backpropagation methods (e.g., the conjugate gradient method)

help with this to some degree, it still results in very slow learning

and poor solutions. As mentioned in the previous chapters this

problem can be alleviated by using parameters initialized with

some unsupervised pretraining technique such as the DBN

pretraining algorithm. This strategy has been applied to construct

a deep autoencoder to map images to short binary code for fast,

content-based image retrieval, to encode documents (called

ISSN: xxxx-xxxx (ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, SEPTEMBER 2021, VOLUME: 02, ISSUE: 04

221

semantic hashing), and to encode spectrogram-like speech

features which we review below.

In this method, features are formed using the distance-based

connectivity. These hierarchal classification techniques can be

categorized as top-down and bottom-up models based on how the

connections are made with split and merge to form the group of

objects or features in a tree form. Top-down approach is also

known as divisive method in which the original features are split

recursively one move down to form the hierarchy based on their

similarity with a linkage method. The bottom-up approach is also

known as agglomerative method. In this method, each feature

initiates in its own group and the pair of groups are merged toward

upward direction to form the hierarchical cluster using the

similarity measure and linkage function. The linkage function can

form the hierarchical cluster using the distance measures [10].

The distance measures are used to find the similarity between the

features based on their distance.

3. EXPERIMENTAL SETUP

The experiments are conducted using MATLAB12b with the

system configuration of Intel® Core™ 2 CPU T5300 @ 1.73 GHz

processor, 4 GB memory (RAM) and 32-bit Windows vista Home

Premium Operating system. The performance of the classification

methods is tested on various high-dimensional datasets listed in

Table.1. Further, the performance of the classification methods

DD, GD and HD is tested in terms average intra-cluster

redundancy rate and runtime.

The experiment is conducted with the following procedure:

Initially, the dataset is given to the classification method with the

number of features to be formed DL. Then the K numbers of

features are formed. The corresponding runtime is noted and the

intra-cluster redundancy rate is calculated for all K numbers of

features for each dataset. The average intra-cluster redundancy

rate is calculated by averaging intra-cluster redundancy rates from

K numbers of features. For this experiment, the average intra-

cluster redundancy rate and runtime are obtained by varying the

number of features K from 2 to 10.

Table.1. Dataset

Dataset Features Instances Classes

ORL10Pa 10,304 100 10

PIX10Pa 10,000 100 10

PIE10Pa 2420 210 10

AR10Pa 2400 130 10

SRBCTb 2308 83 4

ORL_32 × 32c 1024 400 40

Yale_64 × 64c 4096 165 15

COIL20c 1024 1440 20

DBWorld e-mailsd 4702 64 2

Table.2. Runtime

Datasets

Runtime

Generative

Deep

Discriminative

Deep

Hybrid

Deep

200 0.522 12.63 1.1

300 1.874 40.15 4.9

400 10.502 77.90 7.0

500 5.556 107.34 17.4

600 3.775 169.68 19.6

700 7.816 209.71 29.1

800 6.889 258.05 28.5

900 5.775 185.37 15.7

1000 24.168 136.45 16.5

Table.2. Average Error Rate

Datasets

Average error rate

Generative

Deep

Discriminative

Deep

Hybrid

Deep

200 0.28 0.30 0.32

300 0.29 0.35 0.38

400 0.33 0.35 0.31

500 0.35 0.34 0.34

600 0.37 0.37 0.32

700 0.41 0.38 0.32

800 0.42 0.38 0.36

900 0.44 0.39 0.33

1000 0.46 0.41 0.45

Further, it is observed that the HD takes more time to form

features due to the inherent computational complexity and it

exhibits poor performance in terms of overall intra-cluster

redundancy rate compared to GD and KC. Further, HD induces

buffer overflow when the number of features is more (high-

dimensional data) due to high space complexity. Therefore, HD is

not a suitable choice for redundancy analysis in high-dimensional

space. GD cluster has more computational complexity than DD

and its overall performance in terms of intra-cluster redundancy

rate is better than HC. Nevertheless, its performance is poor when

compared to KC. DD classification technique performs better in

redundancy analysis since it produces overall higher intra-cluster

redundancy rate and takes less computational time compared to

GD and HC. Therefore, it is concluded that DD classification

technique can be the best choice for redundancy analysis for the

high-dimension data.

4. CONCLUSION

This paper presented an empirical study on various

classification techniques for redundancy analysis in feature

selection for high-dimensional data classification. The

performance of these classification approaches, is evaluated in

terms of runtime and average intra-cluster redundancy rate. From

the results, it is observed that the Hybrid deep classification is

suitable for redundancy analysis in feature selection since it yields

higher intra-cluster redundancy rate and takes less runtime for the

high-dimensional space. Moreover, this work may be extended

with different types of classification techniques and various

statistical measures may be adopted for performance evaluation.

M NAGAVIGNESH: DATA REDUNDANCY REDUCTION IN LARGE DIMENSIONAL DATASETS USING DEEP LEARNING

222

Furthermore, this redundancy analysis method can be combined

with any one of the relevancy analysis methods for selecting the

significant features from the high-dimensional data to achieve

higher accuracy for the classification tasks for various

applications.

REFERENCES

[1] S. Sowmyayani and P. Arockia Jansi Rani, “An Efficient

Temporal Redundancy Transformation for Wavelet based

Video Compression”, International Journal of Image and

Graphics, Vol. 16, No. 3, pp.1-6, 2016.

[2] S. Kallam, R. Patan and A.H. Gandomi, “Improved Salient

Object Detection using Hybrid Convolution Recurrent

Neural Network”, Expert Systems with Applications, Vol.

166, pp. 1-23, 2020.

[3] N. Passalis and A. Tefas, “Learning Bag-of-

EmbeddedWords Representations for Textual Information

Retrieval”, Pattern Recognition, Vol. 81, pp. 254-267, 2018.

[4] J. Zhang, C. Chen, Y. Xiang, W. Zhou and Y. Xiang,

“Internet Traffic Classification by Aggregating Correlated

Naive Bayes Predictions”, IEEE Transactions on

Information Forensics and Security, Vol. 8, No. 1, pp. 5-15,

2012.

[5] J. Kim, H. Choi and W. Lee, “Spoof Detection Method for

Touchless Fingerprint Acquisition Apparatus”, Korea

Patent, Vol. 1, No. 54, pp. 314, 2011.

[6] S. Marcel, M.S. Nixon and S.Z. Li, “Handbook of Biometric

Anti-Spoofing”, Springer, 2014.

[7] G. Thimm and E Fiesler, “Neural Network Initialization”,

Proceedings of International Workshop on Artificial Neural

Networks, pp. 535-542, 2005.

[8] M.P.S. Veenu Bhatia and P. Chandra, “Comparison of

Sigmoidal FFANN Training Algorithms for Function

Approximation Problems”, Proceedings of International

Conference on Computing for Sustainable Global

Development, pp. 325-329, 2015.

[9] Simon Haykin, “Neural Networks and Learning Machines”,

3rd Edition, PHI Learning Private Limited, 2011.

[10] Y. LeCun, L. Bottou, G. Orr and K. Muller, “Efficient

BackProp”, Springer, 1998.

[11] G.P. Drago and S. Ridella, “Statistically Controlled

Activation Weight Initialization (SCAWI)”, IEEE

Transactions on Neural Networks, Vol. 3, No. 4, pp. 627-

631, 1992.

