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Abstract 

The readability and accuracy of any excellent classifier are two 

essential characteristics. Associative classifiers have lately been utilised 

for many classification problems, for reasons such as acceptable 

accuracy, fast training, and good interpretability. While features may 

be extremely helpful for categorization of texts, owing to the great 

dimensionality of text documents, both training time and the number 

of rules generated will substantially rise. In this article we present an 

algorithm for classifying texts, which comprises a selection phase for 

features to pick essential characteristics and a classifying phase to 

address this shortcoming. The experimental findings from the 

application of the suggested algorithm show that our method surpasses 

others in efficiency and performance compared with the results of a 

chosen well-known classification algorithm. 

 

Keywords:  

Classification, Text dataset, Naïve Bayes, Feature Selection 

1. INTRODUCTION 

The need to acquire and handle information has grown quickly 

with the exponential development of information. In organised as 

well as unstructured formats, information may be shown. This 

article is named class labels to automatically categorise a 

collection of papers into specified categories. The categorization 

of texts provides a better understanding of information as a text in 

terms of the language most often employed. Several kinds of 

applications, including genre classification [1], opinion mining 

[2], text-based webpage classification [3], and spam filtering [4], 

were reported in the domain. 

They may be classified into two major categories: traditional 

such as K Neighbors [6]-[12], Decision Trees [5] and C4.5 [5], 

and Association Classification Algorithms. Classification 

algorithms are available in two primary groups. Experimental 

findings in [6] demonstrate the greater precision of association 

classification algorithms than conventional methods. 

The whole process of association classification starts with one 

of the association rules mining algorithms such as Apriori [8] and 

Fp-Growth [9]. A series of association rules are generated and a 

limited number of high-quality rules are then chosen, which are 

ultimately used to forecast. As a classifier based on the rules, man 

may comprehend the functioning of the Associative Classifier, 

and the results of the prediction give a clear, straightforward 

interpretation [10]. The fact that Associative Classification 

frequently leads to a large number of rules in association rule 

mining, and also strives to choose high-quality rules [11], causes 

difficulties in efficiency. 

In [16], Agrawal presented the issue of mining association 

regulations with basket data. An illustration of this rule might be 

that 98 percent of consumers who buy tyres and car accessories 

also need car service. For cross-marketing and connected mailing 

applications, it is important to find all these rules. Other uses 

include catalogue design, sales add-ons, shop layout and 

purchasing pattern-based consumer segmentation. Due to their 

extremely huge databases, it is thus essential for quick algorithms 

to be executed throughout the work of these applications [21]. 

Most text data has a large space in which many association 

rules are generated. Two popular methods for high-quality 

regulations exist. First, it produces all the regulations of the 

organisation. Therefore, in the induction process for the 

associative classifier, many high-order association rules are 

produced. High-order rules are often more informative; thus, the 

categorization using these rules is superior [22]. The complexity 

of these techniques is very high [10]. Second, a few high-quality 

regulations were applied irrespective of the ruling decision (or 

preferring high-order rules). These techniques eliminate 

superfluous words and choose high-quality characteristics alone 

to decrease calculation time. 

High frequency words are initially detected and then grouped 

into class labels in our suggested approach. High-quality 

characteristics are therefore identified for each class label. The 

association rules for every grade label are created using these 

characteristics, and thus, all words for each grade label must not 

be taken into account. 

2. LITERATURE SURVEY 

Several text classifiers, such as machine learning methods and 

probabilistic models, have been suggested in the literature, e.g. 

decision trees, nave Bayes [5], closest neighbours. A set of 

classifiers known as association-regulatory classifiers, which are 

successful and similar to most well-known text classifiers [13], 

has just been suggested. The CBA [7], CMAR [6], CPAR [11], 

Harmony [14], MCAR [15] and CACA [12] are well-known in 

association regulatory base classifiers, and use diverse techniques 

in rules discovery, rule ranking, rules trimming, rules prevision, 

and rules assessment methods. The following is a short 

description of each of them: 

One of the earliest algorithms for classification using the 

association rule mining method was suggested in [7] and is called 

CBA. It uses the apriori algorithm [16] to find common objects in 

transaction data. Once the frequent things are discovered, the 

CBA generates rules for any frequent items with minimal 

certainty. These criteria are assessed and a subset of these rules is 

chosen and utilised for the final classification. In two distinct 

stages, CBA is applied for the identification of frequent itemsets 

and rules. 

The frequent pattern mining technique has been enhanced by 

CMAR; FP-growth; and the distribution-related class FP-tree is 

constructed and huge datasets are quickly broken down. The CR-

tree structure utilises association rules for the storage and retrieval 

of and prints them for trust, correlation and database coverage. 

Harmony directly mines one of the top classification rules in each 
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training instance, which supports and builds a classification model 

from the union of these rules across the whole collection of 

examples.  

Harmony CPAR aims to integrate both associative and 

conventional rule-based categorization benefits. It inherits the 

fundamental concept [17] is a rule generator and incorporates the 

associative classification characteristics into the predictive rule 

analysis using a ‘great algorithm.’ Harmony uses a framework for 

the creation of instance-centric rules and ensures that the optimal 

rule for each training instance will be found and included [14]. 

This approach, however, may function negatively when a 

database with unequal class distribution labels is manufactured, 

because a class with numerous training instances may be highly 

predictive of the label, which leads to an incorrect prediction [18]. 

A method for the discovery of frequent item sets is used in the 

MCAR algorithm. Two major stages comprise MCAR: rule 

generation and the function Object () [native code] of a 

classification. The first phase scans the training data set to find 

the common ‘1 item’ in a group of items, then creates combined 

criteria for producing candidate items with more. The training 

data set will then be scanned. A “candidate rule” is produced as 

any rule supporting more than minimal support. In phase two, 

rules are established to construct a classifier in view of its 

efficiency in the training data set. In the classifier [15], only rules 

are maintained that cover a specific number of training instances. 

A method named CACA was also proposed [12] for the 

classification of the association. First, CACA searches the data set 

before vertically storing it like the MCAR method. The next 

frequency counts the frequency of each value and is ordered 

according to the frequencies in decreasing order. TIDs are 

intersected to limit the search range of common patterns with all 

frequent ‘disjoint attribute value’ values. A TID with a frequent 

attribute value contains the row numbers where the items in the 

training data set appear. Finally, in each class group attribute 

passing the minimal level of confidence, the root node support, 

confidence and class of a class attribute are put into the Ordered 

Rule Tree (OR-Tree). CACA categorises data that is invisible, 

such as the CBA. Experimental findings indicate that CACA is 

superior to other associative algorithms in UCI data sets with 

regards to accuracy and calculation times [19] [20]. 

The filtering of the frequent search space, while obtaining the 

high quality features differently, is inspired by CACA. 

The aforementioned classifiers are not used for text 

categorization and have broad applicability. Certain algorithms, 

such as [9] [13] [18] were specifically designed for texts and are 

classified in the Association Family. 

3. PROPOSED METHODOLOGY AND 

RESULTS 

The whole text classification method association structure is 

shown in Figure 1. As shown in Figure 1, these processes have 

two stages: a training phase and a test phase. Raw data on training 

papers is created throughout the training phase. In this section, 

words and unnecessary characters are deleted and words are 

stemmed and indexed according to necessity (step 1). We get the 

categorization rules by extracting data from this pre-processed 

database (step 2). The extremely high number of categorization 

rules filters out some superfluous rules and selects a limited 

number of key rules. This is called tailing (step 3). We now have 

a classification rules database. In the test phase, unknown 

materials should be preprocessed before any activity and 

transformed into a word pattern and matched to the categorization 

criteria (step 4). In step 5, the class labels of unknown documents 

are predicted in the final phase according to the matching criteria. 

 

Fig.1. Text classification structure 

The Bernouilli Naïve Bayes procedure looks at word 

occurrences; all that matters is whether a word is absent or present 

in a document. The Binomial Naïve Bayes procedure discussed 

here uses word frequencies. The prior probabilities are estimated 

the same way as explained previously, but the conditional joint 

probabilities 
1 2( , ,..., | 1)mP x x x y   and 

1 2( , ,..., | 2)mP x x x y  in 

Eq.(1) are estimated differently. For multinomial Naïve Bayes the 

marginal conditional probabilities of the occurrence of the ith 

word, 

( | 1)iP Occurrence y   and ( | 2)iP Occurrence y  , 

are obtained by dividing the number of times a given word 

occurs in documents of a given group (either group 1 or group 2) 

by the number of all word occurrences in that group; Laplace 

smoothing is implemented as well to avoid problems when a 

given word does not occur in one of the groups. Note this is 

different from the Bernouilli version which ignores how often a 

word is included in a document and works with occurrence 

indicators. Furthermore, the calculation of the posterior 

probability of the test case
1 2( | , ,..., )mP y x x x , where n is the total 

number of words of the test case and 
1 2, ,..., mx x x  are its number 

of occurrences of the m words, incorporates the word frequencies 

ix of the new case; the terms on the right-hand side of Eq.(1) are 

calculated from the multinomial distribution as 
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Note that the Eq.(1) cancels out the factorial conditions, thus 

no calculation is necessary. Fig.2 shows the common kernel 

function using Bernouilli Nave Bayes. 
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Fig.2. Performance of Bernouilli Naïve Bayes on Various 

Fitness Function 

 

Fig.3. RoC Curve 

 

Fig.4. Precision-Recall Curve 

The true positive rate and the false positive rate of the ROC 

curve in Fig.3 are verified using Bernouilli Nave Bayes. In 

addition, the application of the system to an unstructured data set 

is evaluated in Fig.4 in terms of the precision recall curve. 

4. CONCLUSION 

A novel method for the categorization of texts has been 

developed, called Bernouilli Nave Bayes. The technique 

presented has many characteristics enhanced compared to 

conventional and association classification methods used to 

classify documents. It produces understandable rules for man-

made interpretations, contains a selection part to decrease text 

dimensions, clusters of important label-based features, needs a 

single data scan, saves features as a binary stream, and uses binary 

operations for all processes to reduce the necessary memory 

space. 
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