
M KEERTHANA: RECURRENT NEURAL NETWORK OPTIMIZED DATA CLUSTERING IN TEXT DOCUMENT CLUSTERING ON CANCER DATASETS

172

RECURRENT NEURAL NETWORK OPTIMIZED DATA CLUSTERING IN TEXT

DOCUMENT CLUSTERING ON CANCER DATASETS

M. Keerthana
Department of Computer Science and Engineering, Paavai Engineering College, India

Abstract

In this paper, we include an in-depth analysis of DL-based research

clustering approaches. Cluster findings in the three separate use cases

representing different data types reveal that DL-based clustering

algorithms exceed these approaches. Overall assessments are however

delayed because of the small number of marked data for GE-bio-

imaging and clustering. Neural networks usually need a great deal of

samples for generalization.

Keywords:

Deep Learning, Recurrent Neural Network, Clustering, Cancer

1. INTRODUCTION

The clustering of images, knowledge collection, data

composition, identification patterns, word clusters and biologics

is a basic, non-surveyed learning task widely used in the

exploratory data mining field. [1]. The primary objective of the

cluster is for data to be divided into clusters based on similarities,

density, intervals or statistical distribution measures of the data

space [1]-[3]. For example, the clustering of gene expressions

(GE), in which genes of small distance share identical patterns of

expression [4], will expose groups of functionally related genes.

Such an investigation decides the genes under certain

circumstances are turned on or off [4]-[6]. An example is also the

clustering of genes or biomedical images through discovering

from unlabelled data sets the secret patterns [7]. In addition, it can

be astonishing to visualize, view, and analyze large-scale

biological data in its unstructured integrity unless the data is

grouped.

Biological entities such as chromosomes, pathogens, proteins,

tracts and small molecules can be clustered based on input

quantities, consistency and type [8] or samples (e.g. patients or

distinct cells). While a large amount of biological data comes

from various ubiquitous medical instruments, clustering

implementations in genomics and gene clustering analytics are

still limited [9] [10]. In addition, one-cell studies have become an

emerging subject of bioinformatics science, which is critical to

clustering [12].

However, as cluster analysis itself is not a particular

algorithm, it is possible to use different methods to consider and

discover effectively what makes a cluster. Various issues involve

varying measurements of resemblance and separation [13] in

practice. Furthermore, an efficient clustering algorithm is

complex and can be conceived as a multifaceted optimisation

problem [12] for a particular bioinformatics problem. Over the

course of the years clustering analytics have been suggested in

literature [1] such as hierarchical clustering [4], central center

clustering [8], distribution-based clustering [9] [11], etc. Other

methods include probabilistic clustering, map clustering, spectral

clusters, and factoring of non-negative matrices [3]. Clusters with

a default ordering include HC algorithms that combine lower-

level clusters into even larger groups at higher levels, which gives

clusters a hierarchy. Each data point is initially called an

independent cluster in agglomerative clustering (AC). Similar

clusters are then fusion with other clusters until in each iteration

a cluster or K is created. HC algorithms have advantages in their

simplicity and eyes, and depending on the required granularity,

the hierarchy may be broken at the desired level in order to

achieve an appropriate clustering process. Clustering accuracy

(CA), however, is noise-sensitive [1], which complicates

hierarchy perception. Furthermore, there is no possibility of

reviewing the clustering [1] [7] and the data points are clustered

with local judgments dependent on deterministic attributes.

CC algorithms by comparison, also achieve a higher level of

precision in point density, conservation of topology and

computing requirements. The non-convex clusters of CC

algorithms are, however, unable to be found [12]. DC algorithms

are based on distribution models that classify clusters as data

points of the discovered distributions (s). DC methods generally

yield dynamic models for clusters and can also identify

correlations and dependencies between biological attributes. On

the other hand, if the Gaussian distributions are built on a strong

assumption of data, a concisely described model cannot be

created. Moreover, if the model's sophistication is not limited, DC

algorithms are inevitably affected by overfitting issues.

While these algorithms operate relatively well for medium-

sized and low-dimensional results, their precision and efficiency

are dramatically impaired by a large number of samples, primarily

because of their dimensionality. In addition, the high

computational difficulty in big data is commonly experienced by

ML-based methods [2]. Recurrent Neural Networks (RNN) is

widely used, along with clustering, to reduce computational

complexity by mapping input data to a functional area in which

the distinction is easier in the sense of the problem [13]. The

explanation is that PCA is essentially restricted to linear

embedding, which also loses critical characteristics [3]. High

dimensional datasets therefore require non-linear and spectral

DR, without losing essential features, for better clustering

performance.

On the other hand, only deep learning (DL) bases are currently

being actively used [8] in bioinformatics science, in particular for

supervised learning tasks where data is handled separately and

sequentially with DR and clustering dependent RL. But suppose,

for example, how to partition them into K-groups with respect to

inherently latent semantics from a vast collection of unlabeled

images? Using an ML-based method, the function vectors should

be first extracted according to domain specific information and

(ii) the extracted features should be grouped using an all-inclusive

algorithm [4]. DL-based methods, on the other hand, can be more

efficient in the RL process and in the extraction of images that can

be used to optimize clusters with an auxiliary goal distribution

ISSN: xxxx-xxxx (ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, JUNE 2020, VOLUME: 01, ISSUE: 03

173

extracted from the current allocation of a soft cluster and to boost

clustering iteratively [2]. More nuanced and high-level

characteristics can be integrated into the input data, and

background information can be collected [5] using a deep neural

network (DNN) architecture in particular. Lastly, understanding

nonlinear mappings enables input data to be transformed into

more cluster-friendly images that project data into a lower

dimensional function area [2]. The cluster assignment can then be

carried out using a basic clustering algorithm, and the clustering

goal can be optimized iteratively [6].

2. RECURRENT NEURAL NETWORK

Machine learning approaches are neural networks. They are

the same as the cortical biological networks. There are several

neurons and neuronal links. A neural network example is Fig.1.

Neurons are represented by white circles and associations

between neurons are represented by arrows. Notice that we use

arrows to reflect the relations guided.

First of all, what the neuron is, we need to remember. In

genetics, stimuli, thresholds and outcomes are available to

neurons. The neuron is triggered and the signal is sent to the

output if the input voltage is greater than the threshold. Note that

the neuron can have several inputs, but only one output signal is

available. In neuroscience and machine learning, the neuron

operation paradigm is very similar. The inputs and outputs are

also available.

Despite the neuron’s output is connected to many neurons in

Fig.1, the value of the outputs are the same. Of course, there are

some differences of them. Instead of the threshold, the “neuron”

in machine learning use a function to transfer the inputs to the

output. There are many choices of the activation function. We

often choose it as the sigmoid function (x).

1
(

1
)

xe
x





 (1)

The neural networks emerge as we bind several neurons. The

colored rectangles are made up of a large number of neurons. One

or more neurons in the layer are not linked to each other. The first

layer is also called the input layer and the final layer is called the

output layer. The cached layers are considered the layers between

the input and the output layers. Each neuron in the previous layer

is always connected to each neuron in the next layer.

Fig.1. Sigmoid function

Another difference is the weight. The weights describe that

how much each input affects the neuron. That is, we will not just

put every inputs into the activation function. The value of

activation function’s input is the linear combination of the inputs.

The mathematical representation is as follows:

1 1 2 2)(N Nw x wx w x   (2)

where N is the amount of the inputs, wi are weights of xi, and ()

is the activation function. However, there is a problem of it! We

reduce the amount of inputs to 1 and change the weight to observe

how weights influence on the output. The result is shown in

Fig.3(a). One can see that 0 can be viewed as the threshold to

determine whether the output is near to 0 nor near to 1. However,

how do we modify the model if we want to change the threshold

to a value other than 0? In this case, we add a bias  to achieve

that so that we can shift the sigmoid function. The result of the

sigmoid function with bias is shown in Fig.3(b). So the new

relation is revised as follows:

1 1 2 2)(N Nww x w x x     (3)

The parameter  is the bias and other notations are the same

as above. And
1 ., , .., nw w are parameters that are needed to be

learned. That is how neuron works.

Fig.2. (a) Result of the sigmoid function with different weights

of input but without bias (b) Result of the sigmoid function with

different weights of bias

If we connect many neurons, the neural networks appear. The

colored rectangles are consisted of many neurons and we call

these rectangle layers. The layer contains one or many neurons

and these neurons will not connect to each other. We often call

M KEERTHANA: RECURRENT NEURAL NETWORK OPTIMIZED DATA CLUSTERING IN TEXT DOCUMENT CLUSTERING ON CANCER DATASETS

174

the first layer the input layer and we call the last layer the output

layer. The layers between the input layer and output layer are

called the hidden layers. We often connect every neuron in

previous layer to every neurons in the next layer.

There are many neurons in the neural networks. Each neuron

has many weights. Therefore, the goal is that we should find the

proper weights to fit the data. That is training the networks so that

the outputs are close to the desired outputs. In the next section, we

will introduce the method of training – backpropagation.

3. NETWORK UPDATES AND TRAINING

Depending on the DNN architecture, various loss functions

and training process, DL-based clustering algorithms can vary.

However, since it would be difficult to cover both of them in depth

in this comparative study, we are discussing network changes and

pipeline preparation only in detail, with many of the potential

measures outlined in other DL approaches. Two types of losses

are configured in DL-based clustering:

• Non-Clustering Loss: these losses are independent of an

algorithm of the clustering and normally impose a desired

limit on the model you studied, which ensures valuable

knowledge is preserved by the learned image, so that the

original input can be reconstructed during decoding.

• Clustering Loss: This kind of loss depends on the

classification system of the learning representations and on

its clustering-friendliness.

4. RESULTS AND DISCUSSIONS

We concentrate on clustering genomic data, biomedical text

mining and biomedical imagery using various methods to

demonstrate the efficacy of NN-based clustering approaches.

The software stack included Keras and Scicit Learn with a

TensorFlow backend was written in Python, and tested on a 32-

center, 256GB RAM and Debian 9.9 OS machine.

Results based on the best hyperparameters generated by

random search are recorded empirically and checked if the

network converges with and increases K=2 slowly to the optimum

number of clusters.

We also examined the way in which network training

converged with other methods like ARI, NMI, ACC,

completeness and homogeneity during cluster assignments and

updates by using Elbow methods.

Table.1. Performance of Clustering Algorithm with Auto

encoder in RNN

Clustering

Algorithm
ACC NMI ARI Homogeneity Completeness

ANN 0.65 0.63 0.53 0.52 0.58

MLP 0.72 0.72 0.62 0.68 0.69

RBN 0.73 0.74 0.63 0.70 0.71

DPNN 0.78 0.75 0.69 0.67 0.73

RNN 0.80 0.83 0.84 0.72 0.75

Table.2. Performance of Clustering Algorithm with

Convolutional Auto Encoder in RNN

Clustering

Algorithm
ACC NMI ARI Homogeneity Completeness

ANN 0.73 0.7 0.65 0.67 0.68

MLP 0.85 0.83 0.84 0.75 0.77

RBN 0.82 0.81 0.80 0.73 0.74

DPNN 0.75 0.76 0.70 0.65 0.73

RNN 0.72 0.73 0.67 0.58 0.69

Table.3. Performance of Clustering Algorithm with

Convolutional Auto Encoder in RNN

Clustering

Algorithm
ACC NMI ARI Homogeneity Completeness

ANN 0.67 0.69 0.56 0.57 0.65

MLP 0.72 0.72 0.62 0.68 0.69

RBN 0.71 0.72 0.66 0.69 0.70

DPNN 0.74 0.73 0.68 0.66 0.71

RNN 0.83 0.81 0.82 0.70 0.73

Table.4. Performance of Clustering Algorithm with Variation

Auto Encoder in RNN

Clustering

Algorithm
ACC NMI ARI Homogeneity Completeness

ANN 0.67 0.69 0.56 0.57 0.65

MLP 0.72 0.72 0.62 0.68 0.69

RBN 0.71 0.72 0.66 0.69 0.70

DPNN 0.74 0.73 0.68 0.66 0.71

RNN 0.83 0.81 0.82 0.70 0.73

Table.5. Performance of Clustering Algorithm with LSTM in

RNN

Clustering

Algorithm
ACC NMI ARI Homogeneity Completeness

ANN 0.70 0.69 0.67 0.68 0.69

MLP 0.80 0.82 0.81 0.74 0.75

RBN 0.81 0.79 0.81 0.75 0.76

DPNN 0.80 0.81 0.80 0.79 0.80

RNN 0.83 0.84 0.85 0.81 0.82

5. CONCLUSION

In this article, we include an in-depth analysis of DL-based

research clustering approaches. Cluster findings in the three

separate use cases representing different data types reveal that

DL-based clustering algorithms exceed these approaches. Overall

assessments are however delayed because of the small number of

marked data for GE-bio-imaging and clustering. Neural networks

usually need a great deal of samples for generalization.

ISSN: xxxx-xxxx (ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, JUNE 2020, VOLUME: 01, ISSUE: 03

175

REFERENCES

[1] Xin-She Yang, “Firefly algorithm, stochastic test functions

and design optimization”, International Journal of

Bioinspired Computation, Vol. 2, No. 2, pp. 78-84, 2010.

[2] Ujjwal Malik and Sanghamitra Bandyopadhyay, “Genetic

Algorithm-based Clustering Technique”, Pattern

Recognition, Vol. 33, No. 9, pp. 1455-1465, 2000.

[3] Xin-She Yang, “Nature-Inspired Metaheuristic

Algorithms”, Luniver Press, 2010.

[4] D.M. Van and A.P. Engelbrecht, “Data Clustering using

Particle Swarm Optimization”, Proceedings of International

Congress on Evolutionary Computation, pp. 215-220, 2003.

[5] Xin-She Yang and Suash Deb, “Engineering Optimization

by Cuckoo Search”, International Journal of Mathematical

Modelling and Numerical Optimization, Vol. 1, No. 4, pp.

330-343, 2010.

[6] Ajith Abraham, Ravi Jain, Johnson Thomas and Sang Yong

Han, “D-SCIDS: Distributed Soft Computing Intrusion

Detection System”, Journal of Network and Computer

Applications, Vol. 30, No. 1, pp. 81-98, 2007.

[7] T. Amalraj Victoire and M. Sakthivel, “A Refined

Differential Evolution Algorithm Based Fuzzy Classifier for

Intrusion Detection”, European Journal of Scientific

Research, Vol. 65, No. 2, pp. 246-259, 2011.

[8] Mostaque Morshedur Hassan, “Current Studies on Intrusion

Detection System, Genetic Algorithm and Fuzzy Logic”,

International Journal of Distributed and Parallel Systems,

Vol. 4, No. 2, pp. 35-47, 2013.

[9] J. Senthilnath, S.N. Omkar and V. Mani, “Clustering using

Firefly Algorithm: Performance Study”, Swarm and

Evolutionary Computation, Vol. 1, No. 3, pp. 164-171,

2011.

[10] Miao Wan, Lixiang Li, Jinghua Xiao, Cong Wang and

Yixian Yang, “Data Clustering using Bacterial Foraging

Optimization”, Journal of Intelligent Information Systems,

Vol. 38, No. 2, pp. 321-341, 2012.

[11] Tunchan Cura, “A Particle Swarm Optimization Approach

to Clustering”, Expert Systems with Applications, Vol. 39,

No. 1, pp. 1582-1588, 2012.

[12] Sherif M. Badr, “Implementation of Intelligent Multi-Layer

Intrusion Detection Systems (IMLIDS)”, International

Journal of Computer Applications, Vol. 61, No. 4, pp. 41-

49, 2013.

[13] Daniela Zaharie, “A Comparative Analysis of Crossover

Variants in Differential Evolution”, Proceedings of the

International Multiconference on Computer Science and

Information Technology, pp. 171-181, 2007.

