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Abstract 

In this paper, we include an in-depth analysis of DL-based research 

clustering approaches. Cluster findings in the three separate use cases 

representing different data types reveal that DL-based clustering 

algorithms exceed these approaches. Overall assessments are however 

delayed because of the small number of marked data for GE-bio-

imaging and clustering. Neural networks usually need a great deal of 

samples for generalization. 
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1. INTRODUCTION 

The clustering of images, knowledge collection, data 

composition, identification patterns, word clusters and biologics 

is a basic, non-surveyed learning task widely used in the 

exploratory data mining field. [1]. The primary objective of the 

cluster is for data to be divided into clusters based on similarities, 

density, intervals or statistical distribution measures of the data 

space [1]-[3]. For example, the clustering of gene expressions 

(GE), in which genes of small distance share identical patterns of 

expression [4], will expose groups of functionally related genes. 

Such an investigation decides the genes under certain 

circumstances are turned on or off [4]-[6]. An example is also the 

clustering of genes or biomedical images through discovering 

from unlabelled data sets the secret patterns [7]. In addition, it can 

be astonishing to visualize, view, and analyze large-scale 

biological data in its unstructured integrity unless the data is 

grouped. 

Biological entities such as chromosomes, pathogens, proteins, 

tracts and small molecules can be clustered based on input 

quantities, consistency and type [8] or samples (e.g. patients or 

distinct cells). While a large amount of biological data comes 

from various ubiquitous medical instruments, clustering 

implementations in genomics and gene clustering analytics are 

still limited [9] [10]. In addition, one-cell studies have become an 

emerging subject of bioinformatics science, which is critical to 

clustering [12]. 

However, as cluster analysis itself is not a particular 

algorithm, it is possible to use different methods to consider and 

discover effectively what makes a cluster. Various issues involve 

varying measurements of resemblance and separation [13] in 

practice. Furthermore, an efficient clustering algorithm is 

complex and can be conceived as a multifaceted optimisation 

problem [12] for a particular bioinformatics problem. Over the 

course of the years clustering analytics have been suggested in 

literature [1] such as hierarchical clustering [4], central center 

clustering [8], distribution-based clustering [9] [11], etc. Other 

methods include probabilistic clustering, map clustering, spectral 

clusters, and factoring of non-negative matrices [3]. Clusters with 

a default ordering include HC algorithms that combine lower-

level clusters into even larger groups at higher levels, which gives 

clusters a hierarchy. Each data point is initially called an 

independent cluster in agglomerative clustering (AC). Similar 

clusters are then fusion with other clusters until in each iteration 

a cluster or K is created. HC algorithms have advantages in their 

simplicity and eyes, and depending on the required granularity, 

the hierarchy may be broken at the desired level in order to 

achieve an appropriate clustering process. Clustering accuracy 

(CA), however, is noise-sensitive [1], which complicates 

hierarchy perception. Furthermore, there is no possibility of 

reviewing the clustering [1] [7] and the data points are clustered 

with local judgments dependent on deterministic attributes. 

CC algorithms by comparison, also achieve a higher level of 

precision in point density, conservation of topology and 

computing requirements. The non-convex clusters of CC 

algorithms are, however, unable to be found [12]. DC algorithms 

are based on distribution models that classify clusters as data 

points of the discovered distributions (s). DC methods generally 

yield dynamic models for clusters and can also identify 

correlations and dependencies between biological attributes. On 

the other hand, if the Gaussian distributions are built on a strong 

assumption of data, a concisely described model cannot be 

created. Moreover, if the model's sophistication is not limited, DC 

algorithms are inevitably affected by overfitting issues. 

While these algorithms operate relatively well for medium-

sized and low-dimensional results, their precision and efficiency 

are dramatically impaired by a large number of samples, primarily 

because of their dimensionality. In addition, the high 

computational difficulty in big data is commonly experienced by 

ML-based methods [2]. Recurrent Neural Networks (RNN) is 

widely used, along with clustering, to reduce computational 

complexity by mapping input data to a functional area in which 

the distinction is easier in the sense of the problem [13]. The 

explanation is that PCA is essentially restricted to linear 

embedding, which also loses critical characteristics [3]. High 

dimensional datasets therefore require non-linear and spectral 

DR, without losing essential features, for better clustering 

performance. 

On the other hand, only deep learning (DL) bases are currently 

being actively used [8] in bioinformatics science, in particular for 

supervised learning tasks where data is handled separately and 

sequentially with DR and clustering dependent RL. But suppose, 

for example, how to partition them into K-groups with respect to 

inherently latent semantics from a vast collection of unlabeled 

images? Using an ML-based method, the function vectors should 

be first extracted according to domain specific information and 

(ii) the extracted features should be grouped using an all-inclusive 

algorithm [4]. DL-based methods, on the other hand, can be more 

efficient in the RL process and in the extraction of images that can 

be used to optimize clusters with an auxiliary goal distribution 
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extracted from the current allocation of a soft cluster and to boost 

clustering iteratively [2]. More nuanced and high-level 

characteristics can be integrated into the input data, and 

background information can be collected [5] using a deep neural 

network (DNN) architecture in particular. Lastly, understanding 

nonlinear mappings enables input data to be transformed into 

more cluster-friendly images that project data into a lower 

dimensional function area [2]. The cluster assignment can then be 

carried out using a basic clustering algorithm, and the clustering 

goal can be optimized iteratively [6]. 

2. RECURRENT NEURAL NETWORK  

Machine learning approaches are neural networks. They are 

the same as the cortical biological networks. There are several 

neurons and neuronal links. A neural network example is Fig.1. 

Neurons are represented by white circles and associations 

between neurons are represented by arrows. Notice that we use 

arrows to reflect the relations guided.  

First of all, what the neuron is, we need to remember. In 

genetics, stimuli, thresholds and outcomes are available to 

neurons. The neuron is triggered and the signal is sent to the 

output if the input voltage is greater than the threshold. Note that 

the neuron can have several inputs, but only one output signal is 

available. In neuroscience and machine learning, the neuron 

operation paradigm is very similar. The inputs and outputs are 

also available. 

Despite the neuron’s output is connected to many neurons in 

Fig.1, the value of the outputs are the same. Of course, there are 

some differences of them. Instead of the threshold, the “neuron” 

in machine learning use a function to transfer the inputs to the 

output. There are many choices of the activation function. We 

often choose it as the sigmoid function (x). 

1
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The neural networks emerge as we bind several neurons. The 

colored rectangles are made up of a large number of neurons. One 

or more neurons in the layer are not linked to each other. The first 

layer is also called the input layer and the final layer is called the 

output layer. The cached layers are considered the layers between 

the input and the output layers. Each neuron in the previous layer 

is always connected to each neuron in the next layer. 

 

Fig.1. Sigmoid function 

Another difference is the weight. The weights describe that 

how much each input affects the neuron. That is, we will not just 

put every inputs into the activation function. The value of 

activation function’s input is the linear combination of the inputs. 

The mathematical representation is as follows: 

 
1 1 2 2 )( N Nw x wx w x     (2) 

where N is the amount of the inputs, wi are weights of xi, and () 

is the activation function. However, there is a problem of it! We 

reduce the amount of inputs to 1 and change the weight to observe 

how weights influence on the output. The result is shown in 

Fig.3(a). One can see that 0 can be viewed as the threshold to 

determine whether the output is near to 0 nor near to 1. However, 

how do we modify the model if we want to change the threshold 

to a value other than 0? In this case, we add a bias  to achieve 

that so that we can shift the sigmoid function. The result of the 

sigmoid function with bias is shown in Fig.3(b). So the new 

relation is revised as follows: 

 
1 1 2 2 )( N Nww x w x x       (3) 

The parameter  is the bias and other notations are the same 

as above. And 
1 ., , .., nw w  are parameters that are needed to be 

learned. That is how neuron works. 

 

 

Fig.2. (a) Result of the sigmoid function with different weights 

of input but without bias (b) Result of the sigmoid function with 

different weights of bias 

If we connect many neurons, the neural networks appear. The 

colored rectangles are consisted of many neurons and we call 

these rectangle layers. The layer contains one or many neurons 

and these neurons will not connect to each other. We often call 
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the first layer the input layer and we call the last layer the output 

layer. The layers between the input layer and output layer are 

called the hidden layers. We often connect every neuron in 

previous layer to every neurons in the next layer.  

There are many neurons in the neural networks. Each neuron 

has many weights. Therefore, the goal is that we should find the 

proper weights to fit the data. That is training the networks so that 

the outputs are close to the desired outputs. In the next section, we 

will introduce the method of training – backpropagation. 

3. NETWORK UPDATES AND TRAINING 

Depending on the DNN architecture, various loss functions 

and training process, DL-based clustering algorithms can vary. 

However, since it would be difficult to cover both of them in depth 

in this comparative study, we are discussing network changes and 

pipeline preparation only in detail, with many of the potential 

measures outlined in other DL approaches. Two types of losses 

are configured in DL-based clustering: 

• Non-Clustering Loss: these losses are independent of an 

algorithm of the clustering and normally impose a desired 

limit on the model you studied, which ensures valuable 

knowledge is preserved by the learned image, so that the 

original input can be reconstructed during decoding. 

• Clustering Loss: This kind of loss depends on the 

classification system of the learning representations and on 

its clustering-friendliness. 

4. RESULTS AND DISCUSSIONS 

We concentrate on clustering genomic data, biomedical text 

mining and biomedical imagery using various methods to 

demonstrate the efficacy of NN-based clustering approaches. 

The software stack included Keras and Scicit Learn with a 

TensorFlow backend was written in Python, and tested on a 32-

center, 256GB RAM and Debian 9.9 OS machine. 

Results based on the best hyperparameters generated by 

random search are recorded empirically and checked if the 

network converges with and increases K=2 slowly to the optimum 

number of clusters.  

We also examined the way in which network training 

converged with other methods like ARI, NMI, ACC, 

completeness and homogeneity during cluster assignments and 

updates by using Elbow methods. 

Table.1. Performance of Clustering Algorithm with Auto 

encoder in RNN 

Clustering 

Algorithm 
ACC NMI ARI Homogeneity Completeness 

ANN 0.65  0.63  0.53  0.52  0.58  

MLP  0.72  0.72  0.62  0.68  0.69  

RBN 0.73  0.74  0.63  0.70  0.71  

DPNN 0.78  0.75  0.69  0.67  0.73  

RNN 0.80  0.83  0.84  0.72  0.75  

Table.2. Performance of Clustering Algorithm with 

Convolutional Auto Encoder in RNN 

Clustering 

Algorithm 
ACC NMI ARI Homogeneity Completeness 

ANN 0.73 0.7  0.65 0.67  0.68  

MLP  0.85  0.83  0.84  0.75  0.77  

RBN 0.82  0.81  0.80  0.73  0.74  

DPNN 0.75  0.76  0.70  0.65  0.73  

RNN 0.72  0.73  0.67  0.58  0.69  

Table.3. Performance of Clustering Algorithm with 

Convolutional Auto Encoder in RNN 

Clustering 

Algorithm 
ACC NMI ARI Homogeneity Completeness 

ANN 0.67  0.69  0.56  0.57  0.65  

MLP 0.72  0.72  0.62  0.68  0.69  

RBN 0.71  0.72  0.66  0.69  0.70  

DPNN 0.74  0.73  0.68  0.66  0.71  

RNN 0.83  0.81  0.82  0.70  0.73  

Table.4. Performance of Clustering Algorithm with Variation 

Auto Encoder in RNN 

Clustering 

Algorithm 
ACC NMI ARI Homogeneity Completeness 

ANN 0.67 0.69 0.56 0.57  0.65  

MLP 0.72  0.72  0.62  0.68  0.69  

RBN 0.71  0.72  0.66  0.69  0.70  

DPNN 0.74  0.73  0.68  0.66  0.71  

RNN 0.83  0.81  0.82  0.70  0.73  

Table.5. Performance of Clustering Algorithm with LSTM in 

RNN 

Clustering 

Algorithm 
ACC NMI ARI Homogeneity Completeness 

ANN 0.70  0.69  0.67  0.68  0.69  

MLP 0.80  0.82  0.81  0.74  0.75  

RBN 0.81  0.79  0.81  0.75  0.76  

DPNN 0.80  0.81  0.80  0.79  0.80  

RNN 0.83  0.84  0.85  0.81  0.82  

5. CONCLUSION 

In this article, we include an in-depth analysis of DL-based 

research clustering approaches. Cluster findings in the three 

separate use cases representing different data types reveal that 

DL-based clustering algorithms exceed these approaches. Overall 

assessments are however delayed because of the small number of 

marked data for GE-bio-imaging and clustering. Neural networks 

usually need a great deal of samples for generalization. 
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