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Abstract 

One of the important methods in data mining is segmentation. As each 

field is extended and digitized, large data sets are developed quickly. 

These wide clustering of data sets poses a problem for conventional 

sequential segmentation algorithms due to the enormous time 

consumed for development. Hence, distributed parallel architecture 

and algorithms are useful in meeting the efficiency and scalability 

requirements for clustering large data sets. In this analysis, we use 

MapReduce programming model to develop and experiment a parallel 

SVM algorithm, and compare the result with concurrent SVM for 

clustering the changing document database size. The result shows that 

the SVM proposed get better performance than existing methods. 
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1. INTRODUCTION 

A Map Reduce system is built on an individual cluster which 

is designed explicitly for Map Reduce jobs. Nevertheless, 

increasing numbers of installations are now targeting 

development HPC nodes. Output clusters are constructed to 

handle higher-performance applications with a high computing 

power requirements. It is a typical scenario for small community 

jobs to run simultaneously on a similar HPC cluster, for example, 

Network jobs and MPI work. Which means the workers have to 

exchange the cluster configured hardware tools. On manufacture 

HPC clusters, the performing jobs do not appear to share the 

resources on a single computational node but still the actual 

clusters infrastructure [1]. The cluster property manager (RM), 

the so-called packet system, is charged with spreading the 

computational nodes across the user groups.  

The Fig.1 shows a resource management example for a HPC 

output cluster. The core section of the example is cluster RM, 

which usually runs on a clusters head node. This splits the entire 

resources into partitions based on the user communities 

specifications and allocates a particular partition to a user 

community. Within the system, the resources are exchanged 

between users and frameworks under the supervision of a society-

level scheduler or RM.  

A problem with that plan is that the cluster resources are 

uniformly annexed without taking into account the dynamic 

activity in latency. This could result in load-unbalancing, where 

supplies are overwhelmed within some groups, while resources 

are underloaded to other neighborhoods. This reality is well 

known to the RM or scheduler at government level, that is, 

whether the computing nodes it manages are overloaded or 

undercharged. In both cases it will take action either demanding 

more resources from the RM cluster, or making scarce available. 

Several methods in literature, based on conventional partial 

cumulative methods and acceleration techniques for the treatment 

of large-scale data, have been developed. These methods aim to 

increase speed by reducing computational complexity in the 

clustering process. 

Parallelization is one of the most used acceleration techniques 

aimed at reducing the cost of computing conventional partial 

clustering. A process in which computation is divided into parallel 

tasks is defined as Parallelization. In the literature several parallel 

partial methods had been suggested. These methods are motivated 

by the assumption that the distance calculations between one data 

point and the cluster centers are independent from each other. 

Distance calculation can therefore be carried out in parallel 

between different data points and cluster Centers. 

In the literature, various methods have been proposed for 

MapReduce clustering. This method first divides the data set into 

divisions in which each division is linked with map function given 

the input dataset that is stored in HDFS. The map function then 

assigns the associated split data point in computer distances to the 

closest cluster. The reduction function updates then new cluster 

centers by calculating the average data of each cluster. It is written 

to the HDFS to be used for the next iteration by the map function. 

Until convergence, the whole process is repeated. 

Two MapReduce jobs are based on this method. The first job 

calculates the matrix for a cluster center and the second job 

calculates the distances to upgrade the member matrix. The first 

job calculates the distances. In addition, a number of data and a 

portion of the membership matrix are provided to the map 

function of the first MapReduce job and the cluster center is 

generated. Sub-matrices in the cluster center matrix are then 

combined with the reduction function of the first MapReduce 

task. Compared to the first task, the second MapReduce task 

includes additional computations. A selection of data are collected 

and distance sub-matrices and membership matrices are 

calculated during the map function. The reduction function then 

fuses the sub-matrices of the partition. 

In order to optimize the calculation of new centers in reduction 

phase, an intermediate center is calculated for each cluster after 

each assignment. The data is a sum of the numeric values and the 

category values frequencies for each cluster that are then 

transmitted to the reduction function. The intermediate map 

centers then are merged with the reduction function to update new 

centers for the cluster. In HDFS, finally, value of new centers is 

stored until convergence in the next iteration. 

In this method, MapReduce programming using Support 

Vector Machine (SVM) model to develop and experiment a 

parallel SVM algorithm, and compare the result with concurrent 

SVM for clustering the changing document database size. The 

result shows that the proposed SVM MapReduce get better 

performance than existing methods 

2. VIRTUAL DISK CLUSTERING 

MapReduce is a numerical computation model specifically 

designed for data analysis by Google on recognizing that its 
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handlers generate large amounts of data, such as logs and 

documentation for web requests. Unlike traditional parallel 

programming models such as MPI and OpenMP, MapReduce 

emphasizes on social data and not on empirical evidence. Hence, 

key-value pairs are its basic data sort. The delivery model for Map 

Reduce contains two stages, namely the Map-phase and the 

Reduce-phase [2]. 

 

Fig.1. Source management scenario on HPC clusters 

In the Map-phase, the input data is subdivided to produce 

intermediate vital-value pair with each divider processed through 

a single Map task. It is a matter that the model has not been 

suggested for the analysis of scientific data, but has been the 

JobTracker, typically running on a clusters heading node, which 

is the master and handles all of the Map Reduce tasks. Hadoop 

Generated File System handles the input/output data for a 

MapReduce execution.  

Fault tolerance is one important characteristic of the Hadoop 

MapReduce system. The JobTracker assigns the job to other Task 

Trackers in case a TaskTracker fails to perform a task. The 

TaskTracker frequently report the status of their jobs to the 

JobTracker. 

There are many clustering concerns applications in various 

fields including image analysis, social science, web development, 

problem solving, telecommunications, etc. Information network 

topologies is used in various requirements such as organizing of 

documents, perusing of documents, automated ordered 

representation of files, filtering of knowledge, generation of 

search engine results, extraction of keywords, retrieval of 

information. ICDM Convention classified it second of the top 10 

algorithms for clustering. SVM algorithm groups N items in K 

clusters continuing a high correlation in the intra unit [3]. 

Clustering of SVM is sensitive to the random range of initial 

cluster centres. The clustering result depends largely on early 

centroid traditions but there are no formal rules to choose from a 

good set of initial centroids. Instead of testing SVM with 

accidental centroids, preliminary centroids are selected based on 

SVM provisional run. Multi-threading platforms with a view to 

comparing their performance. In editors SVM were implemented 

in various parallel paradigms such as OpenMP, MPI, and Cuda-C 

and their performance was compared. It is observed that OpenMP 

comes out on top for small datasets while cuda works well with 

large datasets [4]. Likewise, on OpenMP, MPI and Cuda, parallel 

version of SVM is implemented and the article shows that the 

performance of parallel SVM is much better than sequential 

access, and that the performance differs with different computer 

and hardware combinations. 

 

Fig.2. Hadoop Master-Slave design in type of hierarchical model 

Hadoop+ is a large and diverse MapReduce system that 

enables GPUs and CPUs to process big data and exploit the 

heterogeneity setup model to help users pick cloud infrastructure 

for various purposes. The PMap and PReduce in Hadoop+ allows 

software developers to write obvious parallel CUDA/OpenCL 

processes working on GPUs as plug-ins, as can be seen in User-

Provided PMap/PReduce Mechanism box [5]. 

The word count operation in the Hadoop tool happens in three 

stages: Mapper, Shuffle and a Reducer. Within Mapper, the 

source file is first divided into words and then altered with these 

terms to key and value pairs - the key is the phrase itself and the 

value 1. Consider, for example, the sentence NoteBook Pencil 

Banana Pencil Pen Ball Book in Mapper where the sentence 

would be split as words and from the initial key value pair. 

The amount of intermediate data is moved from Mapper to 

Reducer during the shuffle process after the Map mission is 

complete. Shuffle data transfer occurs from the Mapper discs 

rather than their main associations and the in-between outcome 

will be sorted by the keys to bring the pairs together for the same 

data. The keys are clustered together in Reducer, and values are 

applied for identical keys [6]. Thus, there is only one pair of 

similar Book keys that would add the values for these keys, so that 

the output key value pairs and these would give the number of 

appearances of each term in the data, and Reducer forms a process 

of key initialization. 

Wordcount Reducer 

public static class decrease extends MapReduceBase 

implements decrease<Text, IntWrite, Text, 

IntWrite> 
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public void decrease(Text key, Iterator<IntWrite> values, 

OutputCollector<Text, IntWrite> output, 

Reporter reporter) throws IOException  

{int s = 0; 

while (values.hasNext()) { 

s += values.next().get();} 

output.collect(key, new IntWrite(s));}}  

There are also several extremely valuable properties in Cloud 

MapReduce, something these highly-scalable systems seem to 

share. 

Incremental Scalability: Cloud MapReduce will slowly scale 

out the percentage of big data nodes. Not only can a user initially 

run a number of servers, but if the user thinks the improvement is 

too slow, multiple servers can also be started in the beginning of 

just a computation [7]. 

Symmetry and Decentralization: Each conceptual node at 

Cloud Map Reduce now has the same set of requirements as its 

counterparts. Masters or slaves do not get nodes. Uniformity 

eliminates system failure access control, allowing, and recovery. 

As demonstrated by the symmetry, there is no single political 

agent (master) which makes the system more available. 

Heterogeneity: The computational capacities of the technical 

nodes could be different. It would be the fast nodes doing more 

work than the faster nodes. Alternatively the software nodes could 

be spread economically. To the maximum, even idle bandwidth 

can be derived from network-distributed servers/computers and 

laptops [8]. 

3. CLUSTERING USING MAPREDUCE 

Long latency solves cloud issues and our ultimate solution: 

The gap could be significant as Amazon services are conveyed 

through the network. In our study the SQS frequency ranges from 

20ms to 100ms, even within EC2. Consequently, if we view it 

sequentially, a significant portion of the time is spent looking for 

SQS to answer. We get somewhere this provision by two 

methods: message filtering and multi-threading. One downside of 

the current configuration of CMR is that it employs no specificity 

optimization. It makes exclusive use of the network for I/O, trying 

to circumvent all local storage. Such an implementation will 

inevitably experience network congestion in today cloud services, 

when the network connections between the device nodes and 

cloud services become exhausted [12] - [14]. The lack of 

optimization of the localities [9]. The internal cloud operating 

system is based on a consumer product that enables queues and 

storage facility to co-locate on the same nodes as the computing 

nodes, and introduces locality hint so that we can maximize data 

placing. Modern data centers architecture may no longer be 

needed in the future [10] [11]. 

The main concept of the SVM algorithm implemented by 

using MapReduce will be described in this section. Firstly, the 

SVM algorithm will be explained and what parts of the process 

can be dispersed on a cluster computer analyzed. Then, we will 

discuss how we developed MapReduce SVM algorithm. 

SVM is an algorithm that can separate a group object into a 

subset that does not overlap. It means that each object is mapped 

to a cluster precisely. SVM uses centroid in this paper to 

determine how many clusters are identified in data. It is 

considered to be rapid, simple and efficient in addressing the 

problem of data clusters. 

In order to calculate the distance between the centroid and data 

object SVM algorithm often performs calculation. At any 

iteration, the number of objects requires to measure the distance, 

and the number of clusters created by n is k. Therefore, the 

distance between an irrelevant centroid object and a relevant 

object is always calculated. Distance calculation generally takes 

longer to distribute data on a cluster computer. 

SVM also has another side down on the initialization of the 

centroid. Initially, a center, so that the clusters become unstable, 

is chosen randomly. The second problem is to carefully examine 

the number of clusters to ensure that the optimal cluster is 

obtained. 

In MapReduce algorithm, two steps exist: the choice of the 

initial centroid and the following candidate centroid. These two 

processes have a single MapReduce task that includes and reduces 

one map function. In the initial step of the center map, the distance 

between each object and the data centroid is calculated. In the 

meantime, the function sort objects on the basis of the data 

centroid distance. 

The data used in the cartographic function is extracted from a 

pair of HDFS files (key, value) and each of them is a data row. 

Key as a data object identity value. Key as a value 

Map Function: Data can be divided and distributed into 

several pieces to each computer. The computer process can then 

be performed on every computer in parallel. The map function 

output is a pair of identification data and the medium value of the 

data object distance. 

Reduce Function: The map output is used to reduce the 

function, which is the identity and distance pair of objects. In 

reducing function, the distance has been sorted and then the value 

of the lowering of the object identity and distance has been lost.  

Three major functions such as Map, Combine and Reduce 

SVM MapReduce algorithm. The Map function played a role for 

every data object close to the center as a function which carried 

out the computing procedure. Meanwhile, a process to update new 

centroids has been implemented to reduce function. Combine 

temporarily grouped function with a similar map function to 

minimize network communications. 

4. EXPERIMENTAL EVALUATION 

Instead we are showing a few sample requests in this section, 

contrasting it through Hadoop to underscore their similarities and 

show that CMR is a technical system. To assess the efficiency of 

Cloud Map Reduce, we have introduced three different mutual 

Map Reduce programs: Word Count, Reverse Index, and String 

Tracking. All tests mentioned in this section will use avoidance 

parameters in both Cloud Map Reduce and Hadoop, unless it is 

mentioned. Rather than using the Amazon Elastic Map Reduce 

we position Hadoop ourselves in our EC2 cluster. 

Random points are generated and data package consists of 

randomly generated clusters around the centers. A Zipf 

distribution samples the number of points generated inside the 

cluster. Note that when α = 0, each cluster is almost equal in size 

and, when α is growing, it is not uniform to size the clusters. The 
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distance between a dot and center is sampled with a fixed global 

standard deviation from the normal distribution. Each experiment 

was replicated 3 times with the same parameter set and calculated 

the average. 

The proposed method is compared with existing MapReduce 

algorithm. The results of simulation shows that the proposed 

method achieves reduced computational time (Fig.3) and latency 

(Fig.4) than the existing model. 

 

Fig.3. Computational Time 

 

Fig.4. Latency 

5. CONCLUSION 

It is very clear that we can improve the design and 

development of large-scale systems if we create them on a cloud 

operating system. But, the tradeoffs made by the cloud platform 

for the purpose of enhancing its scalability has made it difficult 

for working on top structures. For example, compromising on 

time for the sake of achieving reliability is an unsophisticated 

aspect that counts as an underperformance by the system. So, 

using MapReduce as an example, we have revealed that such 

limitations of the cloud platform can be overcome without 

degrading its efficiency. We have deployed generic methods in 

this study that could be applied across a multiple range of systems. 
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