
M VIJAYALAKSHMI AND T VINODH KANNAN: VIRTUAL DISK BASED DATA CLUSTERING MAPREDUCE FRAMEWORK

64

VIRTUAL DISK BASED DATA CLUSTERING MAPREDUCE FRAMEWORK

M. Vijayalakshmi and T. Vinodh Kannan
Department of Information Technology, Mookambigai College of Engineering, India

Abstract

One of the important methods in data mining is segmentation. As each

field is extended and digitized, large data sets are developed quickly.

These wide clustering of data sets poses a problem for conventional

sequential segmentation algorithms due to the enormous time

consumed for development. Hence, distributed parallel architecture

and algorithms are useful in meeting the efficiency and scalability

requirements for clustering large data sets. In this analysis, we use

MapReduce programming model to develop and experiment a parallel

SVM algorithm, and compare the result with concurrent SVM for

clustering the changing document database size. The result shows that

the SVM proposed get better performance than existing methods.

Keywords:

Cloud Computing, Map Reduce, Clustering, Domain Clustering

1. INTRODUCTION

A Map Reduce system is built on an individual cluster which

is designed explicitly for Map Reduce jobs. Nevertheless,

increasing numbers of installations are now targeting

development HPC nodes. Output clusters are constructed to

handle higher-performance applications with a high computing

power requirements. It is a typical scenario for small community

jobs to run simultaneously on a similar HPC cluster, for example,

Network jobs and MPI work. Which means the workers have to

exchange the cluster configured hardware tools. On manufacture

HPC clusters, the performing jobs do not appear to share the

resources on a single computational node but still the actual

clusters infrastructure [1]. The cluster property manager (RM),

the so-called packet system, is charged with spreading the

computational nodes across the user groups.

The Fig.1 shows a resource management example for a HPC

output cluster. The core section of the example is cluster RM,

which usually runs on a clusters head node. This splits the entire

resources into partitions based on the user communities

specifications and allocates a particular partition to a user

community. Within the system, the resources are exchanged

between users and frameworks under the supervision of a society-

level scheduler or RM.

A problem with that plan is that the cluster resources are

uniformly annexed without taking into account the dynamic

activity in latency. This could result in load-unbalancing, where

supplies are overwhelmed within some groups, while resources

are underloaded to other neighborhoods. This reality is well

known to the RM or scheduler at government level, that is,

whether the computing nodes it manages are overloaded or

undercharged. In both cases it will take action either demanding

more resources from the RM cluster, or making scarce available.

Several methods in literature, based on conventional partial

cumulative methods and acceleration techniques for the treatment

of large-scale data, have been developed. These methods aim to

increase speed by reducing computational complexity in the

clustering process.

Parallelization is one of the most used acceleration techniques

aimed at reducing the cost of computing conventional partial

clustering. A process in which computation is divided into parallel

tasks is defined as Parallelization. In the literature several parallel

partial methods had been suggested. These methods are motivated

by the assumption that the distance calculations between one data

point and the cluster centers are independent from each other.

Distance calculation can therefore be carried out in parallel

between different data points and cluster Centers.

In the literature, various methods have been proposed for

MapReduce clustering. This method first divides the data set into

divisions in which each division is linked with map function given

the input dataset that is stored in HDFS. The map function then

assigns the associated split data point in computer distances to the

closest cluster. The reduction function updates then new cluster

centers by calculating the average data of each cluster. It is written

to the HDFS to be used for the next iteration by the map function.

Until convergence, the whole process is repeated.

Two MapReduce jobs are based on this method. The first job

calculates the matrix for a cluster center and the second job

calculates the distances to upgrade the member matrix. The first

job calculates the distances. In addition, a number of data and a

portion of the membership matrix are provided to the map

function of the first MapReduce job and the cluster center is

generated. Sub-matrices in the cluster center matrix are then

combined with the reduction function of the first MapReduce

task. Compared to the first task, the second MapReduce task

includes additional computations. A selection of data are collected

and distance sub-matrices and membership matrices are

calculated during the map function. The reduction function then

fuses the sub-matrices of the partition.

In order to optimize the calculation of new centers in reduction

phase, an intermediate center is calculated for each cluster after

each assignment. The data is a sum of the numeric values and the

category values frequencies for each cluster that are then

transmitted to the reduction function. The intermediate map

centers then are merged with the reduction function to update new

centers for the cluster. In HDFS, finally, value of new centers is

stored until convergence in the next iteration.

In this method, MapReduce programming using Support

Vector Machine (SVM) model to develop and experiment a

parallel SVM algorithm, and compare the result with concurrent

SVM for clustering the changing document database size. The

result shows that the proposed SVM MapReduce get better

performance than existing methods

2. VIRTUAL DISK CLUSTERING

MapReduce is a numerical computation model specifically

designed for data analysis by Google on recognizing that its

ISSN: xxxx-xxxx (ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, MARCH 2020, VOLUME: 01, ISSUE: 02

65

handlers generate large amounts of data, such as logs and

documentation for web requests. Unlike traditional parallel

programming models such as MPI and OpenMP, MapReduce

emphasizes on social data and not on empirical evidence. Hence,

key-value pairs are its basic data sort. The delivery model for Map

Reduce contains two stages, namely the Map-phase and the

Reduce-phase [2].

Fig.1. Source management scenario on HPC clusters

In the Map-phase, the input data is subdivided to produce

intermediate vital-value pair with each divider processed through

a single Map task. It is a matter that the model has not been

suggested for the analysis of scientific data, but has been the

JobTracker, typically running on a clusters heading node, which

is the master and handles all of the Map Reduce tasks. Hadoop

Generated File System handles the input/output data for a

MapReduce execution.

Fault tolerance is one important characteristic of the Hadoop

MapReduce system. The JobTracker assigns the job to other Task

Trackers in case a TaskTracker fails to perform a task. The

TaskTracker frequently report the status of their jobs to the

JobTracker.

There are many clustering concerns applications in various

fields including image analysis, social science, web development,

problem solving, telecommunications, etc. Information network

topologies is used in various requirements such as organizing of

documents, perusing of documents, automated ordered

representation of files, filtering of knowledge, generation of

search engine results, extraction of keywords, retrieval of

information. ICDM Convention classified it second of the top 10

algorithms for clustering. SVM algorithm groups N items in K

clusters continuing a high correlation in the intra unit [3].

Clustering of SVM is sensitive to the random range of initial

cluster centres. The clustering result depends largely on early

centroid traditions but there are no formal rules to choose from a

good set of initial centroids. Instead of testing SVM with

accidental centroids, preliminary centroids are selected based on

SVM provisional run. Multi-threading platforms with a view to

comparing their performance. In editors SVM were implemented

in various parallel paradigms such as OpenMP, MPI, and Cuda-C

and their performance was compared. It is observed that OpenMP

comes out on top for small datasets while cuda works well with

large datasets [4]. Likewise, on OpenMP, MPI and Cuda, parallel

version of SVM is implemented and the article shows that the

performance of parallel SVM is much better than sequential

access, and that the performance differs with different computer

and hardware combinations.

Fig.2. Hadoop Master-Slave design in type of hierarchical model

Hadoop+ is a large and diverse MapReduce system that

enables GPUs and CPUs to process big data and exploit the

heterogeneity setup model to help users pick cloud infrastructure

for various purposes. The PMap and PReduce in Hadoop+ allows

software developers to write obvious parallel CUDA/OpenCL

processes working on GPUs as plug-ins, as can be seen in User-

Provided PMap/PReduce Mechanism box [5].

The word count operation in the Hadoop tool happens in three

stages: Mapper, Shuffle and a Reducer. Within Mapper, the

source file is first divided into words and then altered with these

terms to key and value pairs - the key is the phrase itself and the

value 1. Consider, for example, the sentence NoteBook Pencil

Banana Pencil Pen Ball Book in Mapper where the sentence

would be split as words and from the initial key value pair.

The amount of intermediate data is moved from Mapper to

Reducer during the shuffle process after the Map mission is

complete. Shuffle data transfer occurs from the Mapper discs

rather than their main associations and the in-between outcome

will be sorted by the keys to bring the pairs together for the same

data. The keys are clustered together in Reducer, and values are

applied for identical keys [6]. Thus, there is only one pair of

similar Book keys that would add the values for these keys, so that

the output key value pairs and these would give the number of

appearances of each term in the data, and Reducer forms a process

of key initialization.

Wordcount Reducer

public static class decrease extends MapReduceBase

implements decrease<Text, IntWrite, Text,

IntWrite>

{

Cluster

resource

manager

HPC

community
MapReduce

community

Grid

community

Task scheduler Job scheduler

Nodes Nodes Nodes

Partition 2 Partition 3 Partition 1

Client

Slave

Node

Client

Master Node

JobTracker

Task

Tracker

Task

Tracker

Slave

Node

M VIJAYALAKSHMI AND T VINODH KANNAN: VIRTUAL DISK BASED DATA CLUSTERING MAPREDUCE FRAMEWORK

66

public void decrease(Text key, Iterator<IntWrite> values,

OutputCollector<Text, IntWrite> output,

Reporter reporter) throws IOException

{int s = 0;

while (values.hasNext()) {

s += values.next().get();}

output.collect(key, new IntWrite(s));}}

There are also several extremely valuable properties in Cloud

MapReduce, something these highly-scalable systems seem to

share.

Incremental Scalability: Cloud MapReduce will slowly scale

out the percentage of big data nodes. Not only can a user initially

run a number of servers, but if the user thinks the improvement is

too slow, multiple servers can also be started in the beginning of

just a computation [7].

Symmetry and Decentralization: Each conceptual node at

Cloud Map Reduce now has the same set of requirements as its

counterparts. Masters or slaves do not get nodes. Uniformity

eliminates system failure access control, allowing, and recovery.

As demonstrated by the symmetry, there is no single political

agent (master) which makes the system more available.

Heterogeneity: The computational capacities of the technical

nodes could be different. It would be the fast nodes doing more

work than the faster nodes. Alternatively the software nodes could

be spread economically. To the maximum, even idle bandwidth

can be derived from network-distributed servers/computers and

laptops [8].

3. CLUSTERING USING MAPREDUCE

Long latency solves cloud issues and our ultimate solution:

The gap could be significant as Amazon services are conveyed

through the network. In our study the SQS frequency ranges from

20ms to 100ms, even within EC2. Consequently, if we view it

sequentially, a significant portion of the time is spent looking for

SQS to answer. We get somewhere this provision by two

methods: message filtering and multi-threading. One downside of

the current configuration of CMR is that it employs no specificity

optimization. It makes exclusive use of the network for I/O, trying

to circumvent all local storage. Such an implementation will

inevitably experience network congestion in today cloud services,

when the network connections between the device nodes and

cloud services become exhausted [12] - [14]. The lack of

optimization of the localities [9]. The internal cloud operating

system is based on a consumer product that enables queues and

storage facility to co-locate on the same nodes as the computing

nodes, and introduces locality hint so that we can maximize data

placing. Modern data centers architecture may no longer be

needed in the future [10] [11].

The main concept of the SVM algorithm implemented by

using MapReduce will be described in this section. Firstly, the

SVM algorithm will be explained and what parts of the process

can be dispersed on a cluster computer analyzed. Then, we will

discuss how we developed MapReduce SVM algorithm.

SVM is an algorithm that can separate a group object into a

subset that does not overlap. It means that each object is mapped

to a cluster precisely. SVM uses centroid in this paper to

determine how many clusters are identified in data. It is

considered to be rapid, simple and efficient in addressing the

problem of data clusters.

In order to calculate the distance between the centroid and data

object SVM algorithm often performs calculation. At any

iteration, the number of objects requires to measure the distance,

and the number of clusters created by n is k. Therefore, the

distance between an irrelevant centroid object and a relevant

object is always calculated. Distance calculation generally takes

longer to distribute data on a cluster computer.

SVM also has another side down on the initialization of the

centroid. Initially, a center, so that the clusters become unstable,

is chosen randomly. The second problem is to carefully examine

the number of clusters to ensure that the optimal cluster is

obtained.

In MapReduce algorithm, two steps exist: the choice of the

initial centroid and the following candidate centroid. These two

processes have a single MapReduce task that includes and reduces

one map function. In the initial step of the center map, the distance

between each object and the data centroid is calculated. In the

meantime, the function sort objects on the basis of the data

centroid distance.

The data used in the cartographic function is extracted from a

pair of HDFS files (key, value) and each of them is a data row.

Key as a data object identity value. Key as a value

Map Function: Data can be divided and distributed into

several pieces to each computer. The computer process can then

be performed on every computer in parallel. The map function

output is a pair of identification data and the medium value of the

data object distance.

Reduce Function: The map output is used to reduce the

function, which is the identity and distance pair of objects. In

reducing function, the distance has been sorted and then the value

of the lowering of the object identity and distance has been lost.

Three major functions such as Map, Combine and Reduce

SVM MapReduce algorithm. The Map function played a role for

every data object close to the center as a function which carried

out the computing procedure. Meanwhile, a process to update new

centroids has been implemented to reduce function. Combine

temporarily grouped function with a similar map function to

minimize network communications.

4. EXPERIMENTAL EVALUATION

Instead we are showing a few sample requests in this section,

contrasting it through Hadoop to underscore their similarities and

show that CMR is a technical system. To assess the efficiency of

Cloud Map Reduce, we have introduced three different mutual

Map Reduce programs: Word Count, Reverse Index, and String

Tracking. All tests mentioned in this section will use avoidance

parameters in both Cloud Map Reduce and Hadoop, unless it is

mentioned. Rather than using the Amazon Elastic Map Reduce

we position Hadoop ourselves in our EC2 cluster.

Random points are generated and data package consists of

randomly generated clusters around the centers. A Zipf

distribution samples the number of points generated inside the

cluster. Note that when α = 0, each cluster is almost equal in size

and, when α is growing, it is not uniform to size the clusters. The

ISSN: xxxx-xxxx (ONLINE) ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, MARCH 2020, VOLUME: 01, ISSUE: 02

67

distance between a dot and center is sampled with a fixed global

standard deviation from the normal distribution. Each experiment

was replicated 3 times with the same parameter set and calculated

the average.

The proposed method is compared with existing MapReduce

algorithm. The results of simulation shows that the proposed

method achieves reduced computational time (Fig.3) and latency

(Fig.4) than the existing model.

Fig.3. Computational Time

Fig.4. Latency

5. CONCLUSION

It is very clear that we can improve the design and

development of large-scale systems if we create them on a cloud

operating system. But, the tradeoffs made by the cloud platform

for the purpose of enhancing its scalability has made it difficult

for working on top structures. For example, compromising on

time for the sake of achieving reliability is an unsophisticated

aspect that counts as an underperformance by the system. So,

using MapReduce as an example, we have revealed that such

limitations of the cloud platform can be overcome without

degrading its efficiency. We have deployed generic methods in

this study that could be applied across a multiple range of systems.

REFERENCES

[1] Shettar Rajashree and P.V. Bhimasen, “A Review on

Clustering Algorithms Applicable for Map Reduce”,

Proceedings of International Conference Computational

Systems for Health and Sustainability, pp. 1-8, 2015.

[2] Olman Victor, Mao Fenglou, Wu Hongwei and Xu Ying,

“Parallel Clustering Algorithm for Large Data Sets with

Applications in Bioinformatics”, IEEE/ACM Transactions

on Computational Biology and Bioinformatics, Vol. 6, No.

2, pp. 344-352, 2009.

[3] Neepa Shah and Mahajan Sunita, “Document Clustering: A

Detailed Review”, International Journal of Applied

Information Systems, Vol. 4, No. 5, pp. 30-38, 2012.

[4] Sunita Bisht and Amit Paul, “Document Clustering: A

Review”, International Journal of Computer Applications,

Vol. 73, No. 11, pp. 26-33, 2013.

[5] Michael Steinbach, Karypis George and Kumar Vipin, “A

Comparison of Document Clustering Techniques”,

Proceedings of International Workshop on Text Mining, pp.

23-29, 2000.

[6] Jing Zhang, Gongqing Wu and Shuilong Hao, “A Parallel

Clustering Algorithm with Mpi”, Proceedings of

International Symposium on Parallel Architectures,

Algorithms and Programming, pp. 1-12, 2013.

[7] X. Wu, V. Kumar and Q. Yang, “Top 10 Algorithms in Data

Mining”, Knowledge and Information Systems, Vol. 14, No.

1, pp. 1-37, 2008.

[8] V.S. Bawane and M. Sandesha Kale, “Clustering

Algorithms in MapReduce: A Review”, Proceedings of

National Conference on Recent Trends in Computer Science

and Engineering, pp. 31-33, 2015.

[9] L. Yang, C. Chiu Steve and W.K. Liao, “High Performance

Data Clustering: A Comparative Analysis of Performance

for GPU, RASC, MPI, and OpenMP Implementations”,

Supercomputing, Vol. 70, No. 71, pp. 284-303, 2014.

[10] J.S. Kang, S. Yeon Lee and K.M. Lee, “Performance

Comparison of OpenMP, MPI, and MapReduce in Practical

Problems”, Advances in Multimedia, Vol. 2015, pp. 1-9,

2015.

[11] M Arvindhan and Abhineet Anand, “Scheming an Proficient

Auto Scaling Technique for Minimizing Response Time in

Load Balancing on Amazon AWS Cloud”, Proceedings of

International Conference on Advances in Engineering

Science Management and Technology, pp. 1-8, 2019.

[12] S. Dhillon Inderjit and S. Modha Dharmendra, “A Data-

Clustering Algorithm on Distributed Memory

Multiprocessors”, Proceedings of International Workshop

on Large Scale Parallel KDD Systems, pp. 245-260, 2002.

[13] Bhimani Janki, Leeser Miriam and Mi Ningfang,

“Accelerating K-Means Clustering with Parallel

Implementations and GPU Computing”, Proceedings of

IEEE International Conference on High Performance

Extreme Computing, pp. 1-12, 2015.

[14] Aristidis Likas, Nikos Vlassis and J. Verbeek Jakob, “The

Global k-Means Clustering Algorithm”, Pattern

Recognition, Vol. 36, No. 2, pp. 451-463, 2003.

0

5

10

15

20

25

1000 2000 3000 4000 5000

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

(s
)

Load (MB)

MapReduce

SVM-MapReduce

0

0.5

1

1.5

2

2.5

3

3.5

1000 2000 3000 4000 5000

L
a

te
n

cy
 (

s)

Load (MB)

MapReduce

SVM-MapReduce

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3390801
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3390801
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3390801

