
SATOSHI KODAMA AND REI NAKAGAWA: TRANSPORT TUNNELING SYSTEM WITH A COMMUNICATION HACKING FRAMEWORK

DOI: 10.21917/ijct.2018.0281

1918

TRANSPORT TUNNELING SYSTEM WITH A COMMUNICATION HACKING

FRAMEWORK

Satoshi Kodama1 and Rei Nakagawa2
1Research Institute for Science and Technology, Tokyo University of Science, Japan

2Faculty of Science and Technology, Tokyo University of Science, Japan

Abstract

This paper aims to reduce the transfer restrictions of networks at the

transport layer under prohibition-in-principle rules, and to introduce a

communication system that virtualizes a programmable network

function. The second aim facilitates the realization of the first.

Specifically, we target Intranets that restrict transport-layer

communications using a firewall. When such an organization’s

networks serve multiple departments, external communication to a

department is restricted to the available transport number under the

rule of the prohibition-in-principle. Our proposed transport proxy

system architecture represents the transfer of network applications via

well-known protocols such as HTTP (80), using the urgent pointer in

the transmission control protocol header. Our architecture improves

the flexibility and scalability of the network without requiring complex

encapsulation. Finally, the framework is demonstrated through an

experimental implementation of the system. Moreover, adding the

transport tunneling system offered flexibility while barely affecting the

download time of the files.

Keywords:

Software Defined Network, Private Network, Network Management

System, Tunneling

1. INTRODUCTION

Currently, multiple network services are increasingly

overloaded with traffic through a few well-known transport

protocols such as HTTP [1]. Unless designated for specific uses

that are previously authorized by the system, unknown transports

are filtered out for security reasons. For example, consider a

private network of users wherein an internal gateway manages

each separated IP domain under the external gateway and the

demilitarized zone (Fig.1). This tree-structured network is

protected by a security policy imposed at the transport layer,

which operates under the rule of the prohibition-in-principle.

Although this restriction provides robust overall security, it tends

to block communications between external terminals and specific

departments by applying an unauthorized transport alert.

This problem can be naturally solved by re-configuring the

security policy in firewalls, which process the inbound

communication. However, the reconfiguration must be performed

on several devices, which introduces system complexity and

compromises security. This study proposes a transport tunneling

(TT) system that solves the access problem without changing the

core security system. The TT system is based on a simple bridge

that extends the programmability of software defined network

(SDN)/network function virtualization (NFV). The system

represents the transfer of a network application via a well-known

transport protocol such as HTTP (80) using the urgent pointer in

the transmission control protocol (TCP) header, increasing the

flexibility and scalability of the security without requiring

complex encapsulation, such as generic routing encapsulation [2].

The simple bridge (a full-software component written in C

language) mitigates the processing limitation of the network

hardware (e.g., switching between wireless and wired network

interface controllers (NICs)).

Fig.1. Intranets in an organization

The contribution of this research is as follows. Firstly, this

paper is based on extremely practical grounds, inviting simple and

important attention to the security field. Secondly, the findings

revealed in this paper refer to the availability of opaque and

unused parts in the IPv4 network established as infrastructure, and

can be applied in all current network systems. Thirdly, the bridge

system based on the argument in this paper shares the basic idea

of realizing important network virtualization in the future

theoretical network field. In other words, it is easy to expand the

theory in future networks.

The remainder of this paper is organized as follows. Section 2

overviews related work on SDN/NFV technology, which is the

inspiration for the underlying framework of the TT system (i.e.

the simple bridge). Section 3 introduces our TT system

architecture, which represents the transfer of network transport

using a pseudo-port number and an urgent pointer. The required

components of the system are presented in this section. Section 4

evaluates an experimental test system, namely, a simple TCP

connection with files downloaded over transports from a server to

a client. The paper concludes with section 5.

2. APPLICATION OF SIMPLE BRIDGE

The SDN/NFV technology is becoming an established means

of improving system scalability. SDN/NFV provides a program-

ability of network functions and easy system management of the

layer structure between the control and the data plane. Solutions

exploiting SDN/NFV have been widely investigated [7] [8]. Most

of these schemes aim to improve the functionalities of SDN/NFV

External

Gateway

Department A

VPN

Gateway A

Department B

Internal

Gateway B

Department C

Department …

DMZ

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2018, VOLUME: 09, ISSUE: 04

1919

(e.g., service integration and implementation of state-of-the-art

networks) rather than its programmability. Consequently,

SDN/NFV based tools such as openVswitch increases the

complexity of the system, and hence, we consider that the original

flexibility is being lost.

To resolve this problem, we introduce a simple bridge system

that hacks communication between physical or virtual NICs and

passes the modified traffic to the process bound to each NIC. This

unit is the minimum system of programmability in SDN/NFV [4-

6]. For the developer, the bridge system maximizes the flexibility

and scalability of the programming rather than normalizing the

functionality. As a solution to the access problem, this paper

applies the bridge system to the TT system in section 1.

3. SYSTEM ARCHITECTURE

This section presents the proposed TT system architecture,

which adds a port translator to each end user (Fig.2).

Fig.2. Proposed System Architecture

Fig.3. Translation Process

External

Gateway

Internal

Gateway

Intranet

Internet

Broadband

Router

: Port translator

Translation policy

PC A PC B

Boot port translator for sender

GNS フレームをキャッチしたか

YES

TCP segment?

NO

Urgent flag is on?

Copy the destination transport number area
to the urgent pointer area

and
Set pseudo well-known transport number
to the destination transport number area

Send TCP segment to Gateway

Boot port translator for receiver

GNS フレームをキャッチしたか

YES

TCP segment?

NO

Urgent flag is on?

Copy the urgent pinter area
to the destination transport number area

Send TCP segment to PC

Logging the transport information

YES YES

NO NO

SATOSHI KODAMA AND REI NAKAGAWA: TRANSPORT TUNNELING SYSTEM WITH A COMMUNICATION HACKING FRAMEWORK

1920

3.1 USAGE SCENARIOS

In Fig.2, two PCs, A and B, have set up separate IP domains

on the Intranet and Internet. The internal gateway and broadband

router are the default gateways for both computers. The external

and internal gateways associate Intranet with the transport

security under the prohibition-in-principle rule. In this network

topology, B cannot normally communicate with A through an

unfamiliar transport number because such communications are

blocked by the transport security.

To solve this problem, we add a port translator to each network

domain. The port translator acts as a sub-router, representing the

transfer of any transport number from a PC. Each port translator

monitors the rewriting of the transport number by the TCP header

and the urgent-pointer area of the header for the transport proxy.

The Fig.3 presents the translation process of the sender and

receiver. The sender sets the original transport number in the

urgent-pointer area and the pseudo-well-known transport number

in the destination-transport number area. The receiver follows the

same process. In reverse communication, each process handles

the source-transport number instead of the destination-transport

number. These processing steps are executed through a

communication workshop, as described in section 4. Our

proposed system thus resolves the access problem and enables

bidirectional communication beyond the Intranet.

3.2 ADVANTAGES AND ISSUES

The proposed system enables easy tunneling of any TCP

service and application to an Intranet terminal. In other words, the

user can easily respond to a transport request without changing

the security policy of the entire Intranet system. Moreover, the

system requires no complex encapsulation, which is expected to

improve the performance and usefulness of networks with

isolated IP domains.

However, the packet location of the embedded transport

information is potentially problematic. The urgent-pointer area

used by the system is assumed to be unchanged by the security

policy, but this assumption requires further discussion (Section 5).

Therefore, the future scalability of the system is not guaranteed.

A leading alternative embedding candidate is the media access

control (MAC) address, which can be rewritten relatively freely

[3] [4]. Therefore, the MAC address is gaining traction as an

embedding location for new information.

3.3 COMMUNICATION WORKSHOP

Our communication workshop allows port translators to

process communication packets, as shown in Fig.4.

Before developing this workshop, we studied communication

workshop implementations that enable the rewriting of

communication headers (such as Ethernet, IP, or TCP headers) [4-

6]. The packet-processing functions of our workshop are similar to

those of OpenFlow’s data plane [7]. It also provides a simple and

powerful virtualization of the network function [8] that can be

arbitrarily defined by developers in the C language. The type of

terminal adopting the communication workshop influences the

workshop architecture. For instance, an end terminal uses a virtual

NIC (vNIC) as a Southbound NIC. The communication workshop

in our system processes packets bound for the physical NICs

(Northbound and Southbound pNICs) without assigning IP

addresses. All packets through the pNICs are streamed to the user

space via the GNU/Linux kernel. The workshop then branches the

packets’ protocol headers, rewriting them as discussed in section 3.

Fig.4. Communication Workshop

3.4 URGENT POINTER

The scalability of the TT system depends on the embedding

location of the transport information. The urgent pointer field

communicates the current value of the urgent pointer as a positive

offset from the sequence number in this segment. Meanwhile, the

urgent pointer points to the sequence number of the octet

following the urgent data. This field is interpreted only in

segments with a set URG control bit [9].

Gont and Yourtchenko [10] pointed out the security hazards

of using the urgent pointer. They maintained that applications

delivered through the TCP urgent mechanism are vulnerable to

multiple factors. Therefore, the network intrusion detection

system (NIDS) cannot robustly track the application-layer data

transferred to the destination system, leading to false negatives or

false positives in the NIDS. To avoid these problems, they

recommended abandoning the use of TCP urgent mechanisms

altogether. Although the urgent data could be “aligned” with

packet scrubbers configured to clear the URG bit and set the

urgent pointer to zero, this solution risks interoperability problems

or aberrant behaviour in applications relying on the TCP urgent

mechanism, such as Telnet [10].

The TT system uses the urgent pointer without turning on the

urgent flag. This design admits services that are originally

blocked from the Intranet, as confirmed in the Internet

experiment. Although the TT system exhibits good performance

in the current study, the security risks associated with urgent

pointers cannot be ignored.

4. EXPERIMENTAL EVALUATION

This section demonstrates our TT system in a simple

experiment that confirms the transport-number rewriting,

connectivity, and performance of the system.

4.1 AIM

In this experiment, we connected a TCP exp-connection to a

TCP echo server (transport number 9000) through the network

shown in Fig.5. We proved the availability of the TCP connection

(9000), which is prohibited in principle by the Intranet, using the

Southbound NIC

Northbound NIC

At any network headers

(Application,

TCP/UDP,

IP,

Ethernet,

…etc)

GNU legacy

communication library

(developed in C)

Modification design

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2018, VOLUME: 09, ISSUE: 04

1921

port translator to exploit the urgent pointer. We also confirmed

that the TT system delivers no performance hits to the throughput

by comparing the download times of [] and [] using the “wget”

command. In the absence of a port translator, the client usually

downloads files from the HTTP (80) server. Otherwise, PC A

downloads files from the HTTP (9000) server through TT using

the port translators. The download command over HTTP (9000)

is “wget http://113.42.*.*:9000/file_names.” Thus, we verified

that the client and server connected and communicated over the

port translator. In the absence of the port translator,

communication with clients outside the Intranet is blocked by the

TCP exp-connections.

4.2 PROCEDURE

In this section, we explain the stepwise procedure of the

experiment. First, the client investigated the connectivity to HTTP

(80) without the TT system in the Intranet. After confirming a

completed connection to HTTP from the server, the client set 80

as the pseudo-well-known transport number. Prior to the

experiment, the server started the TCP echo (9000) server. After

completing the experimental preparation, the client started the

TCP exp-connection. The port translator operates according to the

process shown in Fig.3. For example, the communication flow

from the client to the server should process the follows. First, the

client emits a packet with dst-port (destination transport number):

9000 to the server. Second, the port translator A capture the packet

and transplant all bytes in dst-port field to the urgent pointer field

on the packet, and also set the pseudo-well-known transport

number (80) at the dst-port field on the packet (9000 to 80). Third,

the port translator B capture the packet and transplant all bytes in

the urgent pointer field to the dst-port field, and also clear the

urgent pointer field with zeroes. Finally, the server receives the

packet. In reverse communication flow, these process work on the

src-port (source transport number) field on a packet.

Table.1. Specification of equipment

Network Device Specification

Port Translator A, B

Raspberry Pi 3 running CentOS 7

CPU: 1.2GHz 64-bit quad-core

Memory: 1GB

Client and Server Workshop running Windows 10

Fig.5. Topology for the experiment

4.3 RESULT

Without the port translator, the client communicated with the

HTTP (80) server (Fig.6), but was excluded from the HTTP

(9000) server, and was issued with an error message, enclosed in

a red box, saying “ERR_CONNECTION_TIMED_OUT” (Fig.7).

As shown in Fig.8 and Fig.9, the TCP echo connection was

successful both with and without the port translator. The Table.2

compares the averaged download times and communication

throughputs in the presence and absence of the transport translator

when obtaining files of different sizes (10MB, 50MB, 100MB,

and 500MB). In each experimental run, the files were retrieved 10

times from the server over HTTP (80 and 9000).

Fig.6. HTML page from HTTP (80) server without TT system

Fig.7. HTTP (9000) connection error without TT system

Fig.8. TCP echo connection error without TT system

Fig.9. TCP echo connection worked with TT system

University’s

Intranet
Internet

Client
HTTP (80 and 9000)

and

TCP echo (9000)

Server

Private

Network

Client IP address: 133.31.*.*

Port Translator A
Port Translator B

Server IP address: 133.42.*.*

SATOSHI KODAMA AND REI NAKAGAWA: TRANSPORT TUNNELING SYSTEM WITH A COMMUNICATION HACKING FRAMEWORK

1922

Table.2. Download Time

File Size

(bytes)

Download Time (s)

(with TT system)

Download Time (s)

(without TT

system)

10M 2.24 [+0.02] 2.22

50M 11.60 [+0.60] 11.00

100M 22.40 [-0.60] 23.00

500M 113.40 [+1.20] 112.20

In the TCP echo experiment (Fig.8 and Fig.9), Fig.8 shows the

TCP connection (9000) refuse without the TT system, and Fig.9

shows the behaviors of the server and client sides were displayed

in the left and right sides of the terminal window, which indicates

that the TCP connection (9000) is finished successfully with the

TT system. Clients began the experiments under their own

initiatives, and the server was remotely operated by Secure Shell.

In Table.2, square brackets enclose the differences in the

download times between the operation and non-operation of the

TT system. The differences clarify the network performance after

adding the TT system. (For security consideration, we removed

some of the IP addresses in Fig.6-Fig.9).

5. CONCLUSIONS

We proposed a TT system architecture that aims to represent

the transfer of any network application by means of a well-known

transport protocol, such as HTTP (80), using the urgent pointer in

the TCP header.

Our system enables autonomous service deployment without

changing the Intranet security policy. This advantage was

demonstrated through experiments conducted on the Intranet.

In future work, we will consider the problem of security

vulnerability. First, we must establish the degree to which the

urgent pointer compromises the security strength. Second, we will

consider cases of misuse of the TT system. Finally, we will

evaluate both the urgent pointer and TT system from a security

perspective.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and

Methodology, 2015-2020”, Available at:

https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white-paper-c11-

741490.html, Accessed on 2015.

[2] D. Farinacci, T. Li, S. Hnaks, D. Meyer, P. Traina and

Juniper Networks, “Generic Routing Encapsulation (GRE)”,

Available at: https://tools.ietf.org/html/rfc2784.

[3] Peter Kietzmann, Cenk Gundogan, Thomas C. Schmidt,

Oliver Hahm and Matthias Wählisch “The Need for a Name

to MAC Address Mapping in NDN: Towards Quantifying

the Resource Gain”, Proceedings of 4th ACM Conference on

Information-Centric Networking, pp. 1-6, 2017.

[4] Satoshi Kodama, Rei Nakagawa, Toshimitsu Tanouchi and

Shinya Kameyama, “Management system by using

Embedded Packet for Hierarchical Local Area Network”,

Proceedings of IEEE International Conference on

Ubiquitous Computing, Electronics and Mobile

Communication, pp. 113-119, 2016.

[5] Satoshi Kodama, Rei Nakagawa and Toshimitsu Tanouchi,

“Proposal of the Virtualized Control System for the

Integrated Management of Multiple Services”, Proceedings

of IEEE 7th International Conference and Workshop on

Annual Computing and Communication, pp. 23-27, 2017.

[6] Satoshi Kodama, Rei Nakagawa and Toshimitsu Tanouchi,

“A Research on the Integrated Virtual Platform for

Managing Multiple Services”, WSEAS Transactions on

Information Science and Applications, Vol. 14, No. 12, pp.

102-111, 2017.

[7] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru

Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker

and Jonathan Turner, “OpenFlow: Enabling Innovation in

Campus Networks”, ACM SIGCOMM Computer

Communication Review, Vol. 38, pp. 69-74, 2008.

[8] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels

Bouten, Filip De Turck and Raouf Boutaba, “Network

Function Virtualization: State-of-the-Art and Research

Challenges”, IEEE Communications Surveys and Tutorials,

Vol. 18, No. 1, pp. 236-262, 2018.

[9] J. Postel, “Transmission Control Protocol”, Available at:

https://tools.ietf.org/html/rfc793, Accessed on 1981.

[10] F. Gont and A. Yourtchenko, “On the Implementation of the

TCP Urgent Mechanism”, Available at:

https://tools.ietf.org/html/rfc6093, 2011.

