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Abstract 

This paper aims to reduce the transfer restrictions of networks at the 

transport layer under prohibition-in-principle rules, and to introduce a 

communication system that virtualizes a programmable network 

function. The second aim facilitates the realization of the first. 

Specifically, we target Intranets that restrict transport-layer 

communications using a firewall. When such an organization’s 

networks serve multiple departments, external communication to a 

department is restricted to the available transport number under the 

rule of the prohibition-in-principle. Our proposed transport proxy 

system architecture represents the transfer of network applications via 

well-known protocols such as HTTP (80), using the urgent pointer in 

the transmission control protocol header. Our architecture improves 

the flexibility and scalability of the network without requiring complex 

encapsulation. Finally, the framework is demonstrated through an 

experimental implementation of the system. Moreover, adding the 

transport tunneling system offered flexibility while barely affecting the 

download time of the files. 
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1. INTRODUCTION 

Currently, multiple network services are increasingly 

overloaded with traffic through a few well-known transport 

protocols such as HTTP [1]. Unless designated for specific uses 

that are previously authorized by the system, unknown transports 

are filtered out for security reasons. For example, consider a 

private network of users wherein an internal gateway manages 

each separated IP domain under the external gateway and the 

demilitarized zone (Fig.1). This tree-structured network is 

protected by a security policy imposed at the transport layer, 

which operates under the rule of the prohibition-in-principle. 

Although this restriction provides robust overall security, it tends 

to block communications between external terminals and specific 

departments by applying an unauthorized transport alert. 

This problem can be naturally solved by re-configuring the 

security policy in firewalls, which process the inbound 

communication. However, the reconfiguration must be performed 

on several devices, which introduces system complexity and 

compromises security. This study proposes a transport tunneling 

(TT) system that solves the access problem without changing the 

core security system. The TT system is based on a simple bridge 

that extends the programmability of software defined network 

(SDN)/network function virtualization (NFV). The system 

represents the transfer of a network application via a well-known 

transport protocol such as HTTP (80) using the urgent pointer in 

the transmission control protocol (TCP) header, increasing the 

flexibility and scalability of the security without requiring 

complex encapsulation, such as generic routing encapsulation [2]. 

The simple bridge (a full-software component written in C 

language) mitigates the processing limitation of the network 

hardware (e.g., switching between wireless and wired network 

interface controllers (NICs)). 

 

Fig.1. Intranets in an organization 

The contribution of this research is as follows. Firstly, this 

paper is based on extremely practical grounds, inviting simple and 

important attention to the security field. Secondly, the findings 

revealed in this paper refer to the availability of opaque and 

unused parts in the IPv4 network established as infrastructure, and 

can be applied in all current network systems. Thirdly, the bridge 

system based on the argument in this paper shares the basic idea 

of realizing important network virtualization in the future 

theoretical network field. In other words, it is easy to expand the 

theory in future networks. 

The remainder of this paper is organized as follows. Section 2 

overviews related work on SDN/NFV technology, which is the 

inspiration for the underlying framework of the TT system (i.e. 

the simple bridge). Section 3 introduces our TT system 

architecture, which represents the transfer of network transport 

using a pseudo-port number and an urgent pointer. The required 

components of the system are presented in this section. Section 4 

evaluates an experimental test system, namely, a simple TCP 

connection with files downloaded over transports from a server to 

a client. The paper concludes with section 5. 

2. APPLICATION OF SIMPLE BRIDGE 

The SDN/NFV technology is becoming an established means 

of improving system scalability. SDN/NFV provides a program-

ability of network functions and easy system management of the 

layer structure between the control and the data plane. Solutions 

exploiting SDN/NFV have been widely investigated [7] [8]. Most 

of these schemes aim to improve the functionalities of SDN/NFV 
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(e.g., service integration and implementation of state-of-the-art 

networks) rather than its programmability. Consequently, 

SDN/NFV based tools such as openVswitch increases the 

complexity of the system, and hence, we consider that the original 

flexibility is being lost. 

To resolve this problem, we introduce a simple bridge system 

that hacks communication between physical or virtual NICs and 

passes the modified traffic to the process bound to each NIC. This 

unit is the minimum system of programmability in SDN/NFV [4-

6]. For the developer, the bridge system maximizes the flexibility 

and scalability of the programming rather than normalizing the 

functionality. As a solution to the access problem, this paper 

applies the bridge system to the TT system in section 1.  

3. SYSTEM ARCHITECTURE 

This section presents the proposed TT system architecture, 

which adds a port translator to each end user (Fig.2). 

 

Fig.2. Proposed System Architecture 

 

 

Fig.3. Translation Process 
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3.1 USAGE SCENARIOS 

In Fig.2, two PCs, A and B, have set up separate IP domains 

on the Intranet and Internet. The internal gateway and broadband 

router are the default gateways for both computers. The external 

and internal gateways associate Intranet with the transport 

security under the prohibition-in-principle rule. In this network 

topology, B cannot normally communicate with A through an 

unfamiliar transport number because such communications are 

blocked by the transport security. 

To solve this problem, we add a port translator to each network 

domain. The port translator acts as a sub-router, representing the 

transfer of any transport number from a PC. Each port translator 

monitors the rewriting of the transport number by the TCP header 

and the urgent-pointer area of the header for the transport proxy. 

The Fig.3 presents the translation process of the sender and 

receiver. The sender sets the original transport number in the 

urgent-pointer area and the pseudo-well-known transport number 

in the destination-transport number area. The receiver follows the 

same process. In reverse communication, each process handles 

the source-transport number instead of the destination-transport 

number. These processing steps are executed through a 

communication workshop, as described in section 4. Our 

proposed system thus resolves the access problem and enables 

bidirectional communication beyond the Intranet. 

3.2 ADVANTAGES AND ISSUES 

The proposed system enables easy tunneling of any TCP 

service and application to an Intranet terminal. In other words, the 

user can easily respond to a transport request without changing 

the security policy of the entire Intranet system. Moreover, the 

system requires no complex encapsulation, which is expected to 

improve the performance and usefulness of networks with 

isolated IP domains. 

However, the packet location of the embedded transport 

information is potentially problematic. The urgent-pointer area 

used by the system is assumed to be unchanged by the security 

policy, but this assumption requires further discussion (Section 5). 

Therefore, the future scalability of the system is not guaranteed. 

A leading alternative embedding candidate is the media access 

control (MAC) address, which can be rewritten relatively freely 

[3] [4]. Therefore, the MAC address is gaining traction as an 

embedding location for new information. 

3.3 COMMUNICATION WORKSHOP 

Our communication workshop allows port translators to 

process communication packets, as shown in Fig.4. 

Before developing this workshop, we studied communication 

workshop implementations that enable the rewriting of 

communication headers (such as Ethernet, IP, or TCP headers) [4-

6]. The packet-processing functions of our workshop are similar to 

those of OpenFlow’s data plane [7]. It also provides a simple and 

powerful virtualization of the network function [8] that can be 

arbitrarily defined by developers in the C language. The type of 

terminal adopting the communication workshop influences the 

workshop architecture. For instance, an end terminal uses a virtual 

NIC (vNIC) as a Southbound NIC. The communication workshop 

in our system processes packets bound for the physical NICs 

(Northbound and Southbound pNICs) without assigning IP 

addresses. All packets through the pNICs are streamed to the user 

space via the GNU/Linux kernel. The workshop then branches the 

packets’ protocol headers, rewriting them as discussed in section 3. 

 

Fig.4. Communication Workshop 

3.4 URGENT POINTER 

The scalability of the TT system depends on the embedding 

location of the transport information. The urgent pointer field 

communicates the current value of the urgent pointer as a positive 

offset from the sequence number in this segment. Meanwhile, the 

urgent pointer points to the sequence number of the octet 

following the urgent data. This field is interpreted only in 

segments with a set URG control bit [9].  

Gont and Yourtchenko [10] pointed out the security hazards 

of using the urgent pointer. They maintained that applications 

delivered through the TCP urgent mechanism are vulnerable to 

multiple factors. Therefore, the network intrusion detection 

system (NIDS) cannot robustly track the application-layer data 

transferred to the destination system, leading to false negatives or 

false positives in the NIDS. To avoid these problems, they 

recommended abandoning the use of TCP urgent mechanisms 

altogether. Although the urgent data could be “aligned” with 

packet scrubbers configured to clear the URG bit and set the 

urgent pointer to zero, this solution risks interoperability problems 

or aberrant behaviour in applications relying on the TCP urgent 

mechanism, such as Telnet [10]. 

The TT system uses the urgent pointer without turning on the 

urgent flag. This design admits services that are originally 

blocked from the Intranet, as confirmed in the Internet 

experiment. Although the TT system exhibits good performance 

in the current study, the security risks associated with urgent 

pointers cannot be ignored. 

4.  EXPERIMENTAL EVALUATION 

This section demonstrates our TT system in a simple 

experiment that confirms the transport-number rewriting, 

connectivity, and performance of the system. 

4.1 AIM 

In this experiment, we connected a TCP exp-connection to a 

TCP echo server (transport number 9000) through the network 
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port translator to exploit the urgent pointer. We also confirmed 

that the TT system delivers no performance hits to the throughput 

by comparing the download times of [] and [] using the “wget” 

command. In the absence of a port translator, the client usually 

downloads files from the HTTP (80) server. Otherwise, PC A 

downloads files from the HTTP (9000) server through TT using 

the port translators. The download command over HTTP (9000) 

is “wget http://113.42.*.*:9000/file_names.” Thus, we verified 

that the client and server connected and communicated over the 

port translator. In the absence of the port translator, 

communication with clients outside the Intranet is blocked by the 

TCP exp-connections. 

4.2 PROCEDURE 

In this section, we explain the stepwise procedure of the 

experiment. First, the client investigated the connectivity to HTTP 

(80) without the TT system in the Intranet. After confirming a 

completed connection to HTTP from the server, the client set 80 

as the pseudo-well-known transport number. Prior to the 

experiment, the server started the TCP echo (9000) server. After 

completing the experimental preparation, the client started the 

TCP exp-connection. The port translator operates according to the 

process shown in Fig.3. For example, the communication flow 

from the client to the server should process the follows. First, the 

client emits a packet with dst-port (destination transport number): 

9000 to the server. Second, the port translator A capture the packet 

and transplant all bytes in dst-port field to the urgent pointer field 

on the packet, and also set the pseudo-well-known transport 

number (80) at the dst-port field on the packet (9000 to 80). Third, 

the port translator B capture the packet and transplant all bytes in 

the urgent pointer field to the dst-port field, and also clear the 

urgent pointer field with zeroes. Finally, the server receives the 

packet. In reverse communication flow, these process work on the 

src-port (source transport number) field on a packet. 

Table.1. Specification of equipment 

Network Device Specification 

Port Translator A, B 

Raspberry Pi 3 running CentOS 7 

CPU: 1.2GHz 64-bit quad-core 

Memory: 1GB 

Client and Server Workshop running Windows 10 

 

Fig.5. Topology for the experiment 

4.3 RESULT 

Without the port translator, the client communicated with the 

HTTP (80) server (Fig.6), but was excluded from the HTTP 

(9000) server, and was issued with an error message, enclosed in 

a red box, saying “ERR_CONNECTION_TIMED_OUT” (Fig.7). 

As shown in Fig.8 and Fig.9, the TCP echo connection was 

successful both with and without the port translator. The Table.2 

compares the averaged download times and communication 

throughputs in the presence and absence of the transport translator 

when obtaining files of different sizes (10MB, 50MB, 100MB, 

and 500MB). In each experimental run, the files were retrieved 10 

times from the server over HTTP (80 and 9000). 

 

Fig.6. HTML page from HTTP (80) server without TT system 

 

Fig.7. HTTP (9000) connection error without TT system 

 

Fig.8. TCP echo connection error without TT system 

 

Fig.9. TCP echo connection worked with TT system 
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Table.2. Download Time 

File Size 

(bytes) 

Download Time (s) 

(with TT system) 

Download Time (s) 

(without TT 

system) 

10M 2.24 [+0.02] 2.22 

50M 11.60 [+0.60] 11.00 

100M 22.40 [-0.60] 23.00 

500M 113.40 [+1.20] 112.20 

In the TCP echo experiment (Fig.8 and Fig.9), Fig.8 shows the 

TCP connection (9000) refuse without the TT system, and Fig.9 

shows the behaviors of the server and client sides were displayed 

in the left and right sides of the terminal window, which indicates 

that the TCP connection (9000) is finished successfully with the 

TT system. Clients began the experiments under their own 

initiatives, and the server was remotely operated by Secure Shell. 

In Table.2, square brackets enclose the differences in the 

download times between the operation and non-operation of the 

TT system. The differences clarify the network performance after 

adding the TT system. (For security consideration, we removed 

some of the IP addresses in Fig.6-Fig.9). 

5.  CONCLUSIONS 

We proposed a TT system architecture that aims to represent 

the transfer of any network application by means of a well-known 

transport protocol, such as HTTP (80), using the urgent pointer in 

the TCP header. 

Our system enables autonomous service deployment without 

changing the Intranet security policy. This advantage was 

demonstrated through experiments conducted on the Intranet. 

In future work, we will consider the problem of security 

vulnerability. First, we must establish the degree to which the 

urgent pointer compromises the security strength. Second, we will 

consider cases of misuse of the TT system. Finally, we will 

evaluate both the urgent pointer and TT system from a security 

perspective. 
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