
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2018, VOLUME: 09, ISSUE: 03

DOI: 10.21917/ijct.2018.0272

1869

DSP IMPLEMENTATION OF THE FAST FOURIER TRANSFORM USING THE

CORDIC ALGORITHM

Youness Mehdaoui1 and Rachid El Alami2
1Department of Physics, Multidisciplinary Faculty, University Sultan Moulay Slimane, Morocco
2Department of Physics, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Morocco

Abstract

Fourier transform is a tool enabling the understanding and

implementation of a large number of numerical methods for signal and

image processing. This tool has many applications in domains such as

vocal recognition, image quality improvement, digital transmission, the

biomedical sector and astronomy. This paper proposes to focus on the

design methodology and experimental implementation of Fast Fourier

Transform (FFT). The interest of this work is an improvement which

makes it possible to reduce the processing time of calculates the FFT

while preserving the best performances by using the operator CORDIC

and the fixed point, so this work is compared with the results found in

the literatures.

Keywords

FFT, CORDIC, Fixed Point, DSP, Time of Processing

1. INTRODUCTION

Discrete Fourier Transformation (DFT) is a mathematical tool

for processing the digital signal, which is the discrete equivalent

of the continuous Fourier transform that is used for analog signal

processing. The calculation of the DFT of the complex sequences

in the time domain will convert these sequences into frequency

domain and the inverse procedure is done by the Inverse Discrete

Fourier Transform (IDFT) [1]. But only drawback is the

computation time it requires.

The interest of an algorithm of Fast Fourier transform FFT

makes it possible to reduce the number cycle of machine,

therefore the time of computation. The FFT was one of the 10

major algorithms of the 20th century [19]. It is also one of the

most used and in 1990 it was estimated [20] that on an installed

base of Cray supercomputers of 200 machines (at 25 million US

dollar each), 40% of CPU cycles are dedicated FFT calculations.

The COordinate Rotation Digital Computer (CORDIC)

algorithm [2] - [4] was originally created by Volder [2]. The

algorithm approximates most functions based on trigonometry. It

performs rotations without using multiplication operations.

Another advantage of this algorithm is that it makes it possible to

obtain a precision determined in advance by performing a given

number of iterations.

In the FFT, to calculate the twiddle, we will use the sine and

the cosine, the algorithm CORDIC implemented with fixed point

will allow speed of calculating sinus and cosines, all this will

allow us to have a reduced time with a better precision.

In this work an implementation of the FFT on a (DSP Digital

Signal Processor) c64x+ and compare the results with what was

found in [5], to come out with a conclusion of the utility of the

use of specialized circuits like the DSP.

This paper is organized as follows: In section 2 we will present

the related works, in section 3, we introduce the Fast Fourier

Transform, we will explain the algorithm CORDIC in section 4.

The fixed point development is given in section 5. The

methodology of the proposed implementation is presented in

section 6 and 7. The results will be presented in section 8. We will

end with a conclusion in section 9.

2. RELATED WORKS

In the work [5] an architecture is presented that allows the

calculation of the Discrete Fourier Transform using the CORDIC

algorithm. The twiddle factors i.e. the phase rotation factors

where the calculations required in the DFT are calculated by the

algorithm CORDIC. Moreover, using some trigonometric

identities in DFT calculation CORDIC rotators are used

effectively.

This algorithm is applied more widely in various applications,

including the radar signal processors [23] and robotics, HP-35

calculator, math coprocessors 8087 [22].

It has been observed when the number of N-point samples

increases, the time and hardware requirements of the system

increase. A faster algorithm like FFT can solve this problem and

dedicated circuits can be used as Digital Signal Processors (DSP).

3. FAST FOURIER TRANSFORM

The Fast Fourier Transform algorithm was initially discovered

by Gauss in 1805, but was not successful until 1965 after the

publication [21] of it by Cooley and Tukey. It is for this reason

that the basic algorithm usually carries their names. The algorithm

of the FFT described by Cooley and Tukey [21] in their article is

then derived like this:

For an input sequence x(n), the DFT of N points is defined as

follows in the Eq.(1):

1

0

N
nk

N

n

X k x n W

 (1)

where: k=0,1,…,N-1, n is the time index, the integer k is the

frequency index and the complex number nk

NW , which

corresponds to the nth root of the unit, commonly called twiddle

factor, is defined as follows in the Eq.(2):

2 2 2

exp cos sinnk

N

i nk nk nk
W i

N N N

 (2)

Starting at the Eq.(3):

YOUNESS MEHDAOUI AND RACHID EL ALAMI: DSP IMPLEMENTATION OF THE FAST FOURIER TRANSFORM USING THE CORDIC ALGORITHM

1870

1

0

N
nk

N

n

X K x n W

 (3)

The Eq.(2) is rewritten as,

1 1
2 2

2 12

0 0

2 2 1

N N

r krk

N N

r r

X K x r W x r W

 (4)

and

1 1

2 2
2 2

0 0

2 2 1

N N

rk rk
k

N N N

r r

X K x r W W x r W

 (5)

Returning to the definition of WN:

2

j
N

NW e

 (6)

Note that:

2
2

2
2 2

2

j
j N

N
N NW e e W

 (7)

Finally, the samples of the transformed signal X (K) are found

in the Eq.(8):

1 1
2 2

2 2

2 20 0

2 2 1

N N

rk k rk

N N N

r r

X K x r W W x r W

 (8)

It is noticed that the algorithm of the FFT factorizes the DFT

to reduce the number O(N2) à O(NlogN)

4. CORDIC OPERATOR

4.1 CORDIC ALGORITHM

The CORDIC algorithm makes it possible to perform

calculations such as vector rotations or Cartesian-Polar and Polar

Cartesian coordinates changes in the plane Euclidean.

We can cite, for example, applications where the CORDIC

algorithm is used: single-sideband modulation, discrete, direct

and fast Fourier transform [6] [7], frequency filtering (Gray-

Marke trellis, orthogonal filters) and wave filters [8]), adaptive

modeling of non-stationary processes (optimal recursive filtering,

Kalman filter [9]). He is also involved in the resolution of a large

number of linear algebra problems like the orthogonal algorithms

of Givens [10], Fadeeva, singular value decomposition [11], QR

and Cholesky decomposition.

4.2 PRINCIPLE OF THE CORDIC ALGORITHM

The CORDIC algorithm is based on trigonometric function

calculations; its principle is to perform rotations on a base vector

for a given angle.

Suppose the rotation of the vector V(x,y) by an angle φ as

illustrated in Fig.1

The coordinates of the vector V are expressed according to

the Eq.(9):

' cos sin

' cos sin

x x y

y y x

 (9)

Fig.1. Rotation of the vector V in the Cartesian plane

If we restrict the angles of rotation tan-1(2-i) where i = 0, 1, 2,

3,…, we then obtain φ by a series of successive elementary

rotations of the order of:

 θi+1 =θi - ditan-1(2-i) (10)

where, di = ±1.

The index di indicates the direction of rotation of the angle for

each iteration, this index is determined at each iteration according

to the result of a comparison.

Each iterative vector Vi+1(xi+1, yi+1) is represented by Eq.(11):

1

1

2

2

i

i i i i i

i

i i i i i

x K x y d

y K y x d

 (11)

where, Ki = cos(tan-1(2-i)) = (1+2-2i)0.5.

Since for a relatively high number of iterations, the product

tends towards a constant result, it is possible for us to apply it later

in the algorithm. In fact, for a given sequence of elementary

rotations, the factors Ki can be grouped together and applied at one

time. Thus we obtain a set of simplified and specific equation for

calculating the mathematical operations sought:

1

1

i i i i

i i i i

x x d dy

y y d dx

 (12)

where:

 dyi = yi 2-i (13)

 dxi = xi 2-i (14)

 dθi = tan-1(2-i) (15)

 di = ±1 (16)

According to the sign of θi or yi, we calculate:

 x'=Anx (17)

where, the constant An depends only on the sequence of elementary

rotations given by the Eq.(18):

0

n

n i

i

A K

 (18)

We notice that the main interest of this constant is that it does

not depend on θ but only on the number of stages. For an

Y

X

V

V’

x

y

x'

y'

φ

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2018, VOLUME: 09, ISSUE: 03

1871

increasing number of stages, this constant tends to the value equal

to 0.607252935.

These equations are therefore used to calculate operations.

The general principle of the CORDIC algorithm is to rotate the

rotation vector in the appropriate direction by an increasingly

smaller angle until the angle θ or the x and y values are

approximately equal to 0.

Cosine and sine

In the paper [12], it is shown that the sine and cosine of the

input angle can simultaneously be calculated as follows in Eq.(19)

by CORDIC in rotation mode.

0 0

0 0

. cos

. sin

n n

n n

X A X Z

Y A X Z

 (19)

By defining 0 1/ nX A , the rotation produces a scaled sine

and cosine of the angle oZ .

5. FIXED-POINT DEVELOPMENT

The diagram below illustrates a typical development scenario

in use today:

Fig.2. The dilemma of fixed-point development

The design may initially start with a simulation (i.e. MatLab)

of a control algorithm, which typically would be written in

floating-point math (C or C++). Existing methodologies [13, 14]

achieve a floating-to-fixed-point transformation leading to an

ANSI-C code with integer data types. This algorithm can be easily

ported to a floating-point device. However, because of the

commercial reality of cost constraints, most likely a 16-bit or 32-

bit fixed-point device would be used in many target systems.

The effort and skill involved in converting a floating-point

algorithm to function using a 16-bit or 32-bit fixed-point device is

quite significant. A great deal of time (many days or weeks) would

be needed for reformatting, scaling and coding the problem.

Additionally, the final implementation typically has little

resemblance to the original algorithm [18, 15].

For digital signal processors (DSPs), the methodology aim is

to define the optimized fixed point specification which minimizes

the code execution time and leads to sufficient accuracy [16],

some experiments [17] can represent up to 30% of the global

implementation time.

Fig.3. The proposed implementation by CORFAST

6. THE PROPOSED IMPLEMENTATION OF

THE CORDIC ALGORITHM

The Fig.3 shows the proposed implementation of CORDIC

which will be integrated in the FFT, we will name this proposition

algorithm by CORFAST.

Takes many

days/weeks to

convert (one-way

process)

Can be easily ported

to floating point

device

Natural

development

starts with

simulation in

floating-point

Fixed

point DSP

Floating

point DSP

Simulation

platform

(i.e. Matlab)

Fixed point

algorithm

(ASM, C)

Floating-point

algorithm (C

or C++)

Start

We create a fixed-point

gamma list containing

tangent values

Enter the angle

ai = 0
i = 1

x(0) = 1
y(0) = 0

a = a + π

ai = ai + sig*gamma[i]
k = 1/((1+2^((-i2)+2))0.5)

x[i] = k*(x[i-1]-sig*2^(-i+1)*y[i-1])
y[i] = k*(sig*2^(-i+1)*x[i-1]+y[i-1])

 a > π/2 ou

 a < -π/2? a < 0?

a = a - π

 i < gamma

length?
 a – ai < 0? Sig = -1

Sig = +1

a > π/2 ou

a < -π/2?

x = -x
y = -y

End

The return of the cosine

and sinus values of the

angle with better accuracy

Yes

Yes

Yes Yes

Yes

No

No
No

No

No

YOUNESS MEHDAOUI AND RACHID EL ALAMI: DSP IMPLEMENTATION OF THE FAST FOURIER TRANSFORM USING THE CORDIC ALGORITHM

1872

7. PROPOSED IMPLEMENTATION OF FFT

In this section the proposed FFT is presented, it is implemented

on a fixed-point DSP and its performance will be evaluated and

compared with the results in [5]. The flow diagram for FFT

Computation is shown in Fig.4. In the butterfly calculation part of

the flowchart, the custom CORFAST is used.

Fig.4. Diagram for FFT Computation using CORFAST

8. DSP IMPLEMENTATION

Using the Code Composer Studio software to do the

simulations, this software uses the internal hardware of the DSP

C64x+ very efficiently. The algorithms are implemented using

DSP processor C64x+ and tested for different input data lengths.

The following results are obtained for 10, 12 and 20 point FFT

length; the clock cycle is equal to 1GHz (1ns). We will compare

the results found with the results in the paper [5]. The Table.1

summarizes the results.

Table.1. Cycle’s number, time taken and their ratios

Number of

input

sequences

FFT (Proposed work) DFT [5]

Ratio Benchmark

(cycles)

Time

taken

(in ns)

Benchmar

k (cycles)

Time

taken

(in ns)

10 17058 17058 24179 483580 28.35

12 25093 25093 28999 579980 23.11

20 37176 37176 96509 1930180 51.92

It is noted that our implementation on the DSP C64x+ gives

better results by comparison with the results found in [5], it is

because of the use of the fixed point and the algorithm CORDIC

which allows us to minimize the processing time of the data by

keeping the best performances.

9. CONCLUSIONS

In this work we implemented a FFT using a DSP which is

specialized in this kind of application, we can conclude that our

implementation is faster (with a ratio of 28.35, 23.11, 51.92 for a

number of sequences 10, 12, 20 respectively) compared work [5].

The results found leads us to conclude that the use of specialized

circuits like the DSP will give better results than the use of circuits

like FPGA (Field-Programmable Gate Array) which makes the

implementation very expensive at the time level, architecture

complexity.

REFERENCES

[1] J.G. Proakis and D.G. Manolakis, “Digital Signal

Processing, Principles, Algorithms and Applications”, 4th

Edition, Prentice Hall, 2006.

[2] J.E. Volder, “The CORDIC Trigonometric Computing

Technique”, IRE Transactions on Electronic Computers,

Vol. 8, No. 3, pp. 330-334, 1959.

[3] R. Andraka, “A Survey of CORDIC Algorithms for FPGA

based Computers”, Proceedings of 6th International

Symposium on FPGAs, pp. 191-200, 1998.

[4] B. Parhami, “Computer Arithmetic”, Oxford University

Press, 2010.

[5] Debaprasad De, K. Gaurav Kumar, Archisman Ghosh and

Anurup Saha, “FPGA Implementation of Discrete Fourier

Transform using CORDIC Algorithm”, AMSE Journals,

Vol. 60, No. 2, pp. 332-337, 2017.

[6] A.M. Despain, “Very Fast Fourier Transform Algorithms

Hardware for Implementation”, IEEE Transactions on

Computers, Vol. 28, No. 5, pp. 333-341, 1979.

[7] A.M. Despain, “Fourier Transform Computers using

CORDIC Iterations”, IEEE Transactions on Computers,

Vol. 23, No. 10, pp. 993-1001, 1974.

[8] S.K. Rao, “Orthogonal Digital Filters for VLSI

Implementation”, IEEE Transactions on Circuits and

Systems, Vol. 31, No. 11, pp. 771-778, 1984.

[9] Tze-Yun Sung et al., “VLSI Implementation of Real-Time

Kalman Filter”, Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing,

pp. 2223-2226, 1986.

[10] H.M. Ahmed, J.M. Delosme and M. Morf, “Highly

Concurrent Computing Structures for Matrix Arithmetic and

Signal Processing”, Computer, Vol. 15, No. 1, pp. 65-82,

1982.

[11] Joseph R. Cavallaro and Franklin T. Luk, “CORDIC

Arithmetic for an SVD Processor”, Proceedings of IEEE 8th

Symposium on Computer Arithmetic, pp. 271-290, 1988.

[12] Ray Andraka, “A Survey of CORDIC Algorithms for FPGA

based Computers”, Proceedings of ACM/SIGDA 6th

International Symposium on Field Programmable Gate

Arrays, pp. 191-200, 1998.

[13] K.I. Kum, J. Kang and W. Sung, “AUTOSCALER for C: An

Optimizing Floating-Point to Integer C Program Converter

for Fixed-Point Digital Signal Processors”, IEEE

Bit reversal

data sorting

Time Domain Data

Overhead

Overhead

Butterfly

calculation by

CORFAST

Frequency domain data

Time Domain

Decomposition

Frequency

Domain

Synthesis

L
o
o
p

 f
o
r

ea
ch

 b
u

tt
er

fl
y

L
o

o
p

 f
o

r
L

 e
ac

h
 s

u
b

-F
F

T

L
o

o
p

 f
o

r
L

o
g
(N

)
st

ag
es

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2018, VOLUME: 09, ISSUE: 03

1873

Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, Vol. 47, No. 9, pp. 840–848, 2000.

[14] M. Willems, V. Bursgens and H. Meyr, “FRIDGE: Floating

Point Programming of Fixed-Point Digital Signal

Processors”, Proceedings of 8th International Conference on

Signal Processing Applications and Technology, pp. 23-29,

1997.

[15] Texas Instrument, “C28x IQmath Library”, Available at:

http://www.ti.com/lit/sw/sprc990/sprc990.pdf.

[16] D. Menard, D. Chillet and O. Sentieys, “Floating-to-Fixed-

Point Conversion for Digital Signal Processors”, EURASIP

Journal on Applied Signal Processing, Vol. 2006, pp. 1-19,

2006.

[17] T. Grotker, E. Multhaup and O. Mauss,” Evaluation of

HW/SW Tradeoffs using Behavioral Synthesis”,

Proceedings of 7th International Conference on Signal

Processing Applications and Technology, pp. 781-785,

1996.

[18] M Mehdaoui and M. Mrabti. “A Faster MC-CDMA system

using a DSP Implementation of the FFT”, Proceedings of 5th

International Symposium On I/V Communications and

Mobile Network, pp. 662-668, 2010.

[19] B.A. Cipra, “The Best of the 20th Century: Editors Name

Top 10 Algorithms”, SIAM News, Vol. 33, No. 4, pp. 1-2,

2000.

[20] J.R. Johnson and R.W. Johnson, “Challenges of Computing

the Fast Fourier Transform”, Available at:

https://pdfs.semanticscholar.org/e452/3079aa489b27f8438

562166ad92a928ba83f.pdf.

[21] J.W. Cooley and J.W. Tukey, “An Algorithm for the

Machine Calculation of Complex Fourier Series”,

Mathematics of Computation, Vol. 19, No. 90, pp. 297-301,

1965.

[22] J. Duprat and J.M. Muller, “The CORDIC Algorithm: New

Results for Fast VLSI Implementation”, IEEE Transactions

on Computers, Vol. 42, No. 2, pp. 168-178, 1993.

[23] R.J. Andraka, “Building a High Performance Bit Serial

Processor in an FPGA”, Available at: http://fpga-

guru.com/files/supercn.pdf.

