
T SIVAKUMAR AND T ANUSHA: PSEUDO RANDOM NUMBER GENERATION USING EYE BRIGHTNESS RESPONSE

DOI: 10.21917/ijct.2018.0259

1776

PSEUDO RANDOM NUMBER GENERATION USING EYE BRIGHTNESS RESPONSE

T. Sivakumar1 and T. Anusha2
1Department of Computer Science and Engineering, Dr. Mahalingam College of Engineering and Technology, India

2Department of Computer Science and Engineering, PSG College of Technology, India

Abstract:

Random numbers play an important and primary role in the use of

Cryptography techniques in real time applications. The cryptographic

techniques can be easily compromised if the key can be easily guessed.

Therefore it is important that the keys are in random and unpredictable

in nature. The operating system uses the random numbers to mask

passwords and to offer salt and session identifiers. This paper

introduces a new software based pseudo random number generation

method based on the eye brightness response formula. This function

provides a significant change in sensation for minimum required

change in signal intensity. The randomness tests are performed to

confirm the randomness of the generated random numbers.

Keywords:

Cryptography, Pseudo Random Number, Eye Brightness Response,

Randomness Test

1. INTRODUCTION

The strength of any cryptographic techniques is strongly

depends on the randomness of the chosen key. The output of

cryptographic techniques is a sequence of random bits which

carrying the secret information without revealing no clues about

the precious information [9]. Most encryption algorithms require

a source of random data, even some symmetric ciphers (where the

secret is shared), either to generate new private/public key pairs,

for session keys, for padding, or for other reasons. Most

computers do not have a hardware based random number

generator (RNG), so programmers have had to resort to software

based techniques, to generate random numbers[1]. The

inadequacies of hardware for hardware based random number

generation have created a need for inexpensive and widely

available method of generating random numbers with software.

Using this method all personal computers can generate

cryptographically secure random bits without any specialized

hardware.

Depending on the nature of the randomness source, generators

are classified in three categories as follows.

• True Random Number Generators (TRNG): For TRNG, the

source is a natural physical phenomenon and the properties

of independence and unpredictability of the generated values

are guaranteed by physical laws. While TRNGs offer the

highest level of entropy [3, 4] (meaning measure of

uncertainty: number of symbols that have to be known in

order to remove uncertainty associated with a random

variable, and also information content: number of symbols

necessary to encode all possible values of a variable) they do

not necessarily present uniform distribution and most of

them need to be filtered (post processed) in order to reduce

possible bias - tendency towards a particular value, and

correlation, and make the output more similar to perfectly

random sequence [2,5-7]. In [12], an image encryption

method using Knight’s Travel path and True Random

Number is developed. The true random numbers are

generated from the amplitude values of a chosen noise audio

file.

• Unpredictable Random Number Generators (URNG):

URNGs are based on the unpredictability inherent to human

computer interaction and on the indeterminism introduced

by the complexity of the underlying phenomenon (e.g. Linux

s/dev/random, etc.) [8]. URNGs use easily available devices,

like computer components, as entropy sources and provide a

high level of randomness [2].

• Pseudo Random Number Generators (PRNG): For PRNG,

the source of randomness is a random seed value which is

expanded by means of a deterministic recursive formula. As

a result, the unpredictability level resumes to the

randomness of the seed value and the output is completely

determined by the starting state of the generator. The

practical features of PRNGs are high generation speed, good

statistical results and no need for additional hardware

devices. This is a widely used random number generator in

cryptographic systems. However, the reduced level of

unpredictability is not sufficient for security applications

because these can be easily compromised by using a low

quality randomness source [2].

In [11], the authors introduced an image encryption method

based on pixels position permutation and random key stream. To

change the pixel values of the image random key stream is utilized

[13]. The necessary amount of random bit stream is constructed

by adopting the random bit pattern procedure used in the MD5

hash function.

Human eye is capable of responding to an enormous range of

light intensity. Inevitably, eye response to the signal intensity,

which determines its apparent intensity, is not linear. That is, it is

not determined by the nominal change in physical stimulus, rather

by its change relative to its initial level [10]. This paper utilized

the eye brightness response formula to generate Pseudo random

numbers.

In this paper, a simple and new method for generating Pseudo

random number by using the eye brightness response formula is

proposed.

The rest of the paper is organized as follows: section 2

provides the proposed random number generator. Section 3

presents the experimental results and analysis. The paper is

concluded in section 4.

2. PROPOSED RANDOM NUMBER

GENERATOR

The proposed random number generation uses the brightness

response of the eye to produce random number (based on

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2018, VOLUME: 09, ISSUE: 02

1777

Brightness perception in complex fields, Bartleson and

Breneman) which is given by Eq.(1) and Eq.(2).

 logB = 2.037 + 0.1401logI - aexp(blogI) (1)

 F = log(logB) (2)

where, F is proposed the pseudo random function, and logB is Eye

response to photographic image under varying image and

surround luminance, I is the intensity, a and b are constants

varying with the luminance level. The Fig.1 shows the eye

response as a function of luminance [10].

Fig.1. Eye Response as a function of luminance

2.1 ALGORITHM

The following are the sequence of steps used to generate a

random numbers.

Input: Intensity (I) and constants varying with the luminance

level values a and b and the range of required random numbers

Output: Random numbers

Step 1: Take the intensity 0.1 or any other value, the value a and

b as 0.6 and 4.5 respectively (seed value is stored or can

be subject to change).

Step 2: The output for the input intensity calculated. For

Example, input i = 0.001, the following is the sample

output of the pseudo random function.

0.3306091223544712

0.34015730427728313

0.3487952142313704

0.35667596584697386

Step 3: Two positions after the decimal point is taken and

converted into binary string of length 64 bits. For

instance,

1000010111100010110011000110110101010100101111100111

00010000000

1000011001011001000100010010010001100110101000100100

01101110010

1000010111110111011110010100011011000011100001010001

11010000000

1000011001101000010001010100110001010010010100100111

1100010101010000110000001000101010100110110010101010

0111110101010110011000

Step 4: The 64-bit binary array is separated into two halves of

size 32 bits and XOR-ed with each other to ensure

randomness and further the 32-bit array is converted into

16-bit array which in turn is converted into 8-bit array in

the same manner.

Then the obtained random numbers are,

00101110 (48)

01000110 (70)

00001011 (11)

01100111 (103)

00001000 (8)

Step 5: The binary array (8 bit binary number array) is converted

as integer and is stored as random numbers.

Step 6: Repeat steps 2 to 5 until sufficient amount of random

numbers are generated.

Step 7: Stop the process

3. EXPERIMENTAL RESULTS AND

RANDOMNESS TESTING

The proposed method is experimented using Java language

and the system configuration is Processor Intel i5-5200U CPU,

Clock speed 2.2GHz, RAM 4GB and the operating system is

Ubuntu 4.1. The random numbers generation by using the

proposed method is shown in the form of images in Fig.2 and

Fig.3 respectively.

Fig.2. Random Numbers (128128)

Fig.3. Random Numbers (256256)

The statistical analysis of the random sequences is very

important. The statistical tests assess the outcome of a

randomness generator [9].

T SIVAKUMAR AND T ANUSHA: PSEUDO RANDOM NUMBER GENERATION USING EYE BRIGHTNESS RESPONSE

1778

3.1 FREQUENCY TEST (MONO BIT TEST)

This test determines the proportion of the number of ones and

zeros in a bit sequence. In the bit sequence 1 is taken as +1 and 0

is taken as -1 and the sobs is calculated by Eq.(3) and Eq.(4) [14].

 Sobs = Sn/root(n) (3)

where, Sn = b1 + b2 + b3 +...+ bn

The p-value is then given by,

 P-value = Sobs/1.414 (4)

If the P-value is greater than or equal to 0.01, the sequence is

said to be random, otherwise it is rejected as not random.

3.2 RUNS TEST

A run of length k consists of k identical bits bound before and

after with a bit of opposite value. For example, the bit sequence

1100101011011100 consists of the runs 11, 00, 1, 0, 1, 0, 11, 0,

111, 00. The purpose of the runs tests is to determine whether the

number of runs of ones and zeros of various lengths is as expected

for a random sequence [14]. The Eq.(5) and Eq.(6) give the

formula to compute and verify the runs test [14].

 Vobs=∑ R(k) + 1 (5)

where, k = 0 to n, R(k) = 0 if εk = εk + 1 and R(k) = 1,

The P-value is given by

 P-value = erfc(nV2
obs × 3.3598 × sqrt(2n) × 6.7196) (6)

If the P-value is greater than or equal to 0.01, the sequence is

said to be random, otherwise it is rejected as not random. The

randomness test results on the random numbers generated by

using the proposed method is given in Table.1.

Table.1. Statistical Test Result

Random Numbers Runs Test Frequency Test Result

512512 0.4759 0.8026 Pass

256256 0.2045 0.6171 Pass

128128 0.3327 0.3173 Pass

6464 0.0455 0.0455 Pass

4. CONCLUSION

Cryptographic techniques can be easily broken if the key is

vulnerable to predict or easily guessed. Therefore it is important

that the keys are random and so cryptography desire for random

numbers. In this paper, a new software based pseudo random

number generation method based on the eye brightness response

is developed. The result obtained with the proposed method is

tested with two randomness test cases. From, the result it is found

that the proposed method can be utilized to generate random

numbers for practical applications.

REFERENCES

[1] Kurt Seifried, “Kurt Seifried Information Security”,

Available at: https://seifried.org/security/.

[2] Kinga Marton, Alin Suciu and Iosif Ignat, “Randomness in

Digital Cryptography A Survey”, Romanian Journal of

Information Science and Technology, Vol. 13, No. 3, pp.

219-240, 2010.

[3] C.E. Shannon, “A Mathematical Theory of

Communication”, Bell System Technical Journal, Vol. 27,

pp. 623-656, 1948.

[4] J. Kelsey, “Entropy and Entropy Sources in x9.82”,

Available at:

https://pdfs.semanticscholar.org/presentation/e762/9771345

51a72edf19d8be13fef075de97b38.pdf.

[5] J. Von Neumann, “Various Techniques used in Connection

with Random Digits”, National Bureau of Standards,

Applied Mathematics Series, Vol. 12, pp. 36-38, 1951.

[6] M. Blum, “Independent Unbiased Coin Flips from a

Correlated biased Source- a Finite State Markov Chain”,

Combinatorica, Vol. 6, No. 2, pp. 97-108, 1986.

[7] Z. Gutterman B. Pinkas and T. Reinman, “Analysis of the

Linux Random Number Generator”, Proceedings of IEEE

Symposium on Security and Privacy, pp. 21-24, 2006.

[8] A. Seznec and N. Sendrier N., “Hardware Volatile Entropy

Gathering and Expansion: Generating Unpredictable

Random Number at User Level”, Research Report,

Department of Computer Science, INRIA, 2002

[9] Kinga Marton, Alin Suciu, Christian Sacarea and Octavian

Cret, “Generation and Testing of Random Numbers for

Cryptographic Applications”, Proceedings of the Romanian

Academy, Series A, Vol. 13, No. 3, pp. 368-377, 2012.

[10] Eye Intensity Response, Available at:

http://www.telescopeoptics.net/eye_intensity_response.htm,

Accessed on 2016.

[11] T. Sivakumar and R. Venkatesan, “Image Encryption

Method based on Pixel Shuffling and Random Key Stream”,

International Journal of Computer and Information

Technology, Vol. 3, No. 6, pp. 1468-1476, 2014.

[12] T. Sivakumar and R. Venkatesan, “A New Image

Encryption Method Based on Knight’s Travel Path and True

Random Number”, Journal of Information Science and

Engineering, Vol. 32, No. 1, pp. 133-152, 2016.

[13] William Stallings, “Cryptography and Network Security-

Principles and Practice”, Pearson Education, 2015.

[14] Andrew Rukhin et al., “A Statistical Test Suite for Random

and Pseudorandom Number Generators for Cryptographic

Applications”, National Institute of Standards and

Technology, pp. 1-131, 2001.

