
KAILAS PATIL: PREVENTING CLICK EVENT HIJACKING BY USER INTENTION INFERENCE

1408

PREVENTING CLICK EVENT HIJACKING BY USER INTENTION INFERENCE

Kailas Patil
Center of Excellence in Research and Development, Vishwakarma Institute of Information Technology, India

E-mail: kailas.patil@viit.ac.in

Abstract
Web applications are getting more complex and dynamic. By exploiting
layout and JavaScript features of a web page, attackers can create web
page objects that hijack users’ clicks. Such objects look like normal web
page objects, but users’ clicks on these objects lead to unexpected
browser actions, such as visiting different URLs or sending out
malicious requests. We call this type of attacks click event hijacking
attacks. The Facebook Clickjacking attack is an example, which puts a
transparent layer containing the victim web application on top of
another web page that lures users to click. While users think they click
on the underlying web page, they actually click in the victim web
application, resulting in unauthorized actions to the web application.
In this paper, we propose a solution to mitigate the problem of click
event hijacking by inferring users’ intentions. Our solution ClickGuard
ensures that the browser’s behavior after a click matches the user’s
original intention. The proposed solution is implemented as a Mozilla
Firefox extension and evaluated its effectiveness against click event
hijacking attacks.

Keywords:
Event Hijacking, Clickjacking, Pop-Up, UI Overlay

1. INTRODUCTION

Browsers have evolved dramatically from a program to
display simple static web pages into an environment to run Rich
Internet Applications (RIA), which often use a complex layout
consisting of components or pages from different sources.
Moreover, web applications also heavily rely on dynamic features
such as those provided by JavaScript. By exploiting the complex
features of web applications, attackers can create web page
objects to hijack users’ clicks. Hijacked clicks may lead to
unexpected browser actions, such as visiting phishing websites,
or sending malicious requests in web applications.

The Clickjacking attack [15][23][39] also known as UI
redressing, is an example of such attacks. In this attack, attackers
carefully craft overlapped layers on web pages to trick users into
clicking web page objects without their consents. For example, in
the Facebook attack [15], the malicious web page includes an
invisible layer loaded with Facebook’s page on top of a game web
page. In this way, attackers trick users into clicking objects in the
game, but the clicks actually occur on a button in the Facebook
page, whose event handler in turn sends requests to share the
malicious page with the victim’s friends.

As another example, attackers may also use the onClick event
of a hyperlink to redirect the browser to arbitrary pages. This type
of attack is often used to launch phishing attacks or opening
annoying pop-up advertisements. For example, a malicious web
page can include a link to a bank website A but use the onClick
event handler to redirect the browser to visit a phishing site B after
users click on the link. By exploiting the cross-site scripting
(XSS) [25], [35] vulnerability, attackers can attach onClick event
handlers to links in trusted web sites to redirect users to phishing

pages, which helps the phishing site to gain additional trust. If a
user hovers the mouse pointer over the hyperlink to the site A, the
browser’s status bar still shows the URL to the site A. Although
not as dangerous as Clickjacking, this type of JavaScript-based
click redirection can annoy users or expose them to malicious
sites hosting phishing pages or malware.

Although the actual techniques involved in these attacks may
vary, they generally aim to make users’ clicks trigger browser
actions that users do not expect. We name this type of attacks as
click event hijacking attacks, and we will describe more examples
in section 2.

Researchers proposed solutions to detect the Clickjacking
attack [40][41][42]. The NoScript [24] Mozilla Firefox extension
uses a module called ClearClick to protect users against
Clickjacking attacks. When a click happens on a web page with
embedded elements that are partially obstructed or transparent,
ClearClick suspends further actions triggered by the click and
reveals the real click target to users. Balduzzi et al. [7] develop a
Clickjacking detection system and perform a large-scale study of
Clickjacking. Such solutions target specifically to the
characteristics of Clickjacking.

We observe a common behavior in the general click event
hijacking attack: users are lured to click on page objects that they
will not click if they know the resulting browser behaviors. That
is, based on the information presented to users, they believe the
browser will perform certain actions when they click, but the
actual browser behaviors are different. In other words, the actual
browser behaviors do not match users’ original intentions.

With this observation, we present a novel solution named
ClickGuard to mitigate click event hijacking attacks. Its goal is to
ensure that the web browser’s behavior resulting from a click
matches the intention of the user. When users make clicks,
ClickGuard infers users’ intentions. It then tracks the web
browser’s behaviors and ensures the resulting activities match the
inferred intentions. ClickGuard is prototyped as a Mozilla Firefox
extension. In our evaluation, it generated promising results by
successfully preventing several types of click event hijacking
attacks.

There are research efforts using user intentions to detect
malicious behaviors in operating systems. BINDER [10]
correlates user inputs to outbound network connections by the
time delay in between, and network traffic that cannot be
attributed to user inputs is considered suspicious. User intentions
are also incorporated into access control policies [27], [31]. Our
approach shares the same insight as the above cited works – user
intentions are the most important indicators of the legitimacy of
subsequent actions, but our approach uses more accurate user
intention inference via analyzing browser internal details.

This paper makes the following contributions:

DOI: 10.21917/ijct.2016.0208

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2016, VOLUME: 07, ISSUE: 04

1409

• We analyzed different types of click event hijacking attacks
and summarized the key characteristics of them.

• We proposed an approach targeting all click event hijacking
attacks by ensuring that browser behaviors match user
intentions.

• We implemented a prototype of our approach in a Firefox
extension and evaluated it with several attack examples,
which showed that user intention based attack detection is
effective.

Paper organization: The rest of this paper is organized as
follows: section 2 describes examples of attacks, section 3
explains the design of our approach, and then section 4 presents
implementation details. Later we describe the evaluation for our
solution in section 5. Related work is introduced in section 6. We
discuss our limitations and future work in section 6, and we
conclude in section 7.

2. EXAMPLES

In this section, we discuss examples of different types of click
event hijacking attacks.

2.1 CLICKJACKING

In Clickjacking attacks [14], [23], attackers exploit the layout
feature introduced by iFrames. Specifically, they load a victim
web page into an iFrame on the top and make it transparent. Then
they load a deceptive page in another iFrame at the bottom layer
to attract users to click. The Fig.2 shows an example of a
Clickjacking attack. The front page of http://example.com is
loaded inside a transparent iFrame (zero opacity value to make it
transparent). To lure users to click at a particular location of the
page loaded inside the transparent iFrame, the attacker creates a
link in the visible bottom layer, which is located exactly at the
same position where the attacker wants users to click in the top
layer. As shown in Fig.2, the attacker specifies the location of a
link by setting its X and Y coordinates. When users try to click on
the link, they actually click on the transparent layer of the iFrame
loaded with the page from example.com. An illustration of such a
Clickjacking attack is presented in Fig.1.

(a) User View of Web Page (b) Hidden Content in the
Web Page

(c) Actual Web Page Layout

Fig.1. Illustration of Clickjacking using transparent iFrame and
overlay objects

<-- Page from www.Websitename.com -->
< html > ...
<iframe id="victim" src="http://example.com"
scrolling="no" width="600px" height="600px"
style="opacity: 0; position:absolute; left:10px;
top:10px;">
< /iframe > ...
<div style = "position:absolute; top:Ypx;left:Xpx;"> Click
Here
< /div > ...
< /html >

Fig.2. Clickjacking using transparent iFrame and overlay objects

2.2 FLOATING OBJECTS

Alternatively, attackers can put malicious code inside a
floating object, and automatically bring that object under the
mouse pointer when users hover the mouse pointer over a
particular link, which triggers the malicious code in the floating
layer. The Fig.3 shows such an example, where float_layer is a
JavaScript class defined by the web site that is hidden and floating
around on a web page. The scenario of a floating object attack is
illustrated in Fig.4.

<--Page from www.Websitename.com -->
<float_layer id="layerk"

onclick="document.location=’http://www.malicio
us.com’;"
style="position:absolute;width:2px;height:2px">

< /float_layer >
<script type="text/javascript"> function

clickjack(evt) {
mouseX=evt.pageX?evt.pageX:evt.clientX;
mouseY=evt.pageY?evt.pageY:evt.clientY;
document.getElementById(’layerk’).style.left
=mouseX;
document.getElementById(’layerk’).style.top
=mouseY; }

< /script >
<a href="http://www.example.com"

onmouseover="clickjack(event)"> Click here

Fig.3. Floating object example

Click Here No Yes

Delete Your Mails...
Are you sure?

Hidden iFrame on Top

No Yes

Delete Your Mails...
Are you sure?

Click Here

KAILAS PATIL: PREVENTING CLICK EVENT HIJACKING BY USER INTENTION INFERENCE

1410

(a) Before hovering the link

(b) After bringing the mouse on a link

Fig.4. Illustration of a floating object in a web page

The example shown here uses the onMouseover event. After
onMouseover is triggered when users move the mouse cursor over
the link, the float_layer object is moved to the point of the current
mouse cursor, and when users click on the link, they click on the
float_layer object. Therefore, the onClick event of the float_layer
object is triggered.

Attackers are not limited to hijack onMouseover. They can
also exploit onKeyup, onKeydown or other JavaScript event
handlers to launch attacks. For a more complete list of exploitable
JavaScript event handlers, we point readers to [13]. Attackers can
also use the floating object concept to make the cursor follow the
iFrame on which they want users to click [23].

2.3 POP-UP ON CLICK

By default, web browsers only allow pop-ups triggered by
certain user interactions, such as clicks or double click. Therefore,
attackers cannot create web pages those popup windows
automatically. Instead, they have to generate pop-ups when users
click on the page. The Fig.5 shows such an example. When users
click on the link that displays its destination as http:
//www.example.com, a pop-up window will be opened.

<script Language="JavaScript"> function
popUp() { window.open(

"http://www.malicious.com",
"malwin");

}
</script>
<a href="http://www.example.com"

onclick="javascript:popUp()"> Click here

Fig.5. Pop-up on click Example

This can be modified to open pop-up windows only when
users click inside a particular area or on a particular object on the
web page. In these scenarios, users’ original intentions of making
clicks are subverted into opening a pop-up window.

Our observation: From the examples above, we can see that
the intrinsic property of click event hijacking is the mismatch of
user intentions and actions taken by the browser, resulting from
client-side scripting and complex page layouts. When users click
somewhere on a web page, they believe the browser would
perform common actions they expect, such as going to a target
web page or submitting form data to the server. Careful users will
also check more information provided by the browser before they
click, such as the destination URL shown in the status bar when
the mouse pointer is over the link. The status bar information is
partially protected by web browsers that prevent JavaScript code
from changing the status bar information. However, this
protection does not prevent attacks discussed in this paper.
Therefore, even if users check the destinations of the elements
they click on and believe the click will result in expected browser
actions, the browser may actually carry out a different action
controlled by attackers.

3. DESIGN OF CLICKGUARD

The main idea of our solution is to ensure the browser’s action
after a click matches the user’s original intention. To achieve this
goal, we first need to know what users intend to do. Second, we
need to know browser’s behaviors resulting from the click, which
can be intercepted as browser events. With user intentions and the
corresponding browser behaviors, we can check whether they
match, and report unmatched results to warn users of the potential
threat.

Fig.6. Component overview of ClickGuard

3.1 OVERVIEW OF PROPOSED APPROACH

The Fig.6 presents the component overview of ClickGuard. It
has three main components: browser event interceptor, user
intention extractor, and analyzer. The browser event interceptor
intercepts important browser events, such as JavaScript events

Hidden Floating Object

Click Here

Click on the following link
to claim your Prize!

Click Here

Click on the following link
to claim your Prize!

Hidden Floating
Object Brought under
the mouse cursor after
a mouseover event on

a link

X, Y
coordinates

of click

User Click
on Webpage

Destination
URL

User
Intention

Web Page

Clickable Object
Extractor

User Intention
Tuple

Click Event
Listener

HTTP request

Analyzer

Browser
Event

Interceptor

User
Intention
Extractor

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2016, VOLUME: 07, ISSUE: 04

1411

and HTTP request events. When a click event is intercepted, the
user intention extractor infers the user intention of the click from
web page objects in the browser window, and associates the
inferred user intention with the click event. When the browser is
about to perform important actions, the browser event interceptor
finds the corresponding click event and its associated user
intention, and asks the analyzer to match the extracted user
intention with the suspicious browser event. If they do not match,
the analyzer reports an attack and triggers actions specified by
users, such as displaying an alert.

3.2 INTERCEPTING BROWSER EVENTS

This module intercepts two main types of browser events:
input events and output events. Input events are those
corresponding to user actions in web applications, such as user
clicks, which reflect user intentions. Output events are events that
can modify web applications’ states or transfer data to external
parties, such as HTTP requests.

The browser event interceptor intercepts input events by
registering listeners for JavaScript events related to user actions.
For example, when a user click happens on a web page, the
onClick JavaScript event occurs and notifies the corresponding
event listener. Then the event listener may invoke user-defined
event handlers, which are JavaScript functions that have the
access to event properties, such as, type, target, pageX, pageY,
screenX, and screenY, etc. Type indicates the type of the event;
target indicates the object to which the event is originally sent;
pageX, pageY, screenX, and screenY represent the cursor location
at the time the event occurs. Event handlers can perform tasks
such as modifying the content of their web pages or sending out
HTTP requests. The output events are HTTP requests, the main
interface for web applications to communicate with the outside
world. ClickGuard intercepts HTTP requests just before they are
sent out.

When the intercepted output event is triggered, ClickGuard
starts the detection process. It finds the input event that triggered
this output event and invokes the analyzer. Next we will discuss
how to infer user intentions from input events, and the details of
correlating input events to output events are explained in section
3.4.

3.3 INFERRING USER INTENTIONS

After an input event is intercepted, ClickGuard infers the user
intention for this event before the browser starts processing the
event. This task must be performed immediately because the
browser environment may change during the processing of the
event, making users’ original intentions harder to find.

Intuitively, if users click on a multi-layered region on a web
page, the object on the visible layer is what they want to click; if
they click in a single-layered region, the object clicked is what
they want to click. Next, we use the object on which users want
to click and its attributes to infer users’ intentions.

In ClickGuard, the user intention is defined as a tuple <Target
Object, Destination URL>, explained as follows:

• “Target Object” is a clickable object found under the mouse
pointer when a click happens, which is considered the target
object of the click. Clickable objects are either hyperlinks or
button. Hyperlinks include HTML elements <a> and <link>.

The appearance of hyperlinks depends on the HTML content
embedded in these hyperlinks, such as text, images, etc.
Other HTML elements such as <div>, are considered as
non-clickable objects and are not considered as user
intentions, because they do not reveal any destination
information to the user. We believe that it is not a good
practice to use nonclickable objects as links, since this would
confuse users in understanding the potential behaviors of
web page objects.

• “Destination URL” is the URL of the inferred destination of
the Target Object.

When a user clicks on the web page, ClickGuard stores the
user intention tuple that is later fed to the analyzer component for
matching the user intention with the actual browser behavior. To
compose the user intention tuple, we need to obtain the Target
Object as well as the Destination URL. The main challenge of this
step is to deal with the complexity of page layout. Next we explain
how ClickGuard finds the Target Object when there are multiple
layers, and how the Destination URL is inferred from the Target
Object.
3.3.1 Finding the Target Object from Multiple Layers:

If there are multiple layers on a web page formed using
Frames or iFrames and there are multiple objects under the mouse
pointer when the click happens, we find the Target Object based
on the visibility of the objects under the mouse pointer. Our
approach determines the visibility of layers and objects based on
their opacity values. The opacity attribute [33] is used by the
Cascading Style Sheets (CSS) to adjust the visibility of objects on
a web page, where 0.0 denotes fully transparent and 1.0 indicates
fully opaque. We consider an object as more related to the user
intention if its opacity value is higher. Our approach works as
follows:
3.3.2 Collect all Objects Under the Clicked Position:

We traverse the DOM (Document Object Model) [36] tree to
examine the main web page and its iFrame and Frame elements
to retrieve all objects under the mouse pointer at the time of user
click.
3.3.3 Check Opacity Values:

If there are multiple layers in the web page and the layer
clicked on is transparent, we check the opacity values of all
objects collected in the previous step.
3.3.4 Choose the Object Representing User Intention:

Here we filter out objects with lower opacity values than our
threshold. If none of the objects have an opacity value above our
threshold, we record nil as the Target Object. If multiple clickable
objects have the same opacity value higher than our threshold, we
examine their vertical layer order and pick the object on the top
as the Target Object.

3.4 OBTAINING THE DESTINATION URL FROM
THE TARGET OBJECT

Now we describe the way we infer the Destination URL
information from the Target Object. If the Target Object is a link
created by an HTML [4] anchor element (<a>), then it is of type
HTMLAnchorElement, and has an HREF attribute. In this case,
the value of the HREF attribute is taken as the Destination URL.

KAILAS PATIL: PREVENTING CLICK EVENT HIJACKING BY USER INTENTION INFERENCE

1412

For example, for Fig.2 and Fig.3, when the user clicks on the link,
our interceptor stores the user intention information as <Target
Object, http://example.com> and <Target Object,
http://www.example.com>, respectively. If the Target Object is a
submit button in an HTMLFormElement, it does not have the
HREF attribute but its enclosing HTMLFormElement has an
ACTION attribute. We take the value of the ACTION attribute as
the Destination URL in the user intention tuple. If users click on
blank space or a non-clickable object, then the Target Object is
nil. We believe that there is no user intention to send a new HTTP
request or open a pop-up window. In this case, the Destination
URL is also nil.

3.5 CORRELATING OUTPUT EVENTS TO INPUT
EVENTS

To match browser behaviors with user intentions, ClickGuard
needs to correlate an output event to the input event (as described
in section 3.2) that triggers it. For example, a single click on a web
page may be followed by multiple HTTP requests: some of the
requests result from the click, while others may be generated by
other asynchronous events in the browser.

So for each browser action intercepted, we need to figure out
whether it is triggered by an input event or not. If the HTTP
request is not triggered by an input event, we should allow those
requests, as web pages often send requests automatically to same
origins or other domains to load resources (such as images, flash,
etc.). If the HTTP request is triggered by an input event, we need
to find the user intention information associated with it. In our
approach we leverage the JavaScript call stack to find the
association.

In Firefox, JavaScript-to-JavaScript function calls are
implemented using a JavaScript call stack [5]. When a JavaScript
event occurs, the JavaScript event handler is pushed onto the top
of the JavaScript call stack, and the event handler executes the
pre-defined JavaScript code inside that event handler. When the
execution terminates, its frame is popped off from the JavaScript
call stack. If a JavaScript event handler initiates an HTTP request,
it does not terminate until the HTTP request is sent to the network.
As a result, if there exist a JavaScript event handler in the
JavaScript stack, it means this HTTP request results from that
event handler. If the current JavaScript stack does not have any
JavaScript event handler, then this HTTP request is not from
client-side scripts and is allowed by ClickGuard. However, one
exception is indirectly generated HTTP requests. For example, the
click event handler can use the JavaScript setTimeout() or
setInterval() functions to generate timed or deferred execution of
specified code. In these cases, when the HTTP request is finally
initialized, it is the timeout or interval event handler that is on the
JavaScript call stack, not the original click event handler. Our
current version of ClickGuard does not handle these cases, and we
will discuss more on this issue in section 7.

3.6 DETECTING AND RESPONDING TO
ATTACKS

Once ClickGuard correlates an output event to its
corresponding input event, it retrieves the user intention
associated with the input event, and activates the analyzer. The

analyzer detects click event hijacking attacks by two inputs: the
user intention and the intercepted output event.

We match user-intended destination against the target in the
intercepted output event. We perform two checks between the
user intention and the HTTP request output event using a policy
similar to the same-origin policy (SOP) [38].

The first check is between the Destination URL value in the
user intention and the destination URL of the HTTP request. The
second check is between the URL of the enclosing web page of
the Target Object in the user intention tuple and the URL of the
web page that initiates the HTTP request. As we mentioned in
section 3.3, the URL of the web page enclosing the Target Object
is stored as one of its attributes. If either check fails, ClickGuard
shows a security warning.

The first check ensures there is no JavaScript-based click
event hijacking attacks and the second check is used to prevent
layout-based attacks. As in the example of Fig.2, the attacker
creates a visible link on the bottom layer to trick users into
clicking on it. However, what is actually clicked is the invisible
object in the layer above. In this case, the link in the bottom layer
is inferred as the user intention by ClickGuard. An HTTP request
is prepared for the object in the top layer, and its destination is
matched against the URL extracted from the user intention. Since
the link at the bottom layer will never be touched, the attacker can
freely set its destination to that of the invisible object above it to
bypass our first check. But this attack will be detected in our
second check, as the attacker’s web page has a different URL than
the trusted one embedded in the iFrame.

For HTTP request output events, we use the following check
on origins. We define the origin as a combination of the protocol,
host name, and port number of a URL, the same as that in the
same-origin-policy (SOP) [38] enforced by browsers. We require
the two URLs to have the same origin, because naturally the
actual destination should not have significant difference from the
user intention.

3.7 INFERRING HOST RELATIONSHIPS BY
COOKIE POLICY

The criterion above is strict, as it prevents requests from being
sent to hosts in different sub-domains of the same domain, which
is common in big web applications. For example, a website
hosting videos may store videos on its sub-domains to reduce the
load on the main web server. To prevent such unnecessary
restrictions, we propose a method to automatically infer
relationships among hosts within one domain.

HTTP, a stateless protocol, uses cookies to track user sessions,
to authenticate users to web applications, or to remember custom
preferences about users. The contents of cookies are name = value
pairs [18]. To allow cookies to be sent to sub-domains, a web
application sets domain = <domain-name> pair in its cookie.
When the cookie is going to be sent to a website, the URL of that
website is compared with the domain attribute of the cookie. If
there is a tail match, then the cookie can be sent to that sub-
domain. For example, if the domain attribute has the value
.example.com, then it is allowed to send cookies to sub-domains
such as first.example.com, second.first.example.com. However, it
is not allowed to send cookies to example.first.com. The presence
of a leading dot (.) in .example.com indicates it is a domain

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2016, VOLUME: 07, ISSUE: 04

1413

cookie; otherwise it is treated as a host cookie, which is sent back,
during subsequent visits, only to the server that sets it. A domain
cookie is sent back to any site in the same domain as the site that
sets it.

The sub-domain policy in cookies indicates the trust among
web servers within one domain. We leverage this information to
handle sub-domain communications of JavaScript on legitimate
websites to avoid false positives. If the origin check we perform
fails, we check the cookie policy. Specifically, we check the
domain attribute in the cookie. If it exists, we perform tail
matching between fully qualified domain name of the HTTP
request and the domain attribute value in the cookie. If it fails we
report failure of the check; otherwise, the check passes. If the
domain attribute is not set by the web application in its cookie, we
also report failure of the check.

In summary, we relaxed our same origin checking criteria, and
allowed access to sub-domains if the cookie policy allows cookies
to be sent to them.

4. IMPLEMENTATION

ClickGuard is made as a prototype that works as an extension
[21] of the Mozilla Firefox browser. We chose Firefox as the
platform because it is the most popular open-source web browser.
Our approach can be implemented by either modifying Firefox’s
source code or extending Firefox’s functionality by its extension
interfaces. We decided to implement ClickGuard as an extension
since it is much easier to deploy and distribute. Meanwhile, the
event interception and object access functionality needed by our
approach are mostly supported by Firefox’s extension interfaces.
More on this issue is discussed in Section 7.

To intercept input events, ClickGuard intercepts JavaScript
events such as click, and keypress. By calling the function:
targetObject.addEventListener(eventType, listener, capt) in
Mozilla Firefox, we can add an event listener on targetObject
which can be an HTML document, window, etc [20]. The first
parameter eventType can be click, keypress, etc. The second
parameter, listener, is a JavaScript event listener function that will
be invoked when the event occurs. The third parameter is
important to us. If the third parameter is true, when the specified
event occurs, our registered listener will be notified first before it
is dispatched to other event targets. To get the genuine user
intention we need to execute our listener before the execution of
other event handlers. Therefore, when we register the event using
the addEventListenner function, the third parameter must be set
to true.

To intercept HTTP-related output events, ClickGuard
intercepts the HTTP request event via the http-onmodify-request
notification in Firefox. Firefox sends an http-on-modify-request
notification to extensions after an HTTP request is prepared and
before it is sent out to the network. Notifications are just like
events or signals in other programming languages and
frameworks.

We use the JavaScript call stack to look for correlations
between input and output events. To get the JavaScript call stack,
we use a Mozilla specific property stack of the Error object. It
shows the functions called, their order and the arguments to them.
Alternatively in Mozilla Firefox extension we can also use the
Components.stack property of the nsIStackFrame interface.

The prototype of ClickGuard registers event listener functions
for the click, mouseover, and keypress events. It is
straightforward to include other JavaScript events, such as
mousedown, keyup, keydown, etc [1].

In this implementation, we use 0.2 as our threshold value of
opacity, since during our experiments layers with opacity values
less than 0.2 were hardly visible. To decide the vertical layer order
of objects, we use the CSS z-index attribute [34] of the layers to
identify their vertical layer order. The z-index attribute specifies
the stack level of the generated box in HTML rendering, and the
layer at the top has the largest z-index value.

5. EVALUATION

We evaluated the prototype of ClickGuard on a computer with
an Intel Core 2 Duo 2.33GHz CPU and 4GB RAM, running
Ubuntu 9.10. We tested our solution in Mozilla Firefox.

5.1 EFFECTIVENESS

We evaluated the effectiveness of ClickGuard using several
types of click event hijacking attacks. We created attack examples
for each type of attacks discussed in section 2.
5.1.1 Floating Objects:

The Fig.3 is an example that floats an object and brings it
under the mouse pointer on the onMouseover event, which
subsequently triggers the onClick event handler on the floating
object. It coordinates two events to achieve the goal of changing
the DOM location on the fly. To detect this kind of attacks, we
collected all clickable objects under the mouse pointer and
recorded the Destination URL value as http://www.example.com
in the user intention tuple. On the HTTP output event, we
performed the first check between the URL of the HTTP request
(malicious.com) and the Destination URL in the user intention
(http://www.example.com). It failed because the host part in the
Destination URL and the HTTP request were different. Therefore,
we showed a security warning to the user.
5.1.2 Pop-up on Click:

On some carefully crafted websites, even a click in a white-
space area triggers a pop-up window, which is annoying, and
potentially insecure to users. Some of the most annoying pop-up
window actions include windows that continually reopen
themselves whenever users attempt to close them [19]. The Fig.5
is an example to open a pop-up window when a user click event
occurs on a web page. Our prototype ClickGuard recorded the X
and Y coordinates of the mouse click and retrieved all objects at
that position. However, if a user click occurs in blank space or on
a non-clickable object such as a piece of text on the web page, the
user intention extractor returns nil. In the HTTP request event
interceptor, we correlated HTTP requests with user clicks by
examining the presence of click event listener in the JavaScript
call stack. The first check failed in this case, because the user
intention extractor returned nil. We showed a security warning to
the user.

5.2 FALSE POSITIVE AND PERFORMANCE

In our system, a false positive is a normal page that is detected
as malicious. To evaluate false positives generated by our system,

KAILAS PATIL: PREVENTING CLICK EVENT HIJACKING BY USER INTENTION INFERENCE

1414

we did arbitrary surfing among the top 180 sites from Alexa [6].
During the experiment, we did not observe any false positive.
After we turned off the cookie policy check for relaxation, the
origin check failed for 37 sites out of the 180 websites we
arbitrarily surfed. The reason why the origin check failed for those
37 sites was that those websites were sending requests to their
sub-domains and changing the HTTP addresses dynamically.
However, our origin check passed for all those web sites when the
cookie policy check was enabled.

We also measured the performance overhead of ClickGuard,
incurred from intercepting at two types of events, JavaScript
events (such as onClick, onMouseover, etc), and the http-on-
modify-request notification event generated by Mozilla Firefox.
We measured the wall clock time of a typical browsing session.
The average overhead was around 3ms per session. Our solution
does not cause noticeable slowdown to the interactivity of web
applications.

6. RELATED WORK

6.1 POP-UP WINDOW BLOCKING

Using user clicks as indicators of user intentions, web
browsers implement pop-up blockers to suppress unwanted pop-
up windows. Pop-up blockers block pop-up windows that are
created during page loading by JavaScript functions such as

• window.showHelp,
• window.showModalDialog,
• window.showModelessDialog,
• window.external.NavigateAndFind [2], [3], etc.
Web browsers block calls to window.open() if one of the

following conditions is met: 1) global scripts executed during
document loading request to open popup windows; 2) scripts
executed as part of an onload event handler ask to open pop-up
windows, or 3) scripts executed in setTimeout() or setInterval()
try to open pop-up windows [3].

6.2 CLICKJACKING DEFENSE

ClearClick, the module in NoScript [24], protects users
against Clickjacking. It performs same origin check between the
URL of the web page loaded in the iFrame and the URL of the
top-level document.

With ClearClick, NoScript is a good prevention for
Clickjacking attacks. However, it does not provide a general
solution for other attacks discussed in this paper, such as click
redirection. Instead, users are expected to specify for each domain
whether to allow JavaScript, which lacks the fine granularity to
selectively allow/deny specific type or source of JavaScript code.

ClickIDS [7] introduces a solution to automatically detect
Clickjacking attacks. ClickIDS registers for the onClick event
listener, and retrieves the coordinates of the mouse pointer when
clicks happen. Then it searches for objects at the same position. If
there exists more than one object under the mouse pointer,
ClickIDS generates an alarm. ClickIDS detects overlay-based
attacks effectively. Compared to ClickIDS, our approach focuses
more on studying the effect of user intentions on a broader class
of attacks.

To defend Clickjacking, a web application can use a technique
called “framekiller” to prevent itself from being loaded in an
iFrame [37]. One piece of example code is shown below in Fig.7:

if ((top.location != self.location))
{

top.location = self.location.href;
}

Fig.7. Framekiller Example Code

On the server side, web application developers can protect
their users against Clickjacking attacks by including similar
framekiller JavaScript code in those web pages they do not want
to be embedded inside frames by others web sites. However, this
solution suffers from obvious disadvantages. First, it affects the
functionality of web sites that utilize overlays or frames. Second,
it is limited to Clickjacking attack, and does not prevent click
redirection attacks. Third, it only works when JavaScript is not
disabled by users.

Another direction to prevent Clickjacking attacks is to
enhance web browsers. Microsoft released a Clickjacking
prevention solution in Internet Explorer 8 (IE8), which detects
and prevents overlays or frame-based attacks [8][12][16]
[22][30]. IE8 introduces a new HTTP response header X-Frame-
Options, which can be set to either Deny or SameOrigin [17], [38]
by web sites. If it is set to Deny then IE8 prevents pages of that
web site from being embedded into frames. If

X-Frame-Options is set to SameOrigin, then IE8 will prevent
pages of that web site from being embedded into frames in web
pages from a different origin. The solution implemented in IE8
only mitigates overlay or frame-based attacks, and requires an
extra header in HTTP responses.

Content Security Policy (CSP) [11] [28][29][32] is another
mechanism intending to mitigate web application vulnerabilities,
but its primary focus is CrossSite Scripting (XSS). To mitigate
Clickjacking attacks, CSP enables the site to specify which
sources are valid for Frame and iFrame elements. It maintains a
frame-ancestor list which indicates valid sources for Frame and
iFrame tags. However, CSP addresses only overlay Clickjacking
attacks. It cannot prevent click redirection attacks. In addition,
each web site needs to maintain a frame-ancestor list in order to
activate Clickjacking protection, whose size may grow rapidly as
the number of sites allowed increases. Shah et al. [26] reported a
large-scale measurement analysis of mobile browser SSL security
warnings. The work reported inconsistency in modern mobile web
browsers in implementing SSL security warnings. Other
researcher efforts [40], [41], [42] proposed solutions to mitigate
clickjacking attacks and identified limitations of web browsers in
preventing clikcjacking attacks.

6.3 USER INTENTION INFERENCE

In the operating system environment, Cui et al. [10] propose
an approach to detect malicious behaviors that are not intended by
users. It correlates user inputs to outbound network connections
by the time delay in between. Compared to this approach, the user
intention inference in our approach is more detailed. Besides
knowing the existence of a user action, we further find out the
detailed target of the user action. Moreover, the correlation
between output events and input events is more accurate in our

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2016, VOLUME: 07, ISSUE: 04

1415

approach because we use the dependency information inside
browser internals. Shirley et al. [31] introduce a new approach to
access control policies by incorporating user behaviors. They
explore possible policies and their effectiveness in malware
mitigation, and propose a mechanism to capture user actions and
try to map those actions to user intentions.

7. LIMITATION AND FUTURE WORK

7.1 BROWSER EXTENSION VS. BROWSER
INSTRUMENTATION

Our ClickGuard prototype is an extension to the Mozilla
Firefox web browser, which facilitates convenient deployment
and distribution. However, malicious Firefox extensions can
affect the ClickGuard prototype. Therefore, ClickGuard assumes
the browser environment (including extensions) is not affected by
malicious programs. If implemented via browser modification,
ClickGuard will be immune to threats from malicious extensions.

Moreover, as previously mentioned, the current prototype of
ClickGuard cannot handle indirectly generated HTTP requests by
JavaScript functions like setTimeout() and setInterval(). Default
settings in web browsers disable the opening of a pop-up window
by built-in JavaScript functions such as setTimeout() or
setInterval(), but HTTP requests from these functions are still
allowed.

The reason why our prototype lacks support in these scenarios
is that the current Firefox extension interfaces [9] do not provide
notifications for the setting of timeouts and intervals. These
limitations are solved in our ongoing work through browser
modification. Through timer object reference inside the Firefox
browser, we can correlate the JavaScript code activated by a timer
with the JavaScript code that sets the timer.

7.2 OBSTRUCTED UIS

Although ClickGuard is preventing overlay attacks, attackers
can embed legitimate page inside an iFrame with opacity value
set to 1, and obstruct part of the page using other objects. This
may change the appearance of the victim application, such as
swapping the labels of the “Yes” and “No” radio buttons, leading
to incorrect actions by users.

This is a limitation of the current approach of ClickGuard.
Although obstructed victim pages can be identified by users
familiar with the interface, this remains a potential issue for first
visits to websites. Extend the user intention to cover such attacks
will be part of our future work.

8. CONCLUSION

Clickjacking attack encompasses multiple techniques to trick
web users into clicking on web elements that lead to harmful
actions. It is an example of a broader range of attacks of hijacking
click events. This paper studied the user intentions to detect click
event hijacking attacks. Based on intercepting browser events, the
proposed approach detects the mismatch between user intentions
and browser actions. For events related to user actions, the
proposed approach infers the associated users’ intentions; for
events related to suspicious browser behavior, the proposed

approach finds the corresponding user action and matches the
browser behavior with the user’s original intention. If they do not
match, it reports an alert to the user. We prototyped the proposed
approach in an extension to Mozilla Firefox, called ClickGuard,
which generated promising results in our experiment.

REFERENCES

[1] Javascript Events, Available at:
http://www.w3schools.com/js/js_events.asp

[2] Pop-up Blocker Settings, Available at:
https://support.mozilla.org/en-US/kb/pop-blocker-settings-
exceptions-troubleshooting.

[3] Pop-up window controls, Available at:
https://addons.mozilla.org/en-US/firefox/addon/pop-up-
control/

[4] Document Object Model, Available at:
http://www.w3schools.com/xml/dom_intro.asp.

[5] Spider Monkey Internals, Available at:
https://developer.mozilla.org/En/SpiderMonkey/Internals.

[6] Alexa Top sites, Available
at:http://www.alexa.com/topsites.

[7] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide
Balzarotti and Chrisopher Kruegel, “A Solution for the
Automated Detection of Clickjacking Attacks”,
Proceedings of 5th ACM Symposium on Information
Computer and Communication Security , pp. 135-144, 2010.

[8] Bugzilla, Available at:
https://bugzilla.mozilla.org/show_bug.cgi?id=475530.

[9] Observer Notifications, Avaialble at:
https://developer.mozilla.org/en/docs/Observer_Notificatio
ns.

[10] Weidong Cui, Randy H. Katz, and Wai Tian Tan, “Design
and Implementation of an Extrusion-based Break-In
Detector for Personal Computers”, Proceedings of 21st
Conference on Computer Security Applications, pp. 1-10,
2005.

[11] Dnyaneshwar K. Patil and Kailas Patil, “Client-Side
Automated Sanitizer for Cross-Site Scripting
Vulnerabilities”, International Journal of Computer
Applications, Vol. 121, No. 20, pp. 1-7, 2015.

[12] Xinshu Dong, Kailas Patil, Jian Mao and Zhenkai Liang, “A
Comprehensive Client-Side Behavior Model for Diagnosing
Attacks in Ajax Applications”, Proceedings of 18th
International Conference on Engineering of Complex
Computer Systems, pp. 177-187, 2013.

[13] XSS (Cross Site Scripting) Cheat Sheet Calculator,
Available at: http://ha.ckers.org/xsscalc.html.

[14] Clickjacking, Available at:
http://www.sectheory.com/clickjacking.htm, Accessed on
2008.

[15] Facebook Hit by Clickjacking Attack, Available at:
http://www.darkreading.com/attacks-breaches/facebook-
hit-by-clickjacking-attack/d/d-id/1132670?

[16] IE8 Security Part VII: Clickjacking Defenses, Available at:
http://blogs.msdn.com/ie/archive/2009/01/27/ ie8-security-
part-vii-clickjacking-defenses.aspx.

[17] Collin Jackson, Andrew Bortz, Dan Boneh, and John
C.Mitchell, “Protecting Browser State from Web Privacy

KAILAS PATIL: PREVENTING CLICK EVENT HIJACKING BY USER INTENTION INFERENCE

1416

Attacks”, Proceedings of 15th ACM Conference on World
Wide Web, pp. 737-744, 2006.

[18] Http State Management Mechanism, Available at:
http://www.ietf.org/rfc/rfc2109.txt.

[19] About the Pop-Up Blocker, Available at:
http://msdn.microsoft.com/enus/library/ms537632(VS.85).
aspx.

[20] Mozilla. Event.Addeventlistener, Available at:
https://developer.mozilla.org/en/DOM/element.addEventLi
stener.

[21] Mozilla. Extensions, Available at:
https://developer.mozilla.org/En/Extensions, Accessed on
2009.

[22] What’s new in Internet Explorer 8, Available at:
http://msdn.microsoft.com/en-us/library/cc288472.aspx,
Accessed on 2009.

[23] The Clickjacking Meets Xss: A State of Art, Available at:
https://www.exploit-db.com/papers/12987/, Accessed on
2008.

[24] No Script, Available at: http://noscript.net, Accessed on
2009.

[25] Dnyaneshwar K Patil and Kailas Patil, “Automated Client-
Side Sanitizer for Code Injection Attacks”, International
Journal of Information Technology and Computer Science,
Vol. 8, No. 4, pp. 86-95, 2016.

[26] Ronak Shah and Kailas Patil. “Evaluating Effectiveness of
Mobile Browser Security Warnings”, ICTACT Journal of
Communication Technology, Vol. 7, No. 3, pp. 1373-1378,
2016.

[27] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang and
Xuxian Jiang, “Towards Fine-Grained Access Control in
Javascript Contexts”, Proceedings of the 31st International
Conference on Distributed Computing Systems, pp. 720-
729, 2011.

[28] Kailas Patil and Braun Frederik, “A Measurement Study of
the Content Security Policy on Real-World Applications”,
International Journal of Network Security, Vol. 18, No. 2,
pp. 383-392, 2016.

[29] Kailas Patil, Tanvi Vyas, Frederik Braun, Mark Goodwin
and Zhenkai Liang, “Poster: UserCSP-User Specified

Content Security Policies”, Proceedings of Symposium on
Usable Privacy and Security, pp. 1-2, 2013.

[30] Security and the Net. About IE8’s Clickjacking Protection,
Available at: http://securityandthe.net/2009/02/ 01/about-
ie8s-clickjacking-protection/, Accessed on 2009.

[31] Jeffrey Shirley and David Evans, “The User is not the
Enemy: Fighting Malware by Tracking User Intentions”,
Proceedings of New Security Paradigms Workshop, pp. 1-
13, 2008.

[32] Content Security Policy, Available at:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP.

[33] Transparency: the ‘Opacity’ Property, Available at:
http://www.w3.org/TR/css3-color/#transparency.

[34] W3C Recommendation, Available at:
http://www.w3.org/TR/CSS21/visuren.html#propdef-z-
index.

[35] Cross-Site Scripting, Available at:
http://en.wikipedia.org/wiki/Cross-site scripting.

[36] Document Object Model, Available at:
http://en.wikipedia.org/wiki/Document\ Object\ Model.

[37] Framekiller, Available at:
http://en.wikipedia.org/wiki/Framekiller.

[38] Same Origin Policy, Available at:
http://en.wikipedia.org/wiki/.

[39] Facebook Hit with Clickjacking Attack,
http://www.darkreading.com/attacks-and-
breaches/facebook-hit-with-clickjacking-attack/d/d-
id/1089957.

[40] Sebastian Lekies et al., “On the Fragility and Limitations of
Current Browser-Provided Clickjacking Protection
Schemes”, Proceedings of 6th Workshop on Offensive
Technologies, pp. 1-6, 2012.

[41] Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart
Schechter, and Collin Jackson, “Clickjacking: Attacks and
Defenses”, Proceedings of 21st Usenix Conference on
Security Symposium, pp. 1-16, 2012.

[42] J.A. Shamsi, S. Hameed, W. Rahman, F. Zuberi, K. Altaf
and A. Amjad, “Clicksafe: Providing Security against
Clickjacking Attacks”, Proceedings of 15th International
Symposium on High-Assurance Systems Engineering, pp.
206-210, 2014.

