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Abstract

Wireless Sensor Networks (WSNs) have expanded substantial attention
owing to their wide variety of applications in various fields. However,
energy consumption remains a critical challenge in WSNs, as the nodes
are typically powered by limited battery resources. This paper addresses
the energy consumption problem in WSNs by proposing a novel
approach that combines the Hybrid Firefly Glow-Worm Swarm
Optimization (HF-GSO) algorithm, Dynamic Voltage and Frequency
Scaling (DVES) algorithm, and the duty cycling technique. The HF-
GSO algorithm stands employed for the selection of effective cluster
heads and routing in WSNs. It leverages the collective behavior of
fireflies and glow-worms to achieve optimal energy utilization and
network performance. By incorporating HF-GSO, the proposed
approach optimizes the formation of clusters, minimizing the energy
consumption associated with long-distance communication and data
aggregation. Additionally, the DVFES algorithm is integrated into the
system to energetically regulate the voltage and frequency levels of
sensor nodes. This adaptive scaling mechanism allows the nodes to
operate at lower power levels during periods of low activity, effectively
reducing energy wastage. The DVFS algorithm further contributes to
energy efficiency without compromising the network’s overall
performance by scaling up the voltage and frequency only when
necessary. Furthermore, the proposed approach utilizes duty cycling, a
technique that enables the nodes to alternate between active and sleep
modes. By effectively scheduling the node’s active and sleep durations,
duty cycling significantly reduces idle listening and idle transmission,
minimizing unnecessary energy consumption. The usefulness of the
proposed method is demonstrated through extensive simulations and
performance evaluations. The results indicate notable improvements in
energy efficiency, network lifetime, and overall system performance
compared to existing approaches. In conclusion, this research paper
gives a complete solution to the energy consumption problem in WSNs.
By integrating the HF-GSO algorithm, DVFS algorithm, and duty
cycling, the proposed approach achieves significant energy savings and
extends the lifetime of WSNs, making it highly suitable for energy-
constrained WSN applications.
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) emerged as a leading
technology that enables efficient monitoring and data collection
in various domains. WSNs consist of a large number of small,
cost-efficient sensor nodes prepared with sensing, processing, and
wireless communication proficiencies. These sensor nodes are
strategically positioned in a target area to collaboratively gather
and communicate data to a base station or sink node. WSNs have
increased substantial consideration due to their varied choices of
applications in fields such as environmental monitoring, industrial
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automation, healthcare, smart cities, and precision agriculture,
among others [1]. These networks offer unique advantages over
traditional wired or centralized monitoring systems, including
scalability, flexibility, cost-effectiveness, and the ability to
operate in harsh and inaccessible environments. The fundamental
objective of WSNs is to gather and communicate data from the
sensor instrument to a base station for additional investigation and
decision-making. Each sensor node within the network is
responsible for sensing and gathering data from its surrounding
environment, processing the collected information, and wirelessly
transmitting it to the base station or other neighboring nodes for
eventual delivery to the central station [2]. The Figure-1 below
depicts a clear architecture of the WSN.

However, despite the promising potential of WSNs, they face
several challenges, with energy consumption being a critical
concern. Most sensor nodes in WSNs are typically powered by
limited and non-rechargeable battery resources. Energy
efficiency, therefore, plays a vital role in determining the
network’s overall lifespan and functionality. Prolonging the
network’s lifespan and optimizing energy consumption are
crucial objectives in WSN research and deployment [3]. Efficient
energy management in WSNs involves tackling various factors
that contribute to energy consumption, such as sensing,
processing, communication, and idle listening. Additionally,
optimizing energy consumption while maintaining satisfactory
network performance is a complex task due to the resource-
constrained nature of sensor nodes [4].

Base ™.

ireless Sensor
Network

Base
Station

Fig.1. Architecture of WSN

The Hybrid Firefly Glow-Worm Swarm Optimization (HF-
GSO) algorithm is a key component in our proposed approach for
enhancing energy efficiency in WSNSs. Inspired by the behavior
of the fireflies and the glow-worms; HF-GSO aims to optimize
cluster head selection and routing, thereby minimizing energy
consumption associated with long-distance communication and
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data aggregation in WSNs [5]. The HF-GSO algorithm combines
the strengths of both firefly and glow-worm swarm optimization
techniques to achieve efficient cluster formation and routing.
Firefly swarm optimization is known for its ability to find global
optima by simulating the flashing behavior of fireflies. In this
context, the fireflies represent the potential cluster heads in
WSNs. They attract other nodes (non-cluster heads) in their
vicinity based on their brightness, which is determined by the
fitness of the solution they represent. This attraction encourages
clustering and facilitates efficient data aggregation within each
cluster [6, 7].

Glow-worm swarm optimization, on the other hand, focuses
on optimizing the behavior of individual glow-worms to solve
optimization problems. Glow-worms are attracted to brighter
glow-worms in their vicinity, following the concept of positive
feedback. This interaction enables the swarm to converge toward
better solutions. In the context of WSNs, glow-worms represent
the non-cluster head nodes and move toward brighter fireflies
(potential cluster heads) to form efficient clusters. By combining
these two optimization techniques, the HF-GSO algorithm
leverages the collective behaviour of fireflies and glow-worms to
achieve optimal energy utilization and network performance. The
fireflies act as potential cluster heads, and the glow-worms
dynamically adjust their positions based on the brightness of the
fireflies, indicating their suitability as cluster heads [8, 9]. This
mechanism facilitates the formation of clusters with balanced
energy consumption and effective data aggregation. During the
cluster formation process, the HF-GSO algorithm considers
various aspects such as the residual energy of the sensor nodes,
their proximity to the central base station, and mainly the
communication cost. By considering these factors, the algorithm
aims to select cluster heads that can efficiently collect and
transmit data while minimizing energy consumption.

Furthermore, we incorporate the DVFS algorithm into our
approach toward dynamically regulating sensor nodes’ voltage
and frequency levels based on the individual workload and power
requirements, effectively optimizing energy consumption without
compromising network performance. The DVFS algorithm
exploits the fact that different tasks and processing requirements
may vary in their intensity. Not all tasks require the same level of
computational power, and therefore, nodes can operate at lower
power levels during periods of low activity, leading to energy
savings [10, 11, and 12]. By grading down the frequency and
voltage level of the nodes during periods of low activity, the
DVEFS algorithm reduces the energy consumption of the sensor
nodes while still maintaining the required performance. This
reduced voltage and frequency levels result in lower energy
dissipation, as the energy consumption of a digital circuit stands
proportionate to the quadrangular of the source voltage and the
frequency [13].

The DVFS algorithm continuously monitors the workload and
processing requirements of each node in the WSN. It dynamically
adjusts the frequency and voltage levels based on the current
workload. When the workload decreases, such as during idle
periods or low-demand tasks, the algorithm scales down the
frequency and voltage level of the node, enabling it to operate at
lower power levels [14,15]. During periods of high activity or
increased processing demands, the DVFS algorithm scales up the
frequency and voltage levels to ensure that the node meets the
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performance requirements. This adaptive scaling mechanism
allows the nodes to dynamically optimize their power
consumption based on the workload, effectively reducing energy
wastage.

By intelligently adjusting the frequency and voltage level, the
DVEFS algorithm enables nodes to operate at an optimal power-
performance trade-off. It prevents nodes from consuming
excessive energy when their processing demands are low, thereby
extending the overall network lifetime. The integration of the
DVEFS algorithm into our proposed approach contributes
significantly to the energy efficiency of the WSN. It ensures that
nodes operate at the appropriate power levels based on their
workload, minimizing unnecessary energy consumption, and
maximizing the utilization of available energy resources [16]. In
wireless sensor networks, the sensor nodes remain installed in the
environments where the event occurrences are sporadic, and
continuous monitoring is not always necessary. However,
traditional continuous listening by sensor nodes leads to
significant energy wastage as they continuously monitor the
environment, even during periods of inactivity. Duty cycling
addresses this issue by allowing nodes to substitute between
active and sleep modes, conserving energy during idle periods.

By defining appropriate duty cycles, nodes can synchronize
their active periods with the occurrence of relevant events or data
collection requirements. During the active period, nodes perform
necessary sensing, processing, and communication tasks to fulfill
their responsibilities within the network [17]. On the other hand,
during the sleep period, nodes enter a low-power state where most
of their functionalities are temporarily suspended, conserving
energy. The importance of duty cycling lies in its ability to
significantly reduce idle listening and idle transmission, two
major sources of energy wastage in WSNs. When nodes
continuously listen for incoming data or transmit data regardless
of'its relevance, it leads to unnecessary energy consumption. Duty
cycling ensures that nodes only activate their listening and
transmission capabilities when required, conserving energy
during idle periods. In this research, we suggest a novel method
to enhance energy efficiency in WSNs by integrating multiple
techniques: the Hybrid Firefly Glow-Worm Swarm Optimization
(HF-GSO) algorithm, Dynamic Voltage and Frequency Scaling
algorithm and the duty cycling approach. We aim to minimize
energy consumption while maintaining satisfactory network
performance and extending the overall network lifetime.

In this paper, Section 2 comprehensively reviews related work
on energy efficiency in WSNs. Section 3 briefs about the details
of the proposed approaches, with the integration of the HF-GSO
algorithm, DVFS algorithm, and duty cycling. Section 4 describes
the experimental setup and provides the results and analysis.
Finally, Section 5 completes this paper by pointing up the
contributions, boundaries, and forthcoming research directions.

2. RELATED WORK

Rauber et al.[18] introduced new metrics to evaluate the
outcomes and energy utilization of applications in the context of
DVFS and thread parallelism. The concept discusses the impact
of application program characteristics on hardware utilization,
specifically focusing on frequency scaling (Dynamic Voltage and
Frequency Scaling - DVFS) and thread parallelism in multi-core
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processors. The PARSEC benchmark suite and SPLASH-2
benchmark suite are used as application programs for
investigation. PARSEC provides a diverse collection of

applications running on chip multiprocessors, while SPLASH-2
is a shared suite for scientific studies. By combining frequency
scaling and thread parallelism and introducing new evaluation
metrics, the study seeks to gain insights into optimizing the
outcomes and power efficiency of requests on multi-core
processors. The choice of benchmark suites and hardware
platforms ensures the study’s relevance and applicability in the
framework of modern computing systems.

Cheour et al. [19] discussed the significance of choosing the
appropriate platform, specifically Field Programmable Gate
Arrays (FPGAs), for image and video compression techniques in
Wireless Sensor Networks applications. It is proved that the
correct selection of image and video compression techniques,
combined with the low power potential of FPGAs, can lead to
significant improvements in energy consumption and
computation time. The research specifically focuses on the low-
consumption solutions offered by FPGA platforms. The
utilization of low-power optimized FPGA-based solutions
demonstrates notable improvements in the computation of various
algorithms, particularly in terms of both processing speed and
energy efficiency.

Yahia Benmoussa et al. [20] enhanced the power efficiency of
video interpreters by effectively compounding Dynamic Voltage
and Frequency Scaling (DVFS) with parallelism techniques.
Initially, the researchers introduced an adaptive DVFS algorithm
for energy-efficient mono-core decoding of H.264 videos. They
utilize the metadata normalized by MPEG that provides crucial
information about the upcoming workload. These metadata are
processed through an adaptive filter to dynamically construct an
accurate complexity model. This model is then used to calculate
the minimal processor frequencies required for decoding video
frames while ensuring that real-time constraints are met. The
performance evaluations demonstrate that the proposed algorithm
for mono-core decoding efficiently converges to an accurate
complexity model within a short duration of less than 1 second. It
is noted that the algorithm results in minimal overhead and
achieves remarkable energy savings of up to 46 percent compared
to the on-demand Linux DVFS governor.

Ruchi Dhall et al. [21] focused on IoT-based agriculture,
aiming to enhance efficiency and produce in farm fields through
real-time monitoring of agricultural parameters. The data
collection process involves various sensors like soil, temperature
and humidity sensors, air quality sensors, and video cameras
mounted on drones. These sensors gather data, which is then
aggregated at the base station and transmitted to a gateway.
Microsoft’s recent research on IoT-based precision agriculture
identifies energy-efficient data aggregation as a significant
challenge in such networks. In response to this challenge, the
research proposes a duty cycling data aggregation algorithm
(IDC) to improve the energy efficiency of the base station. The
key feature of the proposed algorithm is its ability to reduce
energy consumption, particularly during special events like
cloudy weather, where energy conservation becomes crucial. To
further optimize the network’s reliability and lifetime, the
research also introduces an efficient path selection approach
based on residual energy parameters. This approach enables the
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network to intelligently choose paths that utilize nodes with
higher residual energy, thereby extending the network’s overall
lifetime and reliability.

Communication and data transmission in WSNs requires
significant power consumption, which can limit the network’s
lifetime. To address this issue, various clustering routing
protocols have been proposed to reduce energy consumption and
enhance the network’s overall lifetime. Salem et al. [22] Presented
a practical implementation of an unequal clustering-based fuzzy
logic algorithm using the Pan Stamp NRG 2.0 sensor node. The
main objective is to analyze the actual performance of the network
under real-world conditions. The algorithm is designed to
optimize the energy consumption of nodes, increase their lifetime,
and efficiently manage the packets transmitted within the
network.

Radha et al. [23] addresses several major challenges in
wireless sensor networks (WSN), namely false data detection,
intrusion detection, and coverage rate. To overcome these
challenges, the research suggests the use of scheduling in media
access control (MAC) with gateway and relay nodes to improve
the network’s performance. The Firefly algorithm is presented in
this research as a dynamic scheduling technique that results in
better throughput and latency in WSNs. Furthermore, pipelined
scheduling for linear sensor networks is proposed, offering
improved efficiency in data transmission and processing. The
research also highlights the importance of heuristic configuration,
which addresses the issue of overhearing in WSNs. Moreover,
node power-based MAC is introduced as a solution to control the
power consumption of individual nodes, thereby optimizing the
overall energy usage in the network.

Sheikh et al. [24] addresses the issue of path loss in wireless
sensor networks and its impact on the signal strength from the
transmitting node to the receiving node. Path loss, a critical factor
in WSN, can be evaluated using stochastic, deterministic, or
empirical methods. However, optimizing transmission power,
reliability, and data rate in the presence of path loss remains a
challenging task for WSNs. This research highlights the
significance of selecting an optimum modulation scheme that can
minimize errors and enhance the reliability of the WSN and it also
presents a new approach that relates the path loss of the WSN to
M-ary modulation schemes. Specifically, a critical comparative
analysis is conducted for M-ary Frequency-Shift Keying (FSK)
and M-ary Phase-Shift Keying (PSK) modulation schemes in a
given scenario. The performance of these two schemes is
analyzed for both the free space earth model and the plane earth
model.

3. PROPOSED WORK

3.1 NETWORK SETUP

The network setup in this research consists of a multi-hop
architecture comprised of a base station (BS) and the sink node
(SN). The network is deployed in a two-dimensional Cartesian
framework to facilitate a random circulation of sensor nodes.
Each node is equipped with a power source that does not support
rechargeable batteries. Once the nodes are placed, their positions
remain fixed throughout the network operation. There are no
variations in communication or processing capabilitiecs among the
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central sensor nodes with the starting energies of the nodes being
equal.

3.2 ENERGY MODEL

To analyze the power utilization in the sensor network, energy
model stands established by considering the communication of
data packets. The power consumption for sending a packet is in
need of the distance among the sender node and the receiver node
and is formulated based on a free space prototype and a multipath
diminishing model.

In free space model, energy distributed for the transmission of
a data packet containing ‘n’ bits is specified by Eq.(1)

E.= n*(Eec + E5.D?) (1)

where E. represents total energy consumption, E.. is the SN
simulation power, E,5 denotes the power needed to send one bit
into the free space, and the D represents the distance among the
sender and receivers. The term E,;.D? indicates the energy loss
comparative to the quadrangular of the distance.

In multipath diminishing prototype, the power spent by
communicating a data packet is modified to account for the effects
of multi-path fading. The energy loss is now represented by DL
and the equation for energy consumption becomes:

Ec=n*(Eec + Emp + Di) (2)
where E,, represents the power required to communicate one bit
over the multi-path fading channel, and D, represents the multi-
path fading distance.

The initial threshold value Dy is calculated based on the ratio
of E.x and E,,, as shown below:
Do=VE/ Enp 3)
This threshold value helps determine the transmission success
or failure between the sender and the receiver. The power spent
for getting a data packet containing 7’ bits is specified by the
equation:
Erec =n *Eac (4)
This equation indicates that the energy utilization for reception
is straightly proportionate to the bit size of the data packet.
Furthermore, the data aggregation energy intake for the cluster
heads is computed by the following equation:

Ew=FEee*n*m %)
where E.q represents the amount of aggregated energy spent for
one bit, and m represents the number of messages.

3.3 IMPLEMENTATION OF THE
ALGORITHM

DVFS

The Dynamic Voltage and Frequency Scaling algorithm is
implemented to optimize power consumption by dynamically
adjusting the voltage and frequency levels of the microcontroller
in the WSN. The algorithm aims to find the optimal operating
point that minimizes power consumption while meeting the
desired performance metrics. The Fig.2 below shows the
architecture of the proposed work which combines the HFGSO,
DVES and duty cycling algorithm.
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Fig.2. Proposed Architecture in WSN

3.3.1 Power Consumption Components:

The power utilization of the microprocessor in a WSN can be
separated into three main components. The Static Power (Pstatic)
component represents the power dissipated when the
microprocessor is in an inactive or dormant state. It is mainly
caused by reverse-biased diodes and outflow currents. The low-
threshold outflow current and the gate outflow current are the
primary factors contributing to static power consumption. The
Dynamic Power (P dynamic) component is associated with the
charging and discharging of capacitors during the execution of
instructions. It is determined by the switching activity, supply
voltage, switched capacitance, and clock frequency. Dynamic
power utilization can be condensed by decreasing the clock
frequency. Short Circuit Power (P short circuit) component
caused by the current flow when substituting from the source
voltage to the ground. It is comparable to the switching activity
and source voltage.

The total power consumption (P fotal) of the microprocessor
can be demonstrated as the sum of these power components:

(6)
a) Static Power (Pswic): The static power consumption is
primarily influenced by leakage current. It can be represented as:

P:taticz VDD*IIeak (7)
where Vpp is the source voltage and [i.qr is the total leakage
current.

P total:P statichP dynamic+P shortcircuit

b) Dynamic Power (Paynamic): The dynamic power consumption
can be computed using the following equation:

denamic =ax CV2 *f (8)
where a is the switching factor representing the probability of
substituting on any specific clock period, C is mentioned as the
switched capacitance, V is the source voltage, and f is the
frequency.
¢) Short Circuit Power (Psnorr): The short circuit power is related
to switching activity and supply voltage. It can be expressed as:

9
where Ty is the increasing time of input signal and Zjeax is highest
current.

Pshortcircuit =75 Vop™* Ipeak
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3.3.2 Voltage and Frequency Scaling:

Dynamic Voltage and Frequency Scaling procedure adjusts
both the voltage (V) and frequency (f) of the microcontroller. By
reducing the source voltage, power consumption of the
microcontroller can be significantly reduced. However, it is
essential to ensure that the voltage remains above the minimum
operating voltage to maintain reliable operation. The voltage
scaling can be formulated as:

Vnew: Vrrll'n+A V=N ( 1 O)

where V., is the lowest operating voltage, AV is voltage step size,
and N is the scaling factor.

The frequency scaling reduces the clock frequency of the
microcontroller to decrease power consumption. The frequency
can be modified based on the desired performance requirements
and energy targets. The clock frequency scaling can be given as:

Joew=fmar= Af « N an
where fu. 1S the extreme clock frequency, Af is frequency step
size, and N is the scaling factor.

3.4 DVFS TECHNIQUE

The DVFS technique adjusts both the frequency and voltage
of microprocessors to reduce power utilization. By operating
microprocessors at a lower voltage and frequency while meeting
the task deadline, significant power savings can be achieved. The
objective of the DVFS algorithm in WSNs is to minimize power
consumption while maintaining the required performance level
and meeting the QoS (Quality of Service) requirements. The
algorithm dynamically adjusts the frequency and voltage based on
the workload and performance demands. The DVFS technique is
applied using a power management module (PMM) that controls
the essential voltage and frequency. PMM groups the voltage for
the supply voltage supervisor (SVS) and the supply voltage
monitor (SVM) based on the anticipated frequency of the
microcontroller. The core voltage is adjusted to minimize power
losses while ensuring stable operation. The DVFS algorithm
continuously monitors the workload and performance
requirements. Based on the workload, the PMM dynamically
regulates the core voltage and frequency to a minimum level
required to meet performance targets. This ensures optimal power
consumption without compromising performance.

DVFS Algorithm:

Initialize the voltage V and frequency F.
While workload W is not completed:
a. Monitor the current workload metric W.

b. Analyze the workload and determine the required power
consumption P(W).

c. If P(W) > P_target, increase the voltage and frequency levels.
d. If P(W) <P_target, decrease the voltage and frequency levels.

e. Check the SVM module to ensure the current voltage V_current
is within the safe operating limits (V_min <V_current <V_max).

f. Adjust the voltage and frequency settings in the PMM module.
g. Measure the actual power utilization P_current.

h. Validate the performance metrics and adjust the voltage and
frequency settings if necessary.
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Terminate the DVFS algorithm when the workload is completed.

where, Workload: W, Power consumption function: P(W),
Voltage: V, Frequency: F, Minimum voltage threshold: V_min,
Maximum voltage threshold: V_max, Current-voltage level:
V_current, Target power consumption: P target and Current
power consumption: P_current.

3.5 DUTY CYCLING ALGORITHM

The duty cycling algorithm is implemented to activate and
deactivate the sensor nodes periodically, allowing them to enter
sleep mode and conserve energy. The duty cycle determines the
nodes’ active time to sleep time ratio.

Let Tiors remain the total period of time, and Tyeive be the
active period of time. The duty cycle (DC) can be calculated as:

DC:( Tlolal/ Taclive)* 100 (12)
where DC is expressed as a percentage.

The energy savings achieved through duty cycling depend on
the duty cycle and power utilization in both active and sleep
modes. By reducing active time and increasing sleep time,
significant energy savings can be achieved. The duty-cycling
algorithm is given as

Duty Cycling Algorithm

1. Initialization:

- Set duty cycle parameters: Tac, Ts

- Define target performance metrics and energy constraints
- Initialize network topology, sensor nodes, and data collection
2. Workload Monitoring:

- While (not termination condition):

- Monitor workload and data traffic

- Measure relevant metrics (e.g., R_data, A_event)

- Update workload information

3. Energy Consumption Analysis:

- Analyze energy consumption patterns:

- Calculate energy consumption in active and sleep periods

- Assess energy consumption trade off based on duty cycle
configuration

4. Duty Cycling Mechanism:

- While (not termination condition):

- Activate sensor nodes for Tac duration

- Perform data sensing, processing, transmission

- Put sensor nodes into sleep mode for Ts duration
5. Dynamic Duty Cycle Adjustment:

- Calculate optimal duty cycle parameters:

- Calculate optimal T active opt based on energy consumption
and R_data

- Calculate optimal T _sleep opt based on energy consumption
and A_event - Adjust duty cycle parameters (Tac, Ts ) based on
optimal values

6. Performance Evaluation and Adaptation:
- While (not termination condition):

- Evaluate network performance metrics against desired targets
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- Measure actual energy consumption and compare with expected
values

- If necessary, adapt duty cycle parameters to maintain desired
performance and energy constraints

7. Termination:

- Terminate algorithm when desired network performance
metrics are achieved, or termination condition is met.

- Generate a summary report of the duty cycling process,
including energy consumption, data transmission rates, and other
relevant metrics

In this initialization step, we set the initial values for duty
cycle parameters, such as active time (7,.) and the sleep time (7)
durations. These parameters determine when the sensor nodes
should be active and when they should be in sleep mode to
conserve energy. We also define the target network performance
metrics and energy constraints to guide the duty cycling
optimization process. Additionally, we initialize the network
topology, sensor nodes, and data collection mechanism.

The workload monitoring involves continuously observing the
workload and data traffic in the network. We measure relevant
metrics like data transmission rate (Ra) Or event occurrence rate
(Aevens) to gain insights into the network’s current workload. This
information is periodically updated to reflect the changing
workload conditions.

In the energy consumption analysis, we analyze the energy
utilization forms in sensor network based on workload and data
traffic information. We assess the energy consumed during the
active and sleep periods to understand the overall energy tradeoff.
This analysis allows us to quantify the relationship between
energy utilization and the duty cycle configuration.

The duty cycling mechanism is responsible for controlling the
active and sleep periods of the sensor nodes. During the active
period, the sensor nodes are activated to perform tasks such as
data sensing, processing, and transmission. Conversely, during
the sleep period, the nodes are set into sleep mode towards
conserving power and reducing unnecessary activity.

Dynamic duty cycling involves dynamically adjusting the
duty cycle of the sensor nodes created on the workload analysis
and energy consumption trade off. We calculate the optimal
values for an active time (7 _active opt) and the sleep time
(T sleep_opt) using mathematical models to optimize the duty

cycle.
* ]—;leep )

- Esleep + (RDaza * E

active

( E constraint

active _opt (

Z (14)

active

)
where,

Ecive: Energy utilization per unit in active time.
Eieep: Energy consumption per unit in sleep time.
Rpaa: Data transmission rate.

Econsirain: Maximum allowable energy consumption constraint.

)

Ective )

*E

sleep

( constraint

Epe +(2

event

T;leepiopt - (

(15)
E

sleep -

where,

Aevent: Event occurrence rate.
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By adjusting the duty cycle parameters (7ucive, Tsicep) based on
the calculated optimal values, we aim to achieve a balance
between energy efficiency and desired network performance.

Performance Evaluation and Adaptation involves continuous
evaluation of the network performance metrics against the desired
targets. We measure the actual energy consumption and compare
it with the expected values. If necessary, we adapt the duty cycle
parameters to maintain the desired performance level and energy
constraints. Fine-tuning of the duty cycle settings can be done
based on real-time monitoring and analysis of the workload and
network conditions. The duty cycling algorithm terminates when
the desired network performance metrics are achieved or when a
specific termination condition is met.

3.6 HF-GSO ALGORITHM

The Hybrid Firefly Glow-Worm Swarm Optimization
(HFGSO) algorithm is designed to optimize the cluster head
nomination process in the WSNs. It combines that principle of
firefly algorithm and glow-worm swarm optimization to achieve
efficient and effective cluster formation. The algorithm begins
with an initialization step where parameters such as the number
of fireflies, maximum iterations, and convergence threshold are
set. The firefly inhabitants are randomly placed within the
network, and their initial fitness values are calculated based on
energy consumption, network connectivity, and other desired
metrics. In the context of the HFGSO algorithm, a "firefly"
represents an individual agent or entity within the population.
Each firefly corresponds to a sensor node in the WSN is
considered a potential candidate for being selected as a cluster
head. The fireflies are used to simulate the movement and
interactions of the nodes in optimization process.

The main loop of the procedure begins by iterating through
each firefly in the population. The attractiveness of each firefly is
calculated based on its fitness value and distance from other
fireflies. Using this attractiveness information, the firefly’s
position is updated by moving towards more attractive fireflies
while considering the distance between them. The fitness of the
new position is evaluated, and if it improves the fitness, the
firefly’s position is updated accordingly. The algorithm then
incorporates the Glow-Worm Swarm Optimization (GSO)
mechanism to further enhance exploration. Each firefly serves as
a source of light, attracting a population of glow-worms. The light
intensity of glow-worms is being updated upon their fitness
values, taking into account factors such as energy consumption
and communication efficiency. The location of the glow-worms
is being adjusted according to their light intensities and the
attractive distances, favoring positions with higher light intensity.
The fitness of the new positions is evaluated, and if it improves
the fitness, the firefly’s position is updated based on the position
of the most attractive glow-worm.

The main loop continues till the extreme number of repetitions
is grasped or conjunction is achieved. Convergence is determined
by monitoring the change in the best fitness value. If the change
falls below the predefined convergence threshold, the algorithm
terminates. Once the iterations are completed, the cluster head
selection phase begins. The final positions of the fireflies are
analyzed, and the fireflies with the highest fitness values are
selected as cluster heads. Other nodes are allocated to the
appropriate cluster heads based on proximity and communication
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range. The network topology and cluster structure are updated
accordingly to establish the communication hierarchy.

The HFGSO algorithm optimizes the cluster head selection
process in WSNs by iteratively updating firefly positions based
on attractiveness and incorporating the GSO mechanism for
further exploration. The final selected cluster heads and network
topology reflect an optimized solution based on energy
consumption, network connectivity and other desired metrics.

The GSO returns various advantages such as it is better in
handling multiple optima associated with a provided multimodal
function. But it limits from several drawbacks such as poor in
positioning the global optimum solution, falling into local
optimum, slow speed to convergence, etc. Hence, to overcome the
drawbacks of GSO, firefly algorithm is integrated into it and the
so formed algorithm is referred as novel HF-GSO. This novel HF-
GSO is better in handling local and global optimum solution and
also speeds up the convergence process.

This novel HF-GSO works on the basis of random concept. If
random number rand <, then the update takes place using the
movement towards attractive firefly equation of firefly algorithm
as in Eq.(15).

Vi (ut1) = yiu) + Boe™ (i) + ot 15)
where, y;(u) shows a randomization parameter and Boe”? (y-yx)
shows the result associated with the firefly s attraction; if f,, then
it appears to be a straight forward random movement. Otherwise,
if random number rand> , then the update takes place using the
movement of glow-worm’s equation of GSO as in Eq.(16).

Y1) =yiu) + % yiu) - yjryi(u)-y; (16)
Here, the step size is shown by respectively. The pseudo code
of proposed HF-GSO is shown in the below Algorithm.
Algorithm: HF-GSO
Start
Population initialization (clusters)
Parameter initialization such as firefly count, glow worm count,
convergence threshold, and maximum iteration count.
Fitness calculation (considering network connectivity, energy
consumption, and other desired metrics)
While
iter <iter n
If rand<y; (u+1) = yi(u) +Boe™ (yj—yi) + 0g;
Else
¥i (utl) = yi(u) +Boe™ (yi—yi) + oj
End if
iter=iter+1
End while

Return optimal solution (with consideration of network
connectivity, energy consumption, and other desired metrics)

Stop

The combination of Dynamic Voltage and Frequency Scaling,
duty cycling, and the Hybrid Firefly Glow-Worm Swarm
Optimization (HFGSO) algorithm demonstrates significant
effectiveness in refining the energy efficiency of WSN. Through
leveraging DVFS, the system dynamically adjusts the frequency
and voltage of sensor nodes, reducing power consumption during
idle periods and optimizing energy usage based on task
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requirements. Duty cycling further enhances energy efficiency by
periodically switching between active and sleep states, conserving
energy during periods of inactivity.

Integrating the HFGSO algorithm into the optimization
process enables efficient cluster head selection and network
topology formation. By leveraging the attractiveness and
movement principles of fireflies and glow-worms, the algorithm
optimizes the positioning of cluster heads, resulting in balanced
network load distribution and reduced energy consumption. The
combined approach of DVFS, duty cycling, and HFGSO
algorithm empowers WSNs with fine-grained control over energy
usage, adaptive power management, and optimized network
organization. This comprehensive approach leads to substantial
improvements in energy efficiency, prolonging the network
lifespan and enhancing the overall performance of WSNs.

4. EXPERIMENTAL ANALYSIS

The performance valuation of the proposed method HF-GSO
with DVFS and Duty Cycling is worked out in MATLAB, and it
is associated with the various current algorithms that are at present
available, HBACS-HBACM [25], GA-CSO [26], DCC-IACIJS
[27] and FGS [28]. Below table Table-1 shows the parameters that
are considered for carrying out simulations in Wireless Sensor
Networks (WSNs).

Table.1.Parameters and their values for implementation

Parameter Values
Network Size 100 — 500 nodes
Deployment Area 300m x 300m

30-40

The power level used by nodes
to transmit data.

Communication Range

Transmission Power

Reception Power -90dBm at the BER of 10
Network Packet size 10000 bits
Sensing Range 30-40m

Data Rate
Traffic Pattern

100-500Kbps

Periodic traffic pattern

Initial Energy 2]

Simulation Time The total duration of the
simulation.

Throughput 1Mbps

To efficiently manage data transmission and energy
consumption, WSNs often adopt clustering techniques. Cluster
formation is a crucial process where nodes are organized into
cluster groups, with one particular node selected as a cluster head
(CH) which is the controller for combining and communicating
data packets from its member nodes to the base station (BS).In
this scenario, we will use the Hybrid Firefly Glow-Worm Swarm
Optimization (HFGSO) algorithm to form clusters in a WSN with
arange of 100 to 500 nodes. The HFGSO algorithm combines the
strengths of the Firefly Algorithm (FA) and the Glow-Worm
Swarm Optimization (GSO) algorithm to achieve efficient cluster
formation.
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ALGORITHM AND DUTY CYCLING

To analyze the performance of WSNs with HFGSO, DVFS,
and duty cycling algorithms, several key parameters should be
considered. These parameters will help in evaluating the
effectiveness and efficiency of the algorithms with regard to
energy consumption, network lifetime, data delivery ratio and
throughput.

Energy Consumption measures total energy used up by the
network during simulation or operation. Network lifetime
evaluates the lifespan of the WSN with different algorithms. It
determines how long the network can operate before a significant
number of nodes deplete their energy reserves. A longer network
lifetime indicates that the algorithms effectively manage the
energy resources of the nodes, resulting in extended network
operation. Data Delivery Ratio calculates the percentage of
effectively delivered packets of data with the totally sent packets.
This metric provides insights into the algorithms’ ability to
transmit data effectively. Throughput assesses the total amount of
data diffused effectively per unit of time. Higher throughput
indicates efficient data transmission.

The proposed algorithm demonstrates superior effectiveness
in energy consumption compared to HBACS-HBACM, GA-CSO,
DCC-IACIS, and FGF algorithms, as evidenced by the graph
presented. The Figure-3 indicates that the energy utilization of the
proposed algorithm is significantly lesser than the supplementary
algorithms, leading to extended network lifetime and improved
energy efficiency while gradually escalating the number of nodes.
The proposed algorithm reports the usage of 0.51 joules of
consumed energy for 500 sensor nodes. The other algorithms
HBACS-HBACM, GA-CSO, DCC-IACIS, and FGF report the
consumption of 0.59, 0.6, 0.7 and 0.89 joules of energy,
respectively. Our proposed algorithm decreases energy
consumption by applying DVFS and Duty cycling algorithms.
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Fig.3. Comparison of Energy consumption measured from the
other algorithms with the proposed algorithm

The suggested algorithm exhibits a significant advantage with
regard to network lifetime compared to HBACS-HBACM, GA-
CSO, DCC-IACIS, and FGF algorithms, as evident from the
results. The Figure-4 below illustrates that the suggested
algorithm consistently sustains a lengthier wireless sensor
network’s lifespan than the other algorithms, showcasing its
superior energy efficiency and ability to prolong the WSN’s
operational duration. Upon varying network sizes, ranging from
100 to 500 nodes, the proposed algorithm maintains a consistent
advantage, proving its scalability and robustness.
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Fig.4. Comparison of Network lifetime measured from the other
algorithms with the proposed algorithm

The proposed algorithm demonstrates a compelling
advantage in data delivery ratio compared to other algorithms,
signifying its superior performance in ensuring successful data
transmission within the Wireless Sensor Network. The Fig.5
indicates that the proposed algorithm consistently achieves higher
data delivery ratios when compared to competing approaches,
making it a highly effective solution for consistent and effective
data dissemination in WSNs. The suggested algorithm produces a
data delivery ratio of 95.6% with 500 sensor nodes when
compared with the HBACS-HBACM, GA-CSO, DCC-IACIJS,
and FGF algorithms. When working with 100 sensor nodes our
proposed algorithm produces a data delivery ratio of 98.65%.
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Fig.5. Comparison of Data delivery ratio measured from the
other algorithms with the proposed algorithm

The proposed algorithm exhibits unparalleled throughput
performance, surpassing all other algorithms in the comparison
shown in Figure-6 below. The outcomes unequivocally
demonstrate that proposed approach consistently achieves the
highest throughput values, making it the optimal choice for
maximizing data transfer rates and overall network efficiency in
Wireless Sensor Networks. The suggested algorithm transmits the
data at the rate of 0.98 Mbps in the case of 100 sensor nodes and
gradually decreases up to 0.74 Mbps for 500 sensor nodes.



ISSN: 2229-6948(ONLINE)

—e—Proposed
HBACS-HBACM
GA-CSO
DCC-IACIS

—o—FGF

Throughput (MbpS)

100 150 200 250

300

Number of Sensor Nodes

350

=]
o
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The Table.2 displays the comparison of proposed algorithm
that comprise of a combination of HFGSO, DVFS and duty
cycling algorithm with the other algorithms such as HBACS-
HBACM, GA-CSO, DCC-IACIS and FGF. The performance of
the suggested algorithm is measured by increasing the count of
sensor nodes from 100 to 500. The table clearly states the
outperformance of the proposed algorithm with the measured
parameters.

Table.2. Performance metrics comparison with other algorithms

Energy Network Data
Algorithms |Consumption| Lifetime Dth?ry Throughput
(mJ) (Rounds) Ratio (Mbps)
(%)
HBACS-
HBACM 0.59 3210 89.21 0.9751
GA-CSO 0.60 3512 88.15 0.8213
DCC-IACIJS 0.70 3601 87.20 0.8760
FGF 0.89 3310 87.00 0.9102
Proposed 0.51 2900 95.60 0.9852

5. CONCLUSION

In this research, we have presented a novel and innovative
algorithm that combines the HFGSO algorithm with Dynamic
Voltage and Frequency Scaling and Duty Cycling strategies to
enhance energy efficiency, network lifetime, data delivery ratio,
and throughput of the wireless sensor networks. Through
comprehensive simulations and performance evaluations, we
have demonstrated the significant benefits and superiority of the
proposed algorithms compared to existing approaches. The
proposed algorithm excels in energy efficiency, effectively
optimizing the cluster head selection process through the HFGSO
algorithm. By dynamically adjusting the voltage and frequency of
sensor nodes using DVFS, the algorithm minimizes power
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consumption while maintaining data processing capabilities.
Additionally, intelligent duty cycling strategies ensure energy
conservation during idle periods, further extending the network
lifespan. The scalability of the proposed system is noteworthy, as
it maintains its advantage across different network sizes,
accommodating both small and large-scale WSN deployments.
This scalability, along with its robustness, makes the proposed
algorithm suitable for diverse real-world applications. Our
algorithm shows a substantial improvement in energy
consumption by 20% and an improved data delivery ratio by 4%
when compared with the existing approaches. The adoption of the
proposed algorithm has the potential to revolutionize WSN
performance, making it a key technology for the future of wireless
sensor applications.
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