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Abstract 

Wireless Sensor Networks (WSNs) have expanded substantial attention 

owing to their wide variety of applications in various fields. However, 

energy consumption remains a critical challenge in WSNs, as the nodes 

are typically powered by limited battery resources. This paper addresses 

the energy consumption problem in WSNs by proposing a novel 

approach that combines the Hybrid Firefly Glow-Worm Swarm 

Optimization (HF-GSO) algorithm, Dynamic Voltage and Frequency 

Scaling (DVFS) algorithm, and the duty cycling technique. The HF-

GSO algorithm stands employed for the selection of effective cluster 

heads and routing in WSNs. It leverages the collective behavior of 

fireflies and glow-worms to achieve optimal energy utilization and 

network performance. By incorporating HF-GSO, the proposed 

approach optimizes the formation of clusters, minimizing the energy 

consumption associated with long-distance communication and data 

aggregation. Additionally, the DVFS algorithm is integrated into the 

system to energetically regulate the voltage and frequency levels of 

sensor nodes. This adaptive scaling mechanism allows the nodes to 

operate at lower power levels during periods of low activity, effectively 

reducing energy wastage. The DVFS algorithm further contributes to 

energy efficiency without compromising the network’s overall 

performance by scaling up the voltage and frequency only when 

necessary. Furthermore, the proposed approach utilizes duty cycling, a 

technique that enables the nodes to alternate between active and sleep 

modes. By effectively scheduling the node’s active and sleep durations, 

duty cycling significantly reduces idle listening and idle transmission, 

minimizing unnecessary energy consumption. The usefulness of the 

proposed method is demonstrated through extensive simulations and 

performance evaluations. The results indicate notable improvements in 

energy efficiency, network lifetime, and overall system performance 

compared to existing approaches. In conclusion, this research paper 

gives a complete solution to the energy consumption problem in WSNs. 

By integrating the HF-GSO algorithm, DVFS algorithm, and duty 

cycling, the proposed approach achieves significant energy savings and 

extends the lifetime of WSNs, making it highly suitable for energy-

constrained WSN applications. 
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1. INTRODUCTION 

Wireless Sensor Networks (WSNs) emerged as a leading 

technology that enables efficient monitoring and data collection 

in various domains. WSNs consist of a large number of small, 

cost-efficient sensor nodes prepared with sensing, processing, and 

wireless communication proficiencies. These sensor nodes are 

strategically positioned in a target area to collaboratively gather 

and communicate data to a base station or sink node. WSNs have 

increased substantial consideration due to their varied choices of 

applications in fields such as environmental monitoring, industrial 

automation, healthcare, smart cities, and precision agriculture, 

among others [1]. These networks offer unique advantages over 

traditional wired or centralized monitoring systems, including 

scalability, flexibility, cost-effectiveness, and the ability to 

operate in harsh and inaccessible environments. The fundamental 

objective of WSNs is to gather and communicate data from the 

sensor instrument to a base station for additional investigation and 

decision-making. Each sensor node within the network is 

responsible for sensing and gathering data from its surrounding 

environment, processing the collected information, and wirelessly 

transmitting it to the base station or other neighboring nodes for 

eventual delivery to the central station [2]. The Figure-1 below 

depicts a clear architecture of the WSN. 

However, despite the promising potential of WSNs, they face 

several challenges, with energy consumption being a critical 

concern. Most sensor nodes in WSNs are typically powered by 

limited and non-rechargeable battery resources. Energy 

efficiency, therefore, plays a vital role in determining the 

network’s overall lifespan and functionality. Prolonging the 

network’s lifespan and optimizing energy consumption are 

crucial objectives in WSN research and deployment [3]. Efficient 

energy management in WSNs involves tackling various factors 

that contribute to energy consumption, such as sensing, 

processing, communication, and idle listening. Additionally, 

optimizing energy consumption while maintaining satisfactory 

network performance is a complex task due to the resource-

constrained nature of sensor nodes [4].  

 

Fig.1. Architecture of WSN 

The Hybrid Firefly Glow-Worm Swarm Optimization (HF-

GSO) algorithm is a key component in our proposed approach for 

enhancing energy efficiency in WSNs. Inspired by the behavior 

of the fireflies and the glow-worms; HF-GSO aims to optimize 

cluster head selection and routing, thereby minimizing energy 

consumption associated with long-distance communication and 
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data aggregation in WSNs [5]. The HF-GSO algorithm combines 

the strengths of both firefly and glow-worm swarm optimization 

techniques to achieve efficient cluster formation and routing. 

Firefly swarm optimization is known for its ability to find global 

optima by simulating the flashing behavior of fireflies. In this 

context, the fireflies represent the potential cluster heads in 

WSNs. They attract other nodes (non-cluster heads) in their 

vicinity based on their brightness, which is determined by the 

fitness of the solution they represent. This attraction encourages 

clustering and facilitates efficient data aggregation within each 

cluster [6, 7]. 

Glow-worm swarm optimization, on the other hand, focuses 

on optimizing the behavior of individual glow-worms to solve 

optimization problems. Glow-worms are attracted to brighter 

glow-worms in their vicinity, following the concept of positive 

feedback. This interaction enables the swarm to converge toward 

better solutions. In the context of WSNs, glow-worms represent 

the non-cluster head nodes and move toward brighter fireflies 

(potential cluster heads) to form efficient clusters. By combining 

these two optimization techniques, the HF-GSO algorithm 

leverages the collective behaviour of fireflies and glow-worms to 

achieve optimal energy utilization and network performance. The 

fireflies act as potential cluster heads, and the glow-worms 

dynamically adjust their positions based on the brightness of the 

fireflies, indicating their suitability as cluster heads [8, 9]. This 

mechanism facilitates the formation of clusters with balanced 

energy consumption and effective data aggregation. During the 

cluster formation process, the HF-GSO algorithm considers 

various aspects such as the residual energy of the sensor nodes, 

their proximity to the central base station, and mainly the 

communication cost. By considering these factors, the algorithm 

aims to select cluster heads that can efficiently collect and 

transmit data while minimizing energy consumption.  

Furthermore, we incorporate the DVFS algorithm into our 

approach toward dynamically regulating sensor nodes’ voltage 

and frequency levels based on the individual workload and power 

requirements, effectively optimizing energy consumption without 

compromising network performance. The DVFS algorithm 

exploits the fact that different tasks and processing requirements 

may vary in their intensity. Not all tasks require the same level of 

computational power, and therefore, nodes can operate at lower 

power levels during periods of low activity, leading to energy 

savings [10, 11, and 12]. By grading down the frequency and 

voltage level of the nodes during periods of low activity, the 

DVFS algorithm reduces the energy consumption of the sensor 

nodes while still maintaining the required performance. This 

reduced voltage and frequency levels result in lower energy 

dissipation, as the energy consumption of a digital circuit stands 

proportionate to the quadrangular of the source voltage and the 

frequency [13].  

The DVFS algorithm continuously monitors the workload and 

processing requirements of each node in the WSN. It dynamically 

adjusts the frequency and voltage levels based on the current 

workload. When the workload decreases, such as during idle 

periods or low-demand tasks, the algorithm scales down the 

frequency and voltage level of the node, enabling it to operate at 

lower power levels [14,15]. During periods of high activity or 

increased processing demands, the DVFS algorithm scales up the 

frequency and voltage levels to ensure that the node meets the 

performance requirements. This adaptive scaling mechanism 

allows the nodes to dynamically optimize their power 

consumption based on the workload, effectively reducing energy 

wastage. 

By intelligently adjusting the frequency and voltage level, the 

DVFS algorithm enables nodes to operate at an optimal power-

performance trade-off. It prevents nodes from consuming 

excessive energy when their processing demands are low, thereby 

extending the overall network lifetime. The integration of the 

DVFS algorithm into our proposed approach contributes 

significantly to the energy efficiency of the WSN. It ensures that 

nodes operate at the appropriate power levels based on their 

workload, minimizing unnecessary energy consumption, and 

maximizing the utilization of available energy resources [16]. In 

wireless sensor networks, the sensor nodes remain installed in the 

environments where the event occurrences are sporadic, and 

continuous monitoring is not always necessary. However, 

traditional continuous listening by sensor nodes leads to 

significant energy wastage as they continuously monitor the 

environment, even during periods of inactivity. Duty cycling 

addresses this issue by allowing nodes to substitute between 

active and sleep modes, conserving energy during idle periods. 

By defining appropriate duty cycles, nodes can synchronize 

their active periods with the occurrence of relevant events or data 

collection requirements. During the active period, nodes perform 

necessary sensing, processing, and communication tasks to fulfill 

their responsibilities within the network [17]. On the other hand, 

during the sleep period, nodes enter a low-power state where most 

of their functionalities are temporarily suspended, conserving 

energy. The importance of duty cycling lies in its ability to 

significantly reduce idle listening and idle transmission, two 

major sources of energy wastage in WSNs. When nodes 

continuously listen for incoming data or transmit data regardless 

of its relevance, it leads to unnecessary energy consumption. Duty 

cycling ensures that nodes only activate their listening and 

transmission capabilities when required, conserving energy 

during idle periods. In this research, we suggest a novel method 

to enhance energy efficiency in WSNs by integrating multiple 

techniques: the Hybrid Firefly Glow-Worm Swarm Optimization 

(HF-GSO) algorithm, Dynamic Voltage and Frequency Scaling 

algorithm and the duty cycling approach. We aim to minimize 

energy consumption while maintaining satisfactory network 

performance and extending the overall network lifetime. 

In this paper, Section 2 comprehensively reviews related work 

on energy efficiency in WSNs. Section 3 briefs about the details 

of the proposed approaches, with the integration of the HF-GSO 

algorithm, DVFS algorithm, and duty cycling. Section 4 describes 

the experimental setup and provides the results and analysis. 

Finally, Section 5 completes this paper by pointing up the 

contributions, boundaries, and forthcoming research directions. 

2. RELATED WORK 

Rauber et al.[18] introduced new metrics to evaluate the 

outcomes and energy utilization of applications in the context of 

DVFS and thread parallelism. The concept discusses the impact 

of application program characteristics on hardware utilization, 

specifically focusing on frequency scaling (Dynamic Voltage and 

Frequency Scaling - DVFS) and thread parallelism in multi-core 
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processors. The PARSEC benchmark suite and SPLASH-2 

benchmark suite are used as application programs for 

investigation. PARSEC provides a diverse collection of 

applications running on chip multiprocessors, while SPLASH-2 

is a shared suite for scientific studies. By combining frequency 

scaling and thread parallelism and introducing new evaluation 

metrics, the study seeks to gain insights into optimizing the 

outcomes and power efficiency of requests on multi-core 

processors. The choice of benchmark suites and hardware 

platforms ensures the study’s relevance and applicability in the 

framework of modern computing systems. 

Cheour et al. [19] discussed the significance of choosing the 

appropriate platform, specifically Field Programmable Gate 

Arrays (FPGAs), for image and video compression techniques in 

Wireless Sensor Networks applications. It is proved that the 

correct selection of image and video compression techniques, 

combined with the low power potential of FPGAs, can lead to 

significant improvements in energy consumption and 

computation time. The research specifically focuses on the low-

consumption solutions offered by FPGA platforms. The 

utilization of low-power optimized FPGA-based solutions 

demonstrates notable improvements in the computation of various 

algorithms, particularly in terms of both processing speed and 

energy efficiency. 

Yahia Benmoussa et al. [20] enhanced the power efficiency of 

video interpreters by effectively compounding Dynamic Voltage 

and Frequency Scaling (DVFS) with parallelism techniques. 

Initially, the researchers introduced an adaptive DVFS algorithm 

for energy-efficient mono-core decoding of H.264 videos. They 

utilize the metadata normalized by MPEG that provides crucial 

information about the upcoming workload. These metadata are 

processed through an adaptive filter to dynamically construct an 

accurate complexity model. This model is then used to calculate 

the minimal processor frequencies required for decoding video 

frames while ensuring that real-time constraints are met. The 

performance evaluations demonstrate that the proposed algorithm 

for mono-core decoding efficiently converges to an accurate 

complexity model within a short duration of less than 1 second. It 

is noted that the algorithm results in minimal overhead and 

achieves remarkable energy savings of up to 46 percent compared 

to the on-demand Linux DVFS governor. 

Ruchi Dhall et al. [21] focused on IoT-based agriculture, 

aiming to enhance efficiency and produce in farm fields through 

real-time monitoring of agricultural parameters. The data 

collection process involves various sensors like soil, temperature 

and humidity sensors, air quality sensors, and video cameras 

mounted on drones. These sensors gather data, which is then 

aggregated at the base station and transmitted to a gateway. 

Microsoft’s recent research on IoT-based precision agriculture 

identifies energy-efficient data aggregation as a significant 

challenge in such networks. In response to this challenge, the 

research proposes a duty cycling data aggregation algorithm 

(IDC) to improve the energy efficiency of the base station. The 

key feature of the proposed algorithm is its ability to reduce 

energy consumption, particularly during special events like 

cloudy weather, where energy conservation becomes crucial. To 

further optimize the network’s reliability and lifetime, the 

research also introduces an efficient path selection approach 

based on residual energy parameters. This approach enables the 

network to intelligently choose paths that utilize nodes with 

higher residual energy, thereby extending the network’s overall 

lifetime and reliability. 

Communication and data transmission in WSNs requires 

significant power consumption, which can limit the network’s 

lifetime. To address this issue, various clustering routing 

protocols have been proposed to reduce energy consumption and 

enhance the network’s overall lifetime. Salem et al. [22] Presented 

a practical implementation of an unequal clustering-based fuzzy 

logic algorithm using the Pan Stamp NRG 2.0 sensor node. The 

main objective is to analyze the actual performance of the network 

under real-world conditions. The algorithm is designed to 

optimize the energy consumption of nodes, increase their lifetime, 

and efficiently manage the packets transmitted within the 

network. 

Radha et al. [23] addresses several major challenges in 

wireless sensor networks (WSN), namely false data detection, 

intrusion detection, and coverage rate. To overcome these 

challenges, the research suggests the use of scheduling in media 

access control (MAC) with gateway and relay nodes to improve 

the network’s performance. The Firefly algorithm is presented in 

this research as a dynamic scheduling technique that results in 

better throughput and latency in WSNs. Furthermore, pipelined 

scheduling for linear sensor networks is proposed, offering 

improved efficiency in data transmission and processing. The 

research also highlights the importance of heuristic configuration, 

which addresses the issue of overhearing in WSNs. Moreover, 

node power-based MAC is introduced as a solution to control the 

power consumption of individual nodes, thereby optimizing the 

overall energy usage in the network. 

Sheikh et al. [24] addresses the issue of path loss in wireless 

sensor networks and its impact on the signal strength from the 

transmitting node to the receiving node. Path loss, a critical factor 

in WSN, can be evaluated using stochastic, deterministic, or 

empirical methods. However, optimizing transmission power, 

reliability, and data rate in the presence of path loss remains a 

challenging task for WSNs. This research highlights the 

significance of selecting an optimum modulation scheme that can 

minimize errors and enhance the reliability of the WSN and it also 

presents a new approach that relates the path loss of the WSN to 

M-ary modulation schemes. Specifically, a critical comparative 

analysis is conducted for M-ary Frequency-Shift Keying (FSK) 

and M-ary Phase-Shift Keying (PSK) modulation schemes in a 

given scenario. The performance of these two schemes is 

analyzed for both the free space earth model and the plane earth 

model. 

3. PROPOSED WORK 

3.1 NETWORK SETUP 

The network setup in this research consists of a multi-hop 

architecture comprised of a base station (BS) and the sink node 

(SN). The network is deployed in a two-dimensional Cartesian 

framework to facilitate a random circulation of sensor nodes. 

Each node is equipped with a power source that does not support 

rechargeable batteries. Once the nodes are placed, their positions 

remain fixed throughout the network operation. There are no 

variations in communication or processing capabilities among the 
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central sensor nodes with the starting energies of the nodes being 

equal. 

3.2 ENERGY MODEL 

To analyze the power utilization in the sensor network, energy 

model stands established by considering the communication of 

data packets. The power consumption for sending a packet is in 

need of the distance among the sender node and the receiver node 

and is formulated based on a free space prototype and a multipath 

diminishing model. 

In free space model, energy distributed for the transmission of 

a data packet containing ‘n’ bits is specified by Eq.(1) 

 Ec = n*(Eec + Erfs.D2)  (1) 

where Ec represents total energy consumption, Eec is the SN 

simulation power, Erfs denotes the power needed to send one bit 

into the free space, and the D represents the distance among the 

sender and receivers. The term Erfs.D2 indicates the energy loss 

comparative to the quadrangular of the distance. 

In multipath diminishing prototype, the power spent by 

communicating a data packet is modified to account for the effects 

of multi-path fading. The energy loss is now represented by DL 

and the equation for energy consumption becomes: 

 Ec = n*(Eec + Emp + Dh)  (2) 

where Emp represents the power required to communicate one bit 

over the multi-path fading channel, and Dh represents the multi-

path fading distance.  

The initial threshold value D0 is calculated based on the ratio 

of Erfs and Emp as shown below: 

 D0 = √Erfs / Emp  (3) 

This threshold value helps determine the transmission success 

or failure between the sender and the receiver. The power spent 

for getting a data packet containing ‘n’ bits is specified by the 

equation: 

 Erec = n*Eac  (4) 

This equation indicates that the energy utilization for reception 

is straightly proportionate to the bit size of the data packet. 

Furthermore, the data aggregation energy intake for the cluster 

heads is computed by the following equation: 

 Eag = Eeag * n * m  (5)  

where Eeag represents the amount of aggregated energy spent for 

one bit, and m represents the number of messages. 

3.3 IMPLEMENTATION OF THE DVFS 

ALGORITHM 

The Dynamic Voltage and Frequency Scaling algorithm is 

implemented to optimize power consumption by dynamically 

adjusting the voltage and frequency levels of the microcontroller 

in the WSN. The algorithm aims to find the optimal operating 

point that minimizes power consumption while meeting the 

desired performance metrics. The Fig.2 below shows the 

architecture of the proposed work which combines the HFGSO, 

DVFS and duty cycling algorithm. 

 

Fig.2. Proposed Architecture in WSN 

3.3.1 Power Consumption Components: 

The power utilization of the microprocessor in a WSN can be 

separated into three main components. The Static Power (Pstatic) 

component represents the power dissipated when the 

microprocessor is in an inactive or dormant state. It is mainly 

caused by reverse-biased diodes and outflow currents. The low-

threshold outflow current and the gate outflow current are the 

primary factors contributing to static power consumption. The 

Dynamic Power (P dynamic) component is associated with the 

charging and discharging of capacitors during the execution of 

instructions. It is determined by the switching activity, supply 

voltage, switched capacitance, and clock frequency. Dynamic 

power utilization can be condensed by decreasing the clock 

frequency. Short Circuit Power (P short circuit) component 

caused by the current flow when substituting from the source 

voltage to the ground. It is comparable to the switching activity 

and source voltage. 

The total power consumption (P total) of the microprocessor 

can be demonstrated as the sum of these power components: 

 Ptotal=Pstatic+Pdynamic+Pshortcircuit (6) 

a) Static Power (Pstatic): The static power consumption is 

primarily influenced by leakage current. It can be represented as: 

 Pstatic = VDD*Ileak  (7)  

where VDD is the source voltage and Ileak is the total leakage 

current. 

b) Dynamic Power (Pdynamic): The dynamic power consumption 

can be computed using the following equation: 

 Pdynamic = a* cv2 
* f  (8)  

where a is the switching factor representing the probability of 

substituting on any specific clock period, C is mentioned as the 

switched capacitance, V is the source voltage, and f is the 

frequency. 

c) Short Circuit Power (Pshort): The short circuit power is related 

to switching activity and supply voltage. It can be expressed as: 

 Pshortcircuit =TSC*VDD*IPeak  (9) 

where Tsc is the increasing time of input signal and Ipeak is highest 

current. 
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3.3.2 Voltage and Frequency Scaling: 

Dynamic Voltage and Frequency Scaling procedure adjusts 

both the voltage (V) and frequency (f) of the microcontroller. By 

reducing the source voltage, power consumption of the 

microcontroller can be significantly reduced. However, it is 

essential to ensure that the voltage remains above the minimum 

operating voltage to maintain reliable operation. The voltage 

scaling can be formulated as: 

 Vnew=Vmin+ΔV*N  (10) 

where Vmin is the lowest operating voltage, ΔV is voltage step size, 

and N is the scaling factor. 

The frequency scaling reduces the clock frequency of the 

microcontroller to decrease power consumption. The frequency 

can be modified based on the desired performance requirements 

and energy targets. The clock frequency scaling can be given as: 

 fnew= fmax- Δf * N  (11) 

where fmax is the extreme clock frequency, Δf is frequency step 

size, and N is the scaling factor. 

3.4 DVFS TECHNIQUE 

The DVFS technique adjusts both the frequency and voltage 

of microprocessors to reduce power utilization. By operating 

microprocessors at a lower voltage and frequency while meeting 

the task deadline, significant power savings can be achieved. The 

objective of the DVFS algorithm in WSNs is to minimize power 

consumption while maintaining the required performance level 

and meeting the QoS (Quality of Service) requirements. The 

algorithm dynamically adjusts the frequency and voltage based on 

the workload and performance demands. The DVFS technique is 

applied using a power management module (PMM) that controls 

the essential voltage and frequency. PMM groups the voltage for 

the supply voltage supervisor (SVS) and the supply voltage 

monitor (SVM) based on the anticipated frequency of the 

microcontroller. The core voltage is adjusted to minimize power 

losses while ensuring stable operation. The DVFS algorithm 

continuously monitors the workload and performance 

requirements. Based on the workload, the PMM dynamically 

regulates the core voltage and frequency to a minimum level 

required to meet performance targets. This ensures optimal power 

consumption without compromising performance. 

DVFS Algorithm: 

Initialize the voltage V and frequency F. 

While workload W is not completed: 

a. Monitor the current workload metric W. 

b. Analyze the workload and determine the required power 

consumption P(W). 

c. If P(W) > P_target, increase the voltage and frequency levels. 

d. If P(W) < P_target, decrease the voltage and frequency levels. 

e. Check the SVM module to ensure the current voltage V_current 

is within the safe operating limits (V_min ≤ V_current ≤ V_max). 

f. Adjust the voltage and frequency settings in the PMM module. 

g. Measure the actual power utilization P_current. 

h. Validate the performance metrics and adjust the voltage and 

frequency settings if necessary. 

Terminate the DVFS algorithm when the workload is completed. 

where, Workload: W, Power consumption function: P(W), 

Voltage: V, Frequency: F, Minimum voltage threshold: V_min, 

Maximum voltage threshold: V_max, Current-voltage level: 

V_current, Target power consumption: P_target and Current 

power consumption: P_current. 

3.5 DUTY CYCLING ALGORITHM 

The duty cycling algorithm is implemented to activate and 

deactivate the sensor nodes periodically, allowing them to enter 

sleep mode and conserve energy. The duty cycle determines the 

nodes’ active time to sleep time ratio.  

Let Ttotal  remain the total period of time, and Tactive be the 

active period of time. The duty cycle (DC) can be calculated as: 

 DC=( Ttotal / Tactive)*100 (12) 

where DC is expressed as a percentage. 

The energy savings achieved through duty cycling depend on 

the duty cycle and power utilization in both active and sleep 

modes. By reducing active time and increasing sleep time, 

significant energy savings can be achieved. The duty-cycling 

algorithm is given as 

Duty Cycling Algorithm 

1. Initialization:  

 - Set duty cycle parameters: Tac, Ts  

 - Define target performance metrics and energy constraints 

 - Initialize network topology, sensor nodes, and data collection  

2. Workload Monitoring: 

 - While (not termination condition): 

 - Monitor workload and data traffic 

 - Measure relevant metrics (e.g., R_data, λ_event) 

 - Update workload information 

3. Energy Consumption Analysis: 

 - Analyze energy consumption patterns: 

 - Calculate energy consumption in active and sleep periods 

 - Assess energy consumption trade off based on duty cycle 

configuration 

4. Duty Cycling Mechanism: 

 - While (not termination condition): 

 - Activate sensor nodes for Tac duration 

 - Perform data sensing, processing, transmission 

 - Put sensor nodes into sleep mode for Ts duration 

5. Dynamic Duty Cycle Adjustment: 

 - Calculate optimal duty cycle parameters: 

 - Calculate optimal T_active_opt based on energy consumption 

and R_data 

 - Calculate optimal T_sleep_opt based on energy consumption 

and λ_event - Adjust duty cycle parameters (Tac, Ts ) based on 

optimal values 

6. Performance Evaluation and Adaptation: 

 - While (not termination condition): 

 - Evaluate network performance metrics against desired targets 
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 - Measure actual energy consumption and compare with expected 

values 

 - If necessary, adapt duty cycle parameters to maintain desired 

performance and energy constraints 

7. Termination: 

 - Terminate algorithm when desired network performance 

metrics are achieved, or termination condition is met. 

- Generate a summary report of the duty cycling process, 

including energy consumption, data transmission rates, and other 

relevant metrics 

In this initialization step, we set the initial values for duty 

cycle parameters, such as active time (Tac) and the sleep time (Ts) 

durations. These parameters determine when the sensor nodes 

should be active and when they should be in sleep mode to 

conserve energy. We also define the target network performance 

metrics and energy constraints to guide the duty cycling 

optimization process. Additionally, we initialize the network 

topology, sensor nodes, and data collection mechanism. 

The workload monitoring involves continuously observing the 

workload and data traffic in the network. We measure relevant 

metrics like data transmission rate (Rdata) or event occurrence rate 

(λevent) to gain insights into the network’s current workload. This 

information is periodically updated to reflect the changing 

workload conditions. 

In the energy consumption analysis, we analyze the energy 

utilization forms in sensor network based on workload and data 

traffic information. We assess the energy consumed during the 

active and sleep periods to understand the overall energy tradeoff. 

This analysis allows us to quantify the relationship between 

energy utilization and the duty cycle configuration. 

The duty cycling mechanism is responsible for controlling the 

active and sleep periods of the sensor nodes. During the active 

period, the sensor nodes are activated to perform tasks such as 

data sensing, processing, and transmission. Conversely, during 

the sleep period, the nodes are set into sleep mode towards 

conserving power and reducing unnecessary activity. 

Dynamic duty cycling involves dynamically adjusting the 

duty cycle of the sensor nodes created on the workload analysis 

and energy consumption trade off. We calculate the optimal 

values for an active time (T_active_opt) and the sleep time 

(T_sleep_opt) using mathematical models to optimize the duty 

cycle. 
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where,  

Eactive: Energy utilization per unit in active time. 

Esleep: Energy consumption per unit in sleep time. 

RData: Data transmission rate. 

Econstraint: Maximum allowable energy consumption constraint. 
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where, 

λevent: Event occurrence rate. 

By adjusting the duty cycle parameters (Tactive, Tsleep) based on 

the calculated optimal values, we aim to achieve a balance 

between energy efficiency and desired network performance. 

Performance Evaluation and Adaptation involves continuous 

evaluation of the network performance metrics against the desired 

targets. We measure the actual energy consumption and compare 

it with the expected values. If necessary, we adapt the duty cycle 

parameters to maintain the desired performance level and energy 

constraints. Fine-tuning of the duty cycle settings can be done 

based on real-time monitoring and analysis of the workload and 

network conditions. The duty cycling algorithm terminates when 

the desired network performance metrics are achieved or when a 

specific termination condition is met. 

3.6 HF-GSO ALGORITHM 

The Hybrid Firefly Glow-Worm Swarm Optimization 

(HFGSO) algorithm is designed to optimize the cluster head 

nomination process in the WSNs. It combines that principle of 

firefly algorithm and glow-worm swarm optimization to achieve 

efficient and effective cluster formation. The algorithm begins 

with an initialization step where parameters such as the number 

of fireflies, maximum iterations, and convergence threshold are 

set. The firefly inhabitants are randomly placed within the 

network, and their initial fitness values are calculated based on 

energy consumption, network connectivity, and other desired 

metrics. In the context of the HFGSO algorithm, a "firefly" 

represents an individual agent or entity within the population. 

Each firefly corresponds to a sensor node in the WSN is 

considered a potential candidate for being selected as a cluster 

head. The fireflies are used to simulate the movement and 

interactions of the nodes in optimization process. 

 The main loop of the procedure begins by iterating through 

each firefly in the population. The attractiveness of each firefly is 

calculated based on its fitness value and distance from other 

fireflies. Using this attractiveness information, the firefly’s 

position is updated by moving towards more attractive fireflies 

while considering the distance between them. The fitness of the 

new position is evaluated, and if it improves the fitness, the 

firefly’s position is updated accordingly. The algorithm then 

incorporates the Glow-Worm Swarm Optimization (GSO) 

mechanism to further enhance exploration. Each firefly serves as 

a source of light, attracting a population of glow-worms. The light 

intensity of glow-worms is being updated upon their fitness 

values, taking into account factors such as energy consumption 

and communication efficiency. The location of the glow-worms 

is being adjusted according to their light intensities and the 

attractive distances, favoring positions with higher light intensity. 

The fitness of the new positions is evaluated, and if it improves 

the fitness, the firefly’s position is updated based on the position 

of the most attractive glow-worm. 

The main loop continues till the extreme number of repetitions 

is grasped or conjunction is achieved. Convergence is determined 

by monitoring the change in the best fitness value. If the change 

falls below the predefined convergence threshold, the algorithm 

terminates. Once the iterations are completed, the cluster head 

selection phase begins. The final positions of the fireflies are 

analyzed, and the fireflies with the highest fitness values are 

selected as cluster heads. Other nodes are allocated to the 

appropriate cluster heads based on proximity and communication 
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range. The network topology and cluster structure are updated 

accordingly to establish the communication hierarchy. 

The HFGSO algorithm optimizes the cluster head selection 

process in WSNs by iteratively updating firefly positions based 

on attractiveness and incorporating the GSO mechanism for 

further exploration. The final selected cluster heads and network 

topology reflect an optimized solution based on energy 

consumption, network connectivity and other desired metrics. 

The GSO returns various advantages such as it is better in 

handling multiple optima associated with a provided multimodal 

function. But it limits from several drawbacks such as poor in 

positioning the global optimum solution, falling into local 

optimum, slow speed to convergence, etc. Hence, to overcome the 

drawbacks of GSO, firefly algorithm is integrated into it and the 

so formed algorithm is referred as novel HF-GSO. This novel HF-

GSO is better in handling local and global optimum solution and 

also speeds up the convergence process.  

This novel HF-GSO works on the basis of random concept. If 

random number rand ≤, then the update takes place using the 

movement towards attractive firefly equation of firefly algorithm 

as in Eq.(15). 

 yj (u+1) = yj(u) + βoe-γs2 (yj-yk) + αεj  (15)  

where, yj(u) shows a randomization parameter and βoe-γs2 (yj-yk)  

shows the result associated with the firefly s attraction; if βo, then 

it appears to be a straight forward random movement. Otherwise, 

if random number rand≥ , then the update takes place using the 

movement of glow-worm’s equation of GSO as in Eq.(16). 

 yj(u+1) = yj(u) + t * yk(u) - yj / yk(u)-yj  (16) 

Here, the step size is shown by  respectively. The pseudo code 

of proposed HF-GSO is shown in the below Algorithm.  

Algorithm: HF-GSO 

Start 

Population initialization (clusters) 

Parameter initialization such as firefly count, glow worm count, 

convergence threshold, and maximum iteration count. 

Fitness calculation (considering network connectivity, energy 

consumption, and other desired metrics) 

While   

 iter < iter_n 

 If rand≤yj (u+1) = yj(u) +βoe-γs2 (yj—yk) + αεj  

 Else 

 yj (u+1) = yj(u) +βoe-γs2 (yj—yk) + αεj  

 End if 

 iter=iter+1 

End while 

Return optimal solution (with consideration of network 

connectivity, energy consumption, and other desired metrics) 

Stop 

The combination of Dynamic Voltage and Frequency Scaling, 

duty cycling, and the Hybrid Firefly Glow-Worm Swarm 

Optimization (HFGSO) algorithm demonstrates significant 

effectiveness in refining the energy efficiency of WSN. Through 

leveraging DVFS, the system dynamically adjusts the frequency 

and voltage of sensor nodes, reducing power consumption during 

idle periods and optimizing energy usage based on task 

requirements. Duty cycling further enhances energy efficiency by 

periodically switching between active and sleep states, conserving 

energy during periods of inactivity. 

Integrating the HFGSO algorithm into the optimization 

process enables efficient cluster head selection and network 

topology formation. By leveraging the attractiveness and 

movement principles of fireflies and glow-worms, the algorithm 

optimizes the positioning of cluster heads, resulting in balanced 

network load distribution and reduced energy consumption. The 

combined approach of DVFS, duty cycling, and HFGSO 

algorithm empowers WSNs with fine-grained control over energy 

usage, adaptive power management, and optimized network 

organization. This comprehensive approach leads to substantial 

improvements in energy efficiency, prolonging the network 

lifespan and enhancing the overall performance of WSNs. 

4. EXPERIMENTAL ANALYSIS 

The performance valuation of the proposed method HF-GSO 

with DVFS and Duty Cycling is worked out in MATLAB, and it 

is associated with the various current algorithms that are at present 

available, HBACS-HBACM [25], GA-CSO [26], DCC-IACJS 

[27] and FGS [28]. Below table Table-1 shows the parameters that 

are considered for carrying out simulations in Wireless Sensor 

Networks (WSNs). 

Table.1.Parameters and their values for implementation 

Parameter Values 

Network Size 100 – 500 nodes 

Deployment Area 300m x 300m 

Communication Range 30-40 

Transmission Power The power level used by nodes 

to transmit data. 

Reception Power -90dBm at the BER of 10-6 

Network Packet size 10000 bits 

Sensing Range 30-40m 

Data Rate 100-500Kbps 

Traffic Pattern Periodic traffic pattern 

Initial Energy 2J 

Simulation Time The total duration of the 

simulation. 

Throughput 1Mbps 

To efficiently manage data transmission and energy 

consumption, WSNs often adopt clustering techniques. Cluster 

formation is a crucial process where nodes are organized into 

cluster groups, with one particular node selected as a cluster head 

(CH) which is the controller for combining and communicating 

data packets from its member nodes to the base station (BS).In 

this scenario, we will use the Hybrid Firefly Glow-Worm Swarm 

Optimization (HFGSO) algorithm to form clusters in a WSN with 

a range of 100 to 500 nodes. The HFGSO algorithm combines the 

strengths of the Firefly Algorithm (FA) and the Glow-Worm 

Swarm Optimization (GSO) algorithm to achieve efficient cluster 

formation. 
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To analyze the performance of WSNs with HFGSO, DVFS, 

and duty cycling algorithms, several key parameters should be 

considered. These parameters will help in evaluating the 

effectiveness and efficiency of the algorithms with regard to 

energy consumption, network lifetime, data delivery ratio and 

throughput.  

Energy Consumption measures total energy used up by the 

network during simulation or operation. Network lifetime 

evaluates the lifespan of the WSN with different algorithms. It 

determines how long the network can operate before a significant 

number of nodes deplete their energy reserves. A longer network 

lifetime indicates that the algorithms effectively manage the 

energy resources of the nodes, resulting in extended network 

operation. Data Delivery Ratio calculates the percentage of 

effectively delivered packets of data with the totally sent packets. 

This metric provides insights into the algorithms’ ability to 

transmit data effectively. Throughput assesses the total amount of 

data diffused effectively per unit of time. Higher throughput 

indicates efficient data transmission. 

The proposed algorithm demonstrates superior effectiveness 

in energy consumption compared to HBACS-HBACM, GA-CSO, 

DCC-IACJS, and FGF algorithms, as evidenced by the graph 

presented. The Figure-3 indicates that the energy utilization of the 

proposed algorithm is significantly lesser than the supplementary 

algorithms, leading to extended network lifetime and improved 

energy efficiency while gradually escalating the number of nodes. 

The proposed algorithm reports the usage of 0.51 joules of 

consumed energy for 500 sensor nodes. The other algorithms 

HBACS-HBACM, GA-CSO, DCC-IACJS, and FGF report the 

consumption of 0.59, 0.6, 0.7 and 0.89 joules of energy, 

respectively. Our proposed algorithm decreases energy 

consumption by applying DVFS and Duty cycling algorithms. 

 

Fig.3. Comparison of Energy consumption measured from the 

other algorithms with the proposed algorithm 

The suggested algorithm exhibits a significant advantage with 

regard to network lifetime compared to HBACS-HBACM, GA-

CSO, DCC-IACJS, and FGF algorithms, as evident from the 

results. The Figure-4 below illustrates that the suggested 

algorithm consistently sustains a lengthier wireless sensor 

network’s lifespan than the other algorithms, showcasing its 

superior energy efficiency and ability to prolong the WSN’s 

operational duration. Upon varying network sizes, ranging from 

100 to 500 nodes, the proposed algorithm maintains a consistent 

advantage, proving its scalability and robustness. 

 

Fig.4. Comparison of Network lifetime measured from the other 

algorithms with the proposed algorithm 

 The proposed algorithm demonstrates a compelling 

advantage in data delivery ratio compared to other algorithms, 

signifying its superior performance in ensuring successful data 

transmission within the Wireless Sensor Network. The Fig.5 

indicates that the proposed algorithm consistently achieves higher 

data delivery ratios when compared to competing approaches, 

making it a highly effective solution for consistent and effective 

data dissemination in WSNs. The suggested algorithm produces a 

data delivery ratio of 95.6% with 500 sensor nodes when 

compared with the HBACS-HBACM, GA-CSO, DCC-IACJS, 

and FGF algorithms. When working with 100 sensor nodes our 

proposed algorithm produces a data delivery ratio of 98.65%. 

 

Fig.5. Comparison of Data delivery ratio measured from the 

other algorithms with the proposed algorithm  

The proposed algorithm exhibits unparalleled throughput 

performance, surpassing all other algorithms in the comparison 

shown in Figure-6 below. The outcomes unequivocally 

demonstrate that proposed approach consistently achieves the 

highest throughput values, making it the optimal choice for 

maximizing data transfer rates and overall network efficiency in 

Wireless Sensor Networks. The suggested algorithm transmits the 

data at the rate of 0.98 Mbps in the case of 100 sensor nodes and 

gradually decreases up to 0.74 Mbps for 500 sensor nodes.  
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Fig.6. Comparison of Throughput measured from the other 

algorithms with the proposed algorithm  

The Table.2 displays the comparison of proposed algorithm 

that comprise of a combination of HFGSO, DVFS and duty 

cycling algorithm with the other algorithms such as HBACS-

HBACM, GA-CSO, DCC-IACJS and FGF. The performance of 

the suggested algorithm is measured by increasing the count of 

sensor nodes from 100 to 500. The table clearly states the 

outperformance of the proposed algorithm with the measured 

parameters.  

Table.2. Performance metrics comparison with other algorithms 

Algorithms 

Energy  

Consumption 

(mJ) 

Network  

Lifetime 

(Rounds) 

Data  

Delivery  

Ratio  

(%) 

Throughput 

(Mbps) 

HBACS-

HBACM 
0.59 3210 89.21 0.9751 

GA-CSO 0.60 3512 88.15 
0.8213 

 

DCC-IACJS 0.70 3601 87.20 0.8760 

FGF 0.89 3310 87.00 0.9102 

Proposed 0.51 2900 95.60 0.9852 

5. CONCLUSION 

In this research, we have presented a novel and innovative 

algorithm that combines the HFGSO algorithm with Dynamic 

Voltage and Frequency Scaling and Duty Cycling strategies to 

enhance energy efficiency, network lifetime, data delivery ratio, 

and throughput of the wireless sensor networks. Through 

comprehensive simulations and performance evaluations, we 

have demonstrated the significant benefits and superiority of the 

proposed algorithms compared to existing approaches. The 

proposed algorithm excels in energy efficiency, effectively 

optimizing the cluster head selection process through the HFGSO 

algorithm. By dynamically adjusting the voltage and frequency of 

sensor nodes using DVFS, the algorithm minimizes power 

consumption while maintaining data processing capabilities. 

Additionally, intelligent duty cycling strategies ensure energy 

conservation during idle periods, further extending the network 

lifespan. The scalability of the proposed system is noteworthy, as 

it maintains its advantage across different network sizes, 

accommodating both small and large-scale WSN deployments. 

This scalability, along with its robustness, makes the proposed 

algorithm suitable for diverse real-world applications. Our 

algorithm shows a substantial improvement in energy 

consumption by 20% and an improved data delivery ratio by 4% 

when compared with the existing approaches. The adoption of the 

proposed algorithm has the potential to revolutionize WSN 

performance, making it a key technology for the future of wireless 

sensor applications. 
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