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Abstract 

In this paper, we propose a method to solve the instantaneous 

frequency estimation problem at each point of the digital signal 

sequence obtained by digitizing the chirped signal by combining the 

projection method with the stochastic resonance method.  This problem 

is chosen as the estimation of the instantaneous frequency 

(instantaneous frequency at the midpoint of a frame) at the center of 

the frame, and then we can solve the above problem through the 

orthogonal projection of a space of which dimension is equal to the 

frame length into a two-dimensional subspace, combined with 

stochastic resonance theory. Assuming this digital signal frame as a 

vector lying in a space of which dimension is equal to the length of the 

frame, we estimate the instantaneous frequency of the frame center 

point by finding the basis vector of the corresponding frequency that 

constitutes the two-dimensional subspace in which the vector is placed. 

By moving the center point of the frame onto each point of the digital 

signal sequence corresponding to a period of frequency modulation, we 

can obtain the overall frequency curve accurately. At this time, the 

basis vectors that constitute the two-dimensional subspace are 

constructed by reflecting the frequency modulation characteristics. The 

estimation results obtained in the simulation are compared with the 

results using the short-time Fourier transform, Wigner-Bill 

distribution, which are often used in the presence of noise and Doppler 

effects such as Doppler radar and sonar, which shows that the proposed 

method has very high accuracy. 

 

Keywords: 

IF (Instantaneous Frequency), FM (Frequency Modulation), 

Stochastic Resonance, Signal Frame, Basis Vector 

1. INTRODUCTION 

Instantaneous frequency (IF) estimation in FM signals attracts 

more interests in various fields such as RADAR, SONAR signal 

processing applications, audio and music analysis, and 

monitoring [1-5].  

In general, the instantaneous frequency estimation problem is 

defined as a finding the derivative of phase-change function ϕ(t) 

in a signal f(t)=a(t)cos(ϕ(t)) with respect to the time, where the 

amplitude a(t) is assumed to change relatively slowly. 

In practical applications such as radar, sonar and 

communication systems, frequency modulation techniques have 

been commonly used, and accurate estimation of the 

instantaneous frequency of these FM signals is a critical due to 

the essential influences on the performance of the overall system. 

Therefore, many studies have been reported in the context of 

instantaneous frequency estimation, such as Hilbert transform, 

short-time Fourier transform, wavelet transform, and estimation 

using Wigner-Bile distribution. 

In [5-10], the problem of instantaneous frequency estimation 

and its application using Hilbert transform and its extension are 

addressed. Here, we describe the following complex 

trigonometric form by Hilbert transform of the signal to estimate 

the instantaneous frequency. 

 x(t)=Aejϕ(t) 

And from the derivative of phase function ϕ(t):   

 Ω(t)=ϕ'(t) (1) 

We can obtain the frequency at the instant. The IF estimation 

using the Hilbert transform is mathematically rigorous, however 

it has a disadvantage that it is strongly affected by the presence of 

noise in practice. 

Researchers proposed new algorithms [11-16] to calculate the 

instantaneous frequency of multi-component nonstationary 

signals using short-time Fourier transform (STFT), its variants 

and a combination of spectral spectra (FS=Adaptive Fractional 

Spectrogram). 

The short-time Fourier transform (STFT) is mathematically 

defined as 

 2STFT( , ) ( ) ( ) j ft f s h t e d


 


  −

−
= −  (2) 

where h(τ) is the window function used for the analysis. The 

resolution of the STFT depends on the shape and size of the 

window. The long window has a good frequency resolution, while 

the short one has a good time resolution. The S-transform, which 

is a alternation of STFT, may be also used, where the width of the 

Gaussian window is inversely proportional to the frequency. 

Using the above transformations, the optimized window length at 

each time step is calculated by the method proposed in [17]. Using 

the transformation based on Eq.(2) and optimizing the parameter 

definition, it was proved to be simple and effective for calculating 

the time-frequency distribution (TFD). 

The high-resolution time-frequency distribution is defined by 

combining the FS calculated using the length and noise variations, 

and the IF of each signal component is calculated by applying the 

peak search and component extraction procedure. In [16], it is 

found that the least squares deviation of the IF estimations 

computed with the adaptive spectrum (AFS Adaptive Fractional 

Spectrogram) is smaller than that obtained with other time-

frequency-distributions. 

Studies on IF estimation using wavelets have also been 

conducted, which use a combination of the advantages of 

complex-shifted Morlet wavelets with the those of subspace 

approaches [18, 19]. In [20], the complex-shift Morlet wavelet 

(CSMW) method is modulated in the time domain by a Gaussian 

time window, providing an optimal solution in both the time- and 

frequency-domains simultaneously, leading to a continuous 

approximation in the time and frequency domains simultaneously 

compared to the discrete wavelet transform (DWT ), and not 

related to the specific leakage effect, and has the advantage of 

allowing simultaneous computation of the instantaneous 

amplitude and frequency of the signal. 
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For IF estimation at low signal-to-noise ratios, Wigner-Ville 

(WVD) distribution is often used by detecting peaks in time 

frequency distribution [11, 21-25]. Higher order phase functions 

[26] and wavelet dictionary-based joint tracking methods [27] for 

IF estimation are also proposed, and a multi-component analysis 

method using Fourier Bessel series and time-varying 

autoregressive (FB-TVAR) models is also introduced in [28]. 

Although the proposed methods have achieved a little 

improvement in accuracy and computational cost, the accuracy of 

the estimated instantaneous frequency is still not satisfactory, due 

to the unavoidable effect of noise on the input signal. In addition, 

these methods are difficult to apply in the general methodology of 

Fourier series by constructing orthogonal basis vectors that satisfy 

a strict orthogonality with digital signal sequence frames in the 

form of harmonic signals such as sine and cosine function when 

processing digital signals in frame units. 

In this paper, we propose a novel method to estimate the 

frequency variation of a frame by applying orthogonal projection 

method to a two-dimensional subspace by means of basis vectors 

with frequency modulation characteristics, by removing the noise 

from the original signal of a noisy digital signal source using 

stochastic resonance method and then considering the frame as a 

vector in a finite dimensional space of dimensions equal to its 

length. This allows us to obtain the frequency variation of the 

frame reflecting the frequency modulation characteristics under 

constant noise removal and, based on it, to estimate the 

instantaneous frequency of the center point, thus increasing the 

accuracy of the instantaneous frequency estimation. We address 

the problem of frequency estimation at the center point of a frame 

R=(r1,r2,…,rN) with a digitized signal sequence. Here, the time 

interval corresponding to a frame is considered relatively small, 

and the amplitudes Si of the effective signal in the signal sequence 

within the frame are considered constant S. 

As for using Doppler effects, such as in Doppler RADAR and 

SONAR, the frequency shift coefficient ( k
 ) in the received 

signal, depending on the object's motion, has a value different 

from the 𝑘𝜔 that when it is radiated and varies with the moving 

speed.  

In Section 2, we consider the digital signal frame 

R=(r1,r2,…,rN) as an element of the N-dimensional space YN and 

discuss the theoretical considerations of the method of estimating 

the center frequency by orthogonal projection into a two-

dimensional subspace generated by two vectors with the 

characteristics of chirped. In Section 3, the proposed method is 

compared and tested by simulation, and in Section 4, the analysis 

of the proposed method is presented. 

The comparative verification is compared with the results of 

the application of the short-time Fourier transform method and the 

Wigner-Bile distribution, given that the proposed method is an 

improved form of the short-time Fourier transform. 

2. DIGITAL SIGNAL FRAME CENTER 

FREQUENCY ESTIMATION AND 

ORTHOGONAL PROJECTION METHOD 

In general, the linearly frequency modulated receiving signal 

may have a mathematical formulation as following. 

 
0

2

0 0

1
( ) ( )sin ( ),

2
r t S t t k t n t 

 
= + + + 

 
 (3) 

where ω0 is a constant frequency, 
0

k frequency modulation 

linearity coefficient, making the frequency changed linearly with 

respect to the time as ω0 +
0

k ∙ t, ϕ0 the initial phase, n(t) the 

additive WGN. Sampling the signal of Eq.(3) will lead to as 

following. 

 
0

2

0 0

1
( ) ( )sin ( ), 0,1,2,

2
i i i i ir t S t t k t n t i 

 
= + + + =  

 
 

Let the sampling period as Δt , Δ , 0,1,2,it t i i=  =  , then 

( )i iS S t= , 
0 Δt =  , 

0

2Δk k t =  , ni=n(ti), and the digital 

signal sequency for the above expression can be obtained as 

 
2

0

1
sin , 0,1,2,

2
i i ir S i k i n i 

 
= + + + =  

 
 (4) 

where ω denotes the initial angular frequency, ϕ0 denotes the 

initial phase at time t=0.  

As for the phase change of the Eq.(4) 

 
2

0 , 0,1,2,...
1

2
i k i i  = +   +  (5) 

The change relationship for the arbitrary frame i=j0+j, 

j=1,2,…,N corresponding to the above-mentioned digital signal 

frame R=(r1,r2,…,rN) can be as following. 

 

( )

2

0 0 0

2 2

0 0 0 0

1
( ) ( )

2

1 1
,

2 2

j j k j j

j k j k j j k j



  

 

  

 + +   + +

 
=  +   + + +   +  
 

 

As can be seen in the above expression, the phase change in 

the frame R=(r1,r2,…,rN) has the same formulation as the Eq.(5), 

where the initial phase is 
2

0 0 0 0

1

2
j k j 

 
 +   + 

 
, the initial 

angular frequency ( )0 0k j +  . Therefore, we let ( )0k j+  , 

2

0 0 0

1

2
j k j 

 
 +   + 

 
as the initial angular frequency ω, the 

initial phase ϕ0 respectively, and consider that the phase change 

will have the form as following: 

 
2

0 , 0,1,2,..
1

2
.,i Ni k i  +   + =  

From which we can estimate ω, and then calculate the angular 

frequency at the midpoint of the frame 
2

N
k +  . 

2.1 THEORETICAL INTERPRETATION 

In this section, we present the considerations concerning the 

central frequency estimation of the aforementioned digital signal 

sequence frame R=(r1,r2,…,rN). Eq.(4) may be rewritten as 

following. 
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2

0

2

0

1
sin cos( )

2

1
cos sin( ) , 1,2, ,

2

i

i

r S i k i

S i k i n i N





 

 

 
=   +   

 

 
+   +   + =  

 

 

 

2

0

2

0

1
sin cos( )

2

1
cos sin( ), 1,2, ,

2

iS S i k i

S i k i i N





 

 

 
=   +   

 

 
+   +   =  

 

 (6) 

In the above equations, ω is the frequency at the beginning of 

the frame, the first is the received signal, and the second is the 

effective signal except for noise. To estimate the digital signal 

frame center frequency (frequency at frame center), we consider 

one frame R=(r1,r2,…,rN) of digital signal as an element of an N-

dimensional space YN and look at the correlation between this 

frame and the two-dimensional subspace 2Y
 generated by two 

independent vectors ( )s ξ , ( )c ξ for a certain frequency . 

 

2 2

2

1 1
( ) (sin( 1 1 ),sin( 2 2 )

2 2

1
, ,sin( ))

2

s

T

k k

N k N

 



  



=  +   + 

  + 





ξ

 

 

2 2

2

1 1
( ) (cos( 1 1 ),cos( 2 2 )

2 2

1
, ,cos( ))

2

c

T

k k

N k N

 



  



=  +   + 

  + 





ξ

 (7) 

In other words, the effective signal of Eq.(6) will be expressed 

by linear combination of the following sequences: 

 

2 2

2

1 1
( ) (sin( 1 1 ),sin( 2 2 )

2 2

1
, ,sin( ))

2

s

T

k k

N k N

 



  



=  +   + 

  + 

ξ

 

 

2 2

2

1 1
( ) (cos( 1 1 ),cos( 2 2 )

2 2

1
, ,cos( ))

2

c

T

k k

N k N

 



  



=  +   + 

  + 

ξ

  (8) 

with respect to frequency ω, which means that the following 

one 

 

2

0

2

0

1
sin cos( )

2

1
cos sin( ), 1,2, ,

2

iS S i k i

S i k i i N





 

 

 
=   +   

 

 
+   +   =  

 

 

can be considered as the N-dimensional vector underlying on 

the 2D subspace 2Y
 with respect to the frequency ω. 

The N-dimensional space YN can be considered to be 

composed of two-dimensional subspace 2Y
 and orthogonal 

subspace 2NY
−

 , so that the digital signal frame R also consists of 

the projective component 𝑅𝜔̃ into the two-dimensional subspace 
2Y
 and the projective component 𝑅𝜔̃

┴  into the orthogonal subspace 

2NY
−

 (see Fig.1). 

 ( )R R R 

⊥=    (9) 

 

Fig.1. Vector 𝑅 in N-dimensional space 𝑌𝑁 

As can be seen in Fig.1, two orthogonal subspaces 2Y
 and 

2NY
−

  of  𝑌𝑁  will be changed according to the frequency , hence 

the two projections R and R

⊥

 of R will be too. Clearly, the norm 

NY
R of the vector R is not larger than the norm NY

R of the 

digital signal frame R. 

If the noise components ni, i=0,1,2,…,N are equal to zero, then 

the norm NY
R is smaller than the norm NY

R and when 𝜔̃ equal 

ω in Eq.(5), NY
R and NY

R  are equal, R is completely located 

in the subspace R , and R is represented by a linear combination 

of the independent vectors of Eq.(8). 

 ,N NY Y
R R       

 ,N NY Y
R R  = =   (10) 

 ,R R   = =   

Then the norm NY
R of the vector R in the subspace 2Y  

has the maximum, while the norm NY
R R−  of the vector 

R R−  the minimum. Therefore, the IF estimation problem can be 

replaced into the finding the angular frequency 𝜔 which makes 

the norm NY
R R−  the minimum. Alternatively, we can solve 

the problem to find out the frequency ω which make the norm 

NY
R the maximum. 

2.2 NOISE REMOVAL USING STOCHASTIC 

RESONANCE METHOD 

The general formulation of stochastic resonance method in the 

monostatic damping system can be written as following [29]: 

  
2

2
( ) ( ) ( )

d x dx
V x s t n t

dtdt
= − − + +  (11) 
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where x(t) is the output signal, γ is the attenuation coefficient, s(t) 

is the initial weak signal, and n(t) is the noise. Therefore, 

{s(t)+n(t)} is the noisy signal input a given system. 

The potential curve may be expressed by 

 

2 2

0 0

0 2 2

( ) ( )
( ) exp expd

x x x x
V x V V

L L

    + −
= − − + −    

     
  (12) 

So, the derivative of the potential curve may lead to 

 

2

0 0

2 2

2

0 0

2 2

2( ) ( )
exp

( )
( )

2( ) ( )
exp

d

x x x x

L LdV x
V x V

dx x x x x

L L

  + +
−  
  

= =  
 − − + − 

   

   (13) 

Considering the symmetry of SNR curvature surface, if we 

substitute x0=0 into Eq.(13), then we get 

 
2

2 2

4
( ) expdV x

V x x
L L

 
= − 

 
   (14) 

Assuming that L has the relatively large value in the above 

expression, then the exponential term will be approached to 0, 

thus Eq.(14) will be simplified into the following [30] 

 
2

4
( ) dV

V x x
L

  (15) 

Substituting Eq.(15) into Eq.(11), then we get 

  
2

2 2

4
( ) ( )dVd x dx

x s t n t
dtdt L

+ + = +  (16) 

Thus, the frequency of the output signal x(t) can be obtained 

from the natural frequency of the one freedom vibrating system 

as 

 
2

4
2 dV

f
L

 = =  (17) 

Therefore, 

 
2 2

4 dV
f

L
=  (18) 

2.3 INSTANTANEOUS FREQUENCY 

ESTIMATION USING ORTHOGONAL 

PROJECTION METHOD 

2D subspace spanning vector , cs  in Eq.(7-8) may be 

normalized as 

 ,
N N

e es c

s c

s cY Y

 
 

 
= =


  (19) 

Then, the projection R can be expressed by the linear 

combination of the above normalized vectors , cs   as following: 

 e e

s s c cR k k  =  +   (20) 

Now, we consider the linear combination coefficients ks, kc. 

With scalar production of both sides of Eq.(20) by the normalized 

vector e

s , then we get 

 ( , ) ( , ) ( , )e e e e e

s s s s c c sR k k     = +  (21) 

Considering ( , )e

sR ⊥

 = 0, then 

 ( , ) ( , ) ( , ) ( , ),e e e e

s s s sR R R R     ⊥= + =  

 
2( , ) 1N

e e e

s s s Y
  = =  (22) 

so, Eq.(21) will be rewritten as 

 ( , ) ( , )e e e

s c c s sk k R  + =  (23) 

In the above expression, ( , ) ( , )e e e e

c s scs c c   = = denotes the 

correlation of the normalized span vectors ,s c

e e  of the subspace 

2Y
, if two vectors are orthogonal, it will be zero. Eventually, 

Eq.(21) can be expressed as 

 ( , )e

s c sc sk k c R +  =  (24) 

Similarly, scalar production of both sides of Eq.(20) with the 

normalized vector e

c will lead to the following 

 ( , )e

s sc c ck c k R  + =  (25) 

Therefore, we can obtain the simultaneous equation with 

respect to the linear combination coefficients 𝑘𝑠, 𝑘𝑐 as following 

 
( , )

( , )

e

s c sc s

e

s sc c c

k k c R

k c k R





 + =


+ =
 (26) 

If we set value of the frequency , then we can calculate 

( )s  , ( )c  , hence we can get ( , )e

sR  , ( , )e

cR  , so we can 

easily solve the Eq.(20) to obtain the linear combination 

coefficients ks, kc. 

In the determinant of simultaneous in Eq,(26) 

 
1

1

sc

sc

c

c

 
 
 

  (27) 

If ,s c

e e  are orthogonal, then csc will be zero, so the above 

matrix becomes the identity matrix. 

From the above descriptions, we can summarize the IF 

estimation by means of the following formulation 

 ( : mi( ) n) N

e e

s s c c Y
J R k k  = −  +    (28) 

Similarly, we can get the initial angular frequency 𝜔 of the 

digital signal frame sequence R=(r1,r2,…,rN) by finding out the 

maximum of the norm NY
R . 

 x( ma) :N

e e

s s c c Y
J k k  =  +    (29) 

3. COMPUTATIONAL ALGORITHM AND 

EVALUATION OF COMPUTATIONAL 

LOAD 

Let us consider the solution algorithm of the minimization 

problem Eq.(28). For computational convenience, instead of 

minimization problem Eq.(28), we solve the following equivalent 

problem 

 
2

2 ( ) ( ) : min
N

e e

s s c c Y
J R k k  = −  +   (30) 

First, given the received signal frame R=(r1,r2,…,rN), we 

evaluate the computational algorithm and the computational load 

of   corresponding to the arbitrary choice of frequency value 𝜔̃, 
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and the above-mentioned minimization problem algorithm and 

the computational amount. 

3.1 COMPUTATION OF
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +   

ACCORDING TO  

In the phase change corresponding to the frame 

2

0

1
,

2
i k i  +  +  0,1,2, ,i N=   kω  and ϕ0 are the fixed ones, 

so we can preliminarily calculate the term 
2

0

1

2
k i  +  and utilize 

this one each computational step through storage. Therefore, we 

couldn’t this one in the evaluation of computational load. Let 

computational load as cn, multiplication as multiple, addition and 

subtraction as add, computation of triangular functions as sin and 

cos, computation of inversion of matrix Eq.(27) as inversematrix, 

then the computational steps and loads of 
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +  can be as following: 

- Calculation of ( )e e

s s  =  , ( )c c

e e  =  according to the 

frequency . 

 Cost: cn multiply add sin cosN N N N=  +  +  +   

- Calculation of ( , )e e

s c scc  = and 

1
1

1

sc

sc

c
A

c

−

 
=  
 

. 

 Cost: cn multiply ( 1) add inverse matrixN N=  + −  +   

- Calculation of vector 
( , )

( , )

e

s

e

cR
R

R






 
=  
 

. 

Cost: cn 2 ( multiply ( 1) add)N N=   + −   

- Calculation of 
s

c

k
A R

k


 
=  

 
. 

cn 4 multiply 2 add=  +   

- Calculation of
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +  . 

 cn 2 multiply 2 add squareN N N=   +   +   

Therefore, the total computational load for calculating
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +   is given by: 

sumcn (6 4) multiply 5 add sin

cos inverse matrix square

N N N

N N

=  +  +   + 

+  + + 
 

3.2 SOLUTION OF 
2

2 ( ) ( ) : min
N

e e

s s c c Y
J R k k  = −  +   

The change curve of 
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +   

according to frequency   is as following. 

 

Fig.2. Change of
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +  according to  

We use the following computational algorithm to reduce the 

computational cost of the solution of the minimization problem 

Eq.(22) by using the above variation in the frequency variation 

range 2∙B (including the frequency modulation band B). 

Uniformly divide the frequency change range (2 ∙ 𝐵) into 𝑀 

subsections, and calculate
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +   

k=1,2,…,M at each , 1,2, ,k k M =  , and then find out the 

maximum point
0k . The frequency resolution of this time is 

1

2 B

M



= . 

And then, divide the neighboring section about maximum 

point 
0 01 1( , )k k − +

  into M points 
i , i=1,2,…,M uniformly and 

calculate 
2

2 ( ) ( )
N

e e

s s c c Y
J R k k  = −  +  , k=1,2,…,M, and find 

out the maximum point 
0i

 . The frequency resolution for that 

time is 1

2 2

2 4 B

M M




 
= = . 

Repeating this procedure K times, then the frequency 

resolution will be
2K

K K

B

M



= , and we will get the optimal 

solution of the minimization problem Eq.(30) with this accuracy. 

And the total computational amount will be given by 

(6 4) multiply 5 add sin
sumcn

cos inverse matrix square

N N N
K M

N N

 +  +   +  
=   

+  + +  
 

Estimating the frequency ω like this, and then based on this, 

we can obtain the angular frequency of the frame midpoint 

2

k N


+ . The above method is almost the same as in Eq.(29), 

which is the problem of finding the maximum. 
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4. VERIFICATION BY SIMULATION 

In this section, we compare the proposed method presented in 

Section 2 by applying a linear frequency modulated signal from 

25 MHz to 30 MHz in a period of 10 ms to a digital signal sampled 

at 150 MSPS for Doppler radar, as shown in Fig.3. The number 

of sample points corresponding to a 10 ms cycle is 150,000,000. 

 

Fig.3. Signal waveform and its frequency curve 

The Fig.3 shows the signal waveforms in the absence of noise 

near frequencies of 25 and 30 MHz, and the frequency curves and 

the noise-induced signal waveforms corresponding to 5 dB SNR. 

In Doppler radar, the following relationship is assumed for the 

Doppler frequency and the target velocity in terms of ω0, 
0

k in 

Eq.(3): 

 0

0( ) ( ), ( )
2

d e e

kv
f t f t f t f t

c




= = +  

 0 0

00( )
2 2

d d

k kv v
f t f t f t

c c



 

 
 = +  = +  (23) 

where c is the propagation speed of electromagnetic wave, v the 

moving speed of the object, f0 is the fundamental radiating 

frequency, 
0 0 00 ,d

v v
f f k k

c c



 = =  .   

And the frequency of the receiving signal is given by

( ) ( )
0 0 00( ) ( ) ( )r e d df t f t f t f f k k t

 = + = + + + . 

As can be seen from the equation, the time-dependent 

coefficient of variation with the moving velocity of the object v 

will be changed as 
0 0 0

k k k  = + . Therefore, ω and kω of the 

digital signal given as Eq.(4) and Eq.(5) will be changed 

according to the Doppler frequency (moving speed of the object). 

Given a various condition for kω, the change curve of 

( ) , ( )N NY Y
J R R J R  = − =    of Eq.(28), Eq.(29) according 

to 𝜔̃ is shown in Fig.4 for different frame lengths. 

 

Fig.4. Change curve of  ‖𝑅 − 𝑅𝜔̃‖𝑌𝑁  when frame length 𝑁 is 1 

000, 300, 100 

As shown in Fig.4, the minimum and maximum points of the 

two norms coincide exactly. In the simulation algorithm applying 

the proposed method, the Doppler effect is not available, i.e., in 

frequency linear modulation, with the frequency change 

characteristic changed with the Doppler frequency (moving speed 

of the object) change, that is, with the phase change of Eq.(5)-

Eq.(6) due to the change in the signal. The radiation frequency 

was assumed to be 9.15 GHz. Hence, we have estimated the error 

based on the frequency at the center of the frame. As can be seen 

in Fig.4, the larger the frame length, the sharper the change curve, 

and the higher the frequency selectivity. 

This property can also be used for estimating the IF for a 

multi-components curve. 

Simulation results under different SNR and frame length 

conditions are compared with the frequency estimation method 

using our proposed method (denoted Project Method (PM), short-

time Fourier transform (STFT) for frames and Wigner-Bill 

distribution (WVD) (Table.1). In the short-time Fourier transform 

(STFT), the window function is used to use a rectangular window 

function equal to the frame length. For the input digital signal 

frame, the instantaneous frequency estimation at the frame center 

point is first determined from the initial angular frequency 

candidate value and the corresponding search neighborhood from 

the chirp curve in Fig.3, depending on the position of the frame in 

the frequency modulation period 1. Then, the optimum point 

should lie within the search of the initial angular frequency 

candidate value. Then, we apply the computational algorithm of 

Section 3 for the desired frequency resolution. 

The results of the frame center frequency estimation 

simulations for different frame lengths are given in Table.1, with 

the 500,000 sampling points from the beginning of the frequency 

modulation cycle as the frame center position, and with the 

moving speed of (30) 28351643.5230952 Hz, the signal-to-noise 

ratio of 10 dB, 5 dB, and 2 dB. To estimate the frequency at the 

correct midpoint, the frame length is odd and given with the 

corresponding time length. 

We set B=5MHz, M=100, K=5 for applying the computational 

algorithm is Sec. 3. 
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Table 1. Result of estimation of frame central frequency 

No 
Frame length 

(ms) 

SNR 

(dB) 
Method 

Estimation of 

Central 

Frequency (Hz) 

Error 

(Hz) 

1 751 (0.005) 10 

PM 28354382.545 -2739.212 

STFT 28354388.478 -2738.478 

WVD 28348360.169 3289.830 

2 1501 (0.01) 10 

PM 28352603.860 -960.527 

STFT 28352626.043 -976.043 

WVD 28347917.855 3732.144 

3 7501 (0.05) 10 

PM 28351662.435 -19.102 

STFT 28351669.457 -19.457 

WVD 28351661.519 -11.519 

4 15001 (0.1) 10 

PM 28351641.114 2.219 

STFT 28331619.881 20030.118 

WVD 28360147.074 -8497.074 

5 75001 (0.5) 10 

PM 28351644.608 -1.27495 

STFT 28125883.061 225766.938 

WVD 28353898.020 -2248.020 

6 150001 (1) 10 PM 28351643.523 -0.189 

7 751 (0.005) 5 

PM 28355095.687 -3452.354 

STFT 28355068.946 -3418.946 

WVD 28348489.019 3160.980 

8 1501 (0.01) 5 

PM 28352002.331 -358.998 

STFT 28352019.174 -369.174 

WVD 28346517.828 5132.171 

9 7501 (0.05) 5 

PM 28351662.798 -19.465 

STFT 28351698.609 -48.609 

WVD 28351722.365 -72.365 

10 15001 (0.1) 5 

PM 28351606.354 36.978 

STFT 28331467.619 20182.380 

WVD 28360283.504 -8633.504 

11 75001 (0.5) 5 

PM 28351642.354 0.978 

STFT 28465295.886 -113645.886 

WVD 28434496.704 -82846.704 

12 150001 (1) 5 PM 28351643.122 0.211 

13 751 (0.005) 2 

PM 28360046.673 -8403.339 

STFT 28360046.864 -8396.864 

WVD 28347883.568 3766.431 

14 1501 (0.01) 2 

PM 28353116.505 -1473.171 

STFT 28353190.177 -1540.177 

WVD 28348017.832 3632.167 

15 7501 (0.05) 2 
PM 28351714.192 -70.859 

STFT 28351672.719 -22.719 

WVD 28351674.362 -24.362 

16 15001 (0.1) 2 

PM 28351602.630 40.702 

STFT 28331864.060 19785.939 

WVD 28352716.172 -1066.172 

17 75001 (0.5) 2 

PM 28351644.245 -0.912 

STFT 28125018.437 226631.562 

WVD 28399270.252 -47620.252 

18 150001 (1) 2 PM 28351646.177 -2.844 

The simulation results showed that frequency estimation with 

similar accuracy to Table.1 can be achieved for each point of the 

chirp 1 cycle signal sequence and for any Doppler frequency 

condition. Based on the above results, the frequency curve can be 

obtained by finding the center frequency of the digital signal 

frames centered at each point of the 1-cycle digital signal 

sequence. 

5. CONCLUSION 

In this paper, we propose a method to remove noise using 

stochastic resonance method and estimate the instantaneous 

frequency at each sampling point by processing the chirped signal 

in frame units using projection method and compare its 

performance by simulation. For the sake of our propose, the short-

time Fourier transform of frame length is improved to suit the 

frequency modulation characteristics. 

We have considered a digital signal frame as a vector of space 

of dimensions equal to its length and projected it into a two-

dimensional subspace based on the digital signal sequence frame 

vectors of the harmonic signal type, whose orthogonality is not 

satisfied. In other words, estimating the instantaneous frequency 

of a digital signal frame can be viewed as finding the linear 

combination of the signal sequence of the corresponding 

frequency sin and cos type, and all elements of the linear subspace 

are represented by linear combinations of basis vectors, so the 

instantaneous frequency estimation problem is solved by finding 

orthogonal projections into a two-dimensional subspace. 

Simulation results show that the accuracy of frequency 

estimation at the center point can be greatly improved by treating 

the signal with stochastic resonance method and setting the frame 

length to a certain size even under different Doppler shift 

frequency conditions. This method can be applied to 

instantaneous frequency estimation problems for FM signals 

other than chirp by constructing a basis vector that reflects the 

frequency modulation pattern. It is also considered applicable to 

instantaneous frequency estimation of multi-component signals. 
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