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Abstract

In this paper, we propose a method to solve the instantaneous
frequency estimation problem at each point of the digital signal
sequence obtained by digitizing the chirped signal by combining the
projection method with the stochastic resonance method. This problem
is chosen as the estimation of the instantaneous frequency
(instantaneous frequency at the midpoint of a frame) at the center of
the frame, and then we can solve the above problem through the
orthogonal projection of a space of which dimension is equal to the
frame length into a two-dimensional subspace, combined with
stochastic resonance theory. Assuming this digital signal frame as a
vector lying in a space of which dimension is equal to the length of the
frame, we estimate the instantaneous frequency of the frame center
point by finding the basis vector of the corresponding frequency that
constitutes the two-dimensional subspace in which the vector is placed.
By moving the center point of the frame onto each point of the digital
signal sequence corresponding to a period of frequency modulation, we
can obtain the overall frequency curve accurately. At this time, the
basis vectors that constitute the two-dimensional subspace are
constructed by reflecting the frequency modulation characteristics. The
estimation results obtained in the simulation are compared with the
results using the short-time Fourier transform, Wigner-Bill
distribution, which are often used in the presence of noise and Doppler
effects such as Doppler radar and sonar, which shows that the proposed
method has very high accuracy.
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1. INTRODUCTION

Instantaneous frequency (IF) estimation in FM signals attracts
more interests in various fields such as RADAR, SONAR signal
processing applications, audio and music analysis, and
monitoring [1-5].

In general, the instantaneous frequency estimation problem is
defined as a finding the derivative of phase-change function ¢(¢)
in a signal f{f)=a(f)cos(4(f)) with respect to the time, where the
amplitude a(?) is assumed to change relatively slowly.

In practical applications such as radar, sonar and
communication systems, frequency modulation techniques have
been commonly used, and accurate estimation of the
instantaneous frequency of these FM signals is a critical due to
the essential influences on the performance of the overall system.
Therefore, many studies have been reported in the context of
instantaneous frequency estimation, such as Hilbert transform,
short-time Fourier transform, wavelet transform, and estimation
using Wigner-Bile distribution.

In [5-10], the problem of instantaneous frequency estimation
and its application using Hilbert transform and its extension are
addressed. Here, we describe the following complex
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trigonometric form by Hilbert transform of the signal to estimate
the instantaneous frequency.

x(£)=Ae#?
And from the derivative of phase function ¢(¢):

Q(0=¢'(t) (D

We can obtain the frequency at the instant. The IF estimation

using the Hilbert transform is mathematically rigorous, however

it has a disadvantage that it is strongly affected by the presence of
noise in practice.

Researchers proposed new algorithms [11-16] to calculate the
instantaneous frequency of multi-component nonstationary
signals using short-time Fourier transform (STFT), its variants
and a combination of spectral spectra (FS=Adaptive Fractional
Spectrogram).

The short-time Fourier transform (STFT) is mathematically
defined as

STFT(t, f) = j Cs@h(z-tye " de 2)
where A(7) is the window function used for the analysis. The
resolution of the STFT depends on the shape and size of the
window. The long window has a good frequency resolution, while
the short one has a good time resolution. The S-transform, which
is a alternation of STFT, may be also used, where the width of the
Gaussian window is inversely proportional to the frequency.
Using the above transformations, the optimized window length at
each time step is calculated by the method proposed in [17]. Using
the transformation based on Eq.(2) and optimizing the parameter
definition, it was proved to be simple and effective for calculating
the time-frequency distribution (TFD).

The high-resolution time-frequency distribution is defined by
combining the FS calculated using the length and noise variations,
and the IF of each signal component is calculated by applying the
peak search and component extraction procedure. In [16], it is
found that the least squares deviation of the IF estimations
computed with the adaptive spectrum (AFS Adaptive Fractional
Spectrogram) is smaller than that obtained with other time-
frequency-distributions.

Studies on IF estimation using wavelets have also been
conducted, which use a combination of the advantages of
complex-shifted Morlet wavelets with the those of subspace
approaches [18, 19]. In [20], the complex-shift Morlet wavelet
(CSMW) method is modulated in the time domain by a Gaussian
time window, providing an optimal solution in both the time- and
frequency-domains simultaneously, leading to a continuous
approximation in the time and frequency domains simultaneously
compared to the discrete wavelet transform (DWT ), and not
related to the specific leakage effect, and has the advantage of
allowing simultaneous computation of the instantaneous
amplitude and frequency of the signal.
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For IF estimation at low signal-to-noise ratios, Wigner-Ville
(WVD) distribution is often used by detecting peaks in time
frequency distribution [11, 21-25]. Higher order phase functions
[26] and wavelet dictionary-based joint tracking methods [27] for
IF estimation are also proposed, and a multi-component analysis
method wusing Fourier Bessel series and time-varying
autoregressive (FB-TVAR) models is also introduced in [28].

Although the proposed methods have achieved a little
improvement in accuracy and computational cost, the accuracy of
the estimated instantaneous frequency is still not satisfactory, due
to the unavoidable effect of noise on the input signal. In addition,
these methods are difficult to apply in the general methodology of
Fourier series by constructing orthogonal basis vectors that satisfy
a strict orthogonality with digital signal sequence frames in the
form of harmonic signals such as sine and cosine function when
processing digital signals in frame units.

In this paper, we propose a novel method to estimate the
frequency variation of a frame by applying orthogonal projection
method to a two-dimensional subspace by means of basis vectors
with frequency modulation characteristics, by removing the noise
from the original signal of a noisy digital signal source using
stochastic resonance method and then considering the frame as a
vector in a finite dimensional space of dimensions equal to its
length. This allows us to obtain the frequency variation of the
frame reflecting the frequency modulation characteristics under
constant noise removal and, based on it, to estimate the
instantaneous frequency of the center point, thus increasing the
accuracy of the instantaneous frequency estimation. We address
the problem of frequency estimation at the center point of a frame
R=(r1,r2,...,rn) with a digitized signal sequence. Here, the time
interval corresponding to a frame is considered relatively small,
and the amplitudes S; of the effective signal in the signal sequence
within the frame are considered constant S.

As for using Doppler effects, such as in Doppler RADAR and
SONAR, the frequency shift coefficient (/gw ) in the received

signal, depending on the object's motion, has a value different
from the k, that when it is radiated and varies with the moving
speed.

In Section 2, we consider the digital signal frame
R=(r1,r2,...,ry) as an element of the N-dimensional space ¥V and
discuss the theoretical considerations of the method of estimating
the center frequency by orthogonal projection into a two-
dimensional subspace generated by two vectors with the
characteristics of chirped. In Section 3, the proposed method is
compared and tested by simulation, and in Section 4, the analysis
of the proposed method is presented.

The comparative verification is compared with the results of
the application of the short-time Fourier transform method and the
Wigner-Bile distribution, given that the proposed method is an
improved form of the short-time Fourier transform.

2. DIGITAL SIGNAL FRAME CENTER
FREQUENCY ESTIMATION AND
ORTHOGONAL PROJECTION METHOD

In general, the linearly frequency modulated receiving signal
may have a mathematical formulation as following.
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r(t) = S(t)sin(a)ot+%k%t2 +¢OJ+n(t), 3)

where o is a constant frequency, k, frequency modulation

linearity coefficient, making the frequency changed linearly with
respect to the time as wo +k, - ¢, ¢o the initial phase, n(t) the

additive WGN. Sampling the signal of Eq.(3) will lead to as
following.

r(t) = S(t,.)sin(a)oti +%k%tl.2 +¢0]+n(ti), i=0,12,...

Let the sampling period as At , ¢, =At-i, i=0,1,2,..., then
S,=S8@), w=w,-At, k,=k, A", n=n(t), and the digital

signal sequency for the above expression can be obtained as

rj:S,sin[a)i+%kwi2+¢oJ+ni, i=0,1,2,... 4

where @ denotes the initial angular frequency, ¢o denotes the
initial phase at time 7=0.

As for the phase change of the Eq.(4)

1
C{)l+§kwlz+¢()a i:O,l,Z,...

)

The change relationship for the arbitrary frame i=joty,
j=1,2,...,N corresponding to the above-mentioned digital signal
frame R=(r1,rs,...,rn) can be as following.

| .
w’(Jo+J)+E'kw‘(Jo+J)2+¢o

1
'j+_kw'j2’

o1 . .
:Ka)']o+E'kw']o2+¢oj+(w+kw'fo) B

As can be seen in the above expression, the phase change in
the frame R=(r1,r»,...,rn) has the same formulation as the Eq.(5),

where the initial phase is (a)o “Jo +5-kw e +¢0j, the initial

angular frequency (@, +k, - j, ) . Therefore, we let (w+k, - j,).
1

(ar Jo +E-kw e +¢Ojas the initial angular frequency w, the

initial phase ¢ respectively, and consider that the phase change
will have the form as following:

1
a)~i+5-kw i+, 1=0,1,2,..,N
From which we can estimate w, and then calculate the angular

S N
frequency at the midpoint of the frame w+£k, BN

2.1 THEORETICAL INTERPRETATION

In this section, we present the considerations concerning the
central frequency estimation of the aforementioned digital signal
sequence frame R=(ri,r2,...,/n). Eq.(4) may be rewritten as
following.
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. 1
7 :S-sm£a)~i+5kw -izj-cos(%)

+S-cos(a)-i+%kw-i2J~sin(¢0)+ni, i=12,...,N

S, :S-sin(a)~i+%kw ~i2j~cos(¢0)
. (6)
+S-cos(a)-i+5kw-izj-sin(%), i=12,....,N

In the above equations, w is the frequency at the beginning of
the frame, the first is the received signal, and the second is the
effective signal except for noise. To estimate the digital signal
frame center frequency (frequency at frame center), we consider
one frame R=(r1,r,...,rn) of digital signal as an element of an N-
dimensional space YV and look at the correlation between this
frame and the two-dimensional subspace Y. generated by two

independent vectors & (@), &, (@) for a certain frequency & .
(@)= (sin(a~)-l+%km -12),sin(a~)-2+%kw -2%)
,...,sin(aB-N+%km -N*))"

E (@)= (cos(c?)'l+lkw -12),c0s(c?)-2+lkw -2%)
2 2
) (7)
,...,cos(a?)-N+Ekw -N*))"

In other words, the effective signal of Eq.(6) will be expressed
by linear combination of the following sequences:

¢ (w) :(sin(a)-1+%kw -12),sin((o.2+%kw -2%)
,...,sin(a)'N+%kw -N*))"

é(w)= (cos(a)-1+lkw -12),cos(a)-2+lkw -2%)
2 2
{ (®)
,...,cos(a)-N+5kw -N*))"

with respect to frequency w, which means that the following
one

. 1
S, :S-s1n£w-i+5kw -i2j~cos(¢0)
+S-cos(a)'i+%kw ~i2j-sin(¢0), i=12,...,N

can be considered as the N-dimensional vector underlying on
the 2D subspace Y with respect to the frequency o.

The N-dimensional space YV can be considered to be
composed of two-dimensional subspace Y. and orthogonal

subspace Y.'?, so that the digital signal frame R also consists of

the projective component Ry into the two-dimensional subspace
Y? and the projective component R into the orthogonal subspace

Y (see Fig.1).
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Fig.1. Vector R in N-dimensional space YV

As can be seen in Fig.1, two orthogonal subspaces Y. and
Y of YV will be changed according to the frequency @ , hence
the two projections R, and R, of R will be too. Clearly, the norm
||R@ ;v of the
digital signal frame R.

.~ of the vector R is not larger than the norm IR

If the noise components #;, i=0,1,2,...,N are equal to zero, then
the norm ||Rw o is smaller than the norm ||R||YA, and when @ equal

o in Eq.(5), |R(;, v and ||R

in the subspace R, and R is represented by a linear combination

v are equal, R is completely located

of the independent vectors of Eq.(8).
IR, 0, <R, woza

ORL,=0R,0,, w=&
R=R,

(10)
O=0

Then the norm R, [],, of the vector R, in the subspace Y,
has the maximum, while the norm OR—-R, O, of the vector

R — R, the minimum. Therefore, the IF estimation problem can be

replaced into the finding the angular frequency w which makes
the norm DR—R, O the minimum. Alternatively, we can solve

the problem to find out the frequency w which make the norm
OR, Q/,\, the maximum.

2.2 NOISE REMOVAL USING STOCHASTIC
RESONANCE METHOD

The general formulation of stochastic resonance method in the
monostatic damping system can be written as following [29]:

dx_ -V'(x)- 7/% +{s(t)+n(t)}

dr’ (1D
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where x(¢) is the output signal, y is the attenuation coefficient, s(¢)
is the initial weak signal, and n(f) is the noise. Therefore,
{s(H)+tn(?)} is the noisy signal input a given system.

The potential curve may be expressed by

Vx)=V, -V, [exp(—(xz%)zj + exp(—(xl#)zﬂ (12)

So, the derivative of the potential curve may lead to

2(x+x,) exp[— (x+x0)2J

dx 2(x—x,) [ (x—xO)Z]
+ ——exp| — >
L L

Considering the symmetry of SNR curvature surface, if we
substitute xo=0 into Eq.(13), then we get

(14)
Assuming that L has the relatively large value in the above

expression, then the exponential term will be approached to 0,
thus Eq.(14) will be simplified into the following [30]

, 4y,
V'(x)~ L—z"x (15)
Substituting Eq.(15) into Eq.(11), then we get
d’x dx 4V,
+y—+——x=1s(t)+n(t 16
PR {5 +n(t) (16)

Thus, the frequency of the output signal x(f) can be obtained
from the natural frequency of the one freedom vibrating system
as

w=2rf= % (17)
Therefore,
4V
f= = Zz (18)
2.3 INSTANTANEOUS FREQUENCY
ESTIMATION USING ORTHOGONAL
PROJECTION METHOD

2D subspace spanning vector & ,& in Eq.(7-8) may be
normalized as

— ;Y gc
D& O D& 0,

Then, the projection R, can be expressed by the linear

S

S =

19

combination of the above normalized vectors & ,& as following:

R(Z) = ks 5_: +kc . 5; (20)

Now, we consider the linear combination coefficients &, k.
With scalar production of both sides of Eq.(20) by the normalized
vector &7, then we get

(R» &) =k, (50,6 +k (67,60) @n
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Considering (R;,&¢) = 0, then
(R,&) =Ry, &) +(R;,8) = (R;.&)),

(&,E) D& T =1 (22)
s0, Eq.(21) will be rewritten as
ko +k (e 60) = (R.E0) (23)

In the above expression, (&7,&7)=(&7,87) =c,, denotes the
correlation of the normalized span vectors &, & of the subspace
Y2

@

if two vectors are orthogonal, it will be zero. Eventually,
Eq.(21) can be expressed as

ki k. e, =(R,&) 24

Similarly, scalar production of both sides of Eq.(20) with the
normalized vector £°will lead to the following

ke +k.=(R,&) (25)

Therefore, we can obtain the simultaneous equation with
respect to the linear combination coefficients kg, k. as following

{ks + kc Csc = (R’ gf)

kS CSL‘ + kC = (R’ 5{,‘6) (26)

If we set value of the frequency @, then we can calculate
£ (@), & (@), hence we can get(R,&E),(R,E), so we can

easily solve the Eq.(20) to obtain the linear combination
coefficients k;, ke.

In the determinant of simultaneous in Eq,(26)

1 ¢,
c, 1

If &°,&% are orthogonal, then ¢y will be zero, so the above

27

matrix becomes the identity matrix.
From the above descriptions, we can summarize the IF
estimation by means of the following formulation

J(@) R~ (k, - &5 +k. - ¢7) Ly min (28)

Similarly, we can get the initial angular frequency w of the
digital signal frame sequence R=(r1,r2,...,rn) by finding out the
maximum of the norm[J R, [, .

J(@) =k, - & +k, - & [, max (29)

. COMPUTATIONAL ALGORITHM AND
EVALUATION OF COMPUTATIONAL
LOAD

Let us consider the solution algorithm of the minimization
problem Eq.(28). For computational convenience, instead of
minimization problem Eq.(28), we solve the following equivalent
problem

T (@) =|R—(k, - & +h, &)

2 .
,v -min

(30)

First, given the received signal frame R=(rir,...,rn), We
evaluate the computational algorithm and the computational load
of corresponding to the arbitrary choice of frequency value @,
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and the above-mentioned minimization problem algorithm and
the computational amount.

3.1 COMPUTATION OF J*(&) = |R—(k, - & +Fk, - &) i
ACCORDING TO &
In the phase change corresponding to the frame

1
w-i+—k, i’ +¢,, i=0,1,2,....N k, and ¢ are the fixed ones,
2

Lo 1 . o
so we can preliminarily calculate the term 2 k,-i* + ¢, and utilize

this one each computational step through storage. Therefore, we
couldn’t this one in the evaluation of computational load. Let
computational load as ¢,, multiplication as multiple, addition and
subtraction as add, computation of triangular functions as sin and
cos, computation of inversion of matrix Eq.(27) as inversematrix,
then the computational steps and loads of

JA(@) =R~ (k, & +k. &), can be as following:

- Calculation of &' =& (@),<& =& (@) according to the
frequency @ .

Cost: cn = N -multiply + N -add + N - sin+ N - cos

1 .
- Calculation of (&7,&5) =¢, and 4= ( C;CJ .

Cost: cn = N -multiply + (N —1) - add + inverse matrix
(R, 5;’))

(R.&))

Cost: cn =2 (N -multiply + (N —1)-add)

- Calculation of vector R, = [

k
- Calculation of [ ! ] =4-R..
kC
cn =4-multiply +2-add

- Calculation of J*(@) = |R - (k, - & +k, - &)

2
Yy o

cn=2-N-multiply+2-N-add+ N -square
Therefore, the total computational load for calculating

JA@) =[R=(k, & +k, &), s given by:

sumen = (6- N +4)-multiply +5- N -add + N -sin
+ N - cos+inverse matrix + N - square

3.2 SOLUTION OF J*(&) = |R—(k,-& +k, - &)

2 .
. -min
»

The change curve of J*(®)= "R—(ks &tk &0)

2
¥V

according to frequency @ is as following.
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Fig.2. Change of J*(&) = ||R —(k, &+ kK, &) ; according to @

We use the following computational algorithm to reduce the
computational cost of the solution of the minimization problem
Eq.(22) by using the above variation in the frequency variation
range 2-B (including the frequency modulation band B).

Uniformly divide the frequency change range (2 - B) into M
calculate J*(&) = [R—(k, -& +k.- &),
k=1,2,...M at each @, k=1L12,...,M, and then find out the
maximum point@, . The frequency resolution of this time is
_2'B
ik

And then, divide the neighboring section about maximum
point (@, ,,@, ,) into M points @,, i=1,2,....M uniformly and

subsections,  and

61

caleulate J*(@) = |[R—(k, - & +k -, . k=1.2.....M, and find

out the maximum point 67)1.0 . The frequency resolution for that

L 2-6, 4-B
timeis §, =——=—.
M M
Repeating this procedure K times, then the frequency
K

resolution will bed, = , and we will get the optimal

MK
solution of the minimization problem Eq.(30) with this accuracy.
And the total computational amount will be given by

(6~N+4)~multiply+5'Noadd+N'sin]

sumen = K - M ) .
+N - cos+inverse matrix + NN - square

Estimating the frequency w like this, and then based on this,
we can obtain the angular frequency of the frame midpoint

a

w+ . The above method is almost the same as in Eq.(29),

which is the problem of finding the maximum.
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4. VERIFICATION BY SIMULATION

In this section, we compare the proposed method presented in
Section 2 by applying a linear frequency modulated signal from
25 MHz to 30 MHz in a period of 10 ms to a digital signal sampled
at 150 MSPS for Doppler radar, as shown in Fig.3. The number
of sample points corresponding to a 10 ms cycle is 150,000,000.

32

30 -
28
26
24 L ,‘

22+ |\

MHz

20 F°

Fig.3. Signal waveform and its frequency curve

The Fig.3 shows the signal waveforms in the absence of noise
near frequencies of 25 and 30 MHz, and the frequency curves and
the noise-induced signal waveforms corresponding to 5 dB SNR.

In Doppler radar, the following relationship is assumed for the
Doppler frequency and the target velocity in terms of wo, k, in

@
Eq.(3):
% k,
fi(O==f0), f@)=fi+>t
c 2r

k

v o V

== f =2 —t=
c 27 ¢

where ¢ is the propagation speed of electromagnetic wave, v the

moving speed of the object, fo is the fundamental radiating

k
fu 5t (23)

’

v v
=~ Sok ko, =

c

frequency, f

dy

And the frequency of the receiving signal is given by
L@ = L0+ £,0=(1+1, )+ (k, +K, )t -

As can be seen from the equation, the time-dependent
coefficient of variation with the moving velocity of the object v
will be changed as lg% =k, +/’c['”0 . Therefore, @ and £k, of the
digital signal given as Eq.(4) and Eq.(5) will be changed
according to the Doppler frequency (moving speed of the object).
Given a various condition for %, the change curve of
J(@)=IR-R, 1, ,J(®) =R, [}, of Eq.(28), Eq.(29) according

to @ is shown in Fig.4 for different frame lengths.
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e — w, TN
\ ||

/////

Fig.4. Change curve of |[R — Rz|l,~ when frame length N is 1
000, 300, 100

As shown in Fig.4, the minimum and maximum points of the
two norms coincide exactly. In the simulation algorithm applying
the proposed method, the Doppler effect is not available, i.e., in
frequency linear modulation, with the frequency change
characteristic changed with the Doppler frequency (moving speed
of the object) change, that is, with the phase change of Eq.(5)-
Eq.(6) due to the change in the signal. The radiation frequency
was assumed to be 9.15 GHz. Hence, we have estimated the error
based on the frequency at the center of the frame. As can be seen
in Fig.4, the larger the frame length, the sharper the change curve,
and the higher the frequency selectivity.

This property can also be used for estimating the IF for a
multi-components curve.

Simulation results under different SNR and frame length
conditions are compared with the frequency estimation method
using our proposed method (denoted Project Method (PM), short-
time Fourier transform (STFT) for frames and Wigner-Bill
distribution (WVD) (Table.1). In the short-time Fourier transform
(STFT), the window function is used to use a rectangular window
function equal to the frame length. For the input digital signal
frame, the instantaneous frequency estimation at the frame center
point is first determined from the initial angular frequency
candidate value and the corresponding search neighborhood from
the chirp curve in Fig.3, depending on the position of the frame in
the frequency modulation period 1. Then, the optimum point
should lie within the search of the initial angular frequency
candidate value. Then, we apply the computational algorithm of
Section 3 for the desired frequency resolution.

The results of the frame center frequency estimation
simulations for different frame lengths are given in Table.1, with
the 500,000 sampling points from the beginning of the frequency
modulation cycle as the frame center position, and with the
moving speed of (30) 28351643.5230952 Hz, the signal-to-noise
ratio of 10 dB, 5 dB, and 2 dB. To estimate the frequency at the
correct midpoint, the frame length is odd and given with the
corresponding time length.

We set B=SMHz, M=100, K=5 for applying the computational
algorithm is Sec. 3.
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Table 1. Result of estimation of frame central frequency

o Prame ength SRy o) Conaral | ErEr
Frequency (Hz)
PM | 28354382.545 | -2739.212
1| 751(0.005) | 10 | STFT | 28354388.478 | -2738.478
WVD | 28348360.169 | 3289.830
PM | 28352603.860 | -960.527
2| 1501 0.01) | 10 | STFT | 28352626.043 | -976.043
WVD | 28347917.855 | 3732.144
PM | 28351662.435 -19.102
3| 7501 (0.05) | 10 | STFT | 28351669.457 | -19.457
WVD | 28351661.519 -11.519
PM | 28351641.114 | 2219
4| 15001 (0.1) | 10 | STFT | 28331619.881 | 20030.118
WVD | 28360147.074 | -8497.074
PM | 28351644.608 | -1.27495
51 75001 (0.5) | 10 | STFT | 28125883.061 |225766.938
WVD | 28353898.020 | -2248.020
6 | 150001 (1) | 10 | PM | 28351643.523 -0.189
PM | 28355095.687 | -3452.354
7| 751 0.005) | 5 | STFT | 28355068.946 | -3418.946
WVD | 28348489.019 | 3160.980
PM | 28352002.331 | -358.998
8 | 1501 (0.01) | 5 | STFT | 28352019.174 | -369.174
WVD | 28346517.828 | 5132.171
PM | 28351662.798 -19.465
91 7501(0.05) | 5 | STFT | 28351698.609 -48.609
WVD | 28351722.365 -72.365
PM | 28351606.354 36.978
10| 15001 (0.1) | 5 | STFT | 28331467.619 | 20182.380
WVD | 28360283.504 | -8633.504
PM | 28351642.354 0.978
11| 75001 (0.5) | 5 | STFT | 28465295.886 |-113645.886
WVD | 28434496.704 | -82846.704
121 150001 (1) | 5 PM | 28351643.122 0.211
PM | 28360046.673 | -8403.339
13] 751 (0.005) | 2 | STFT | 28360046.864 | -8396.864
WVD | 28347883.568 | 3766.431
PM | 28353116.505 | -1473.171
14| 1501 (0.01) | 2 | STFT | 28353190.177 | -1540.177
WVD | 28348017.832 | 3632.167
PM | 28351714.192 -70.859
15| 7501 (0.05) | 2
STFT | 28351672.719 -22.719
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WVD | 28351674.362 -24.362
PM | 28351602.630 40.702
16| 15001 (0.1) | 2 | STFT | 28331864.060 | 19785.939
WVD | 28352716.172 | -1066.172
PM | 28351644.245 -0.912
17| 75001 (0.5) | 2 | STFT | 28125018.437 |226631.562
WVD | 28399270.252 | -47620.252
18| 150001 (1) | 2 PM | 28351646.177 -2.844

The simulation results showed that frequency estimation with
similar accuracy to Table.1 can be achieved for each point of the
chirp 1 cycle signal sequence and for any Doppler frequency
condition. Based on the above results, the frequency curve can be
obtained by finding the center frequency of the digital signal
frames centered at each point of the 1-cycle digital signal
sequence.

S. CONCLUSION

In this paper, we propose a method to remove noise using
stochastic resonance method and estimate the instantaneous
frequency at each sampling point by processing the chirped signal
in frame units using projection method and compare its
performance by simulation. For the sake of our propose, the short-
time Fourier transform of frame length is improved to suit the
frequency modulation characteristics.

We have considered a digital signal frame as a vector of space
of dimensions equal to its length and projected it into a two-
dimensional subspace based on the digital signal sequence frame
vectors of the harmonic signal type, whose orthogonality is not
satisfied. In other words, estimating the instantaneous frequency
of a digital signal frame can be viewed as finding the linear
combination of the signal sequence of the corresponding
frequency sin and cos type, and all elements of the linear subspace
are represented by linear combinations of basis vectors, so the
instantaneous frequency estimation problem is solved by finding
orthogonal projections into a two-dimensional subspace.

Simulation results show that the accuracy of frequency
estimation at the center point can be greatly improved by treating
the signal with stochastic resonance method and setting the frame
length to a certain size even under different Doppler shift
frequency conditions. This method can be applied to
instantaneous frequency estimation problems for FM signals
other than chirp by constructing a basis vector that reflects the
frequency modulation pattern. It is also considered applicable to
instantaneous frequency estimation of multi-component signals.
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