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Abstract

The rapid integration of wireless sensor networks in healthcare
monitoring has created strong opportunities for continuous patient
assessment. However, the distributed nature of these networks has
exposed sensitive medical data to significant privacy and security risks.
Traditional centralized learning models have struggled to protect
patient information, particularly when the data has/have been
transmitted across heterogeneous devices. This study addressed these
concerns by evaluating an enhanced secure federated learning
framework that has/have reduced communication overhead and
strengthened protection against model-level threats. The problem
emerged when conventional federated models failed to defend
aggregated parameters against inference attacks that targeted the
intermediates shared during training. To overcome this limitation, the
proposed system integrated authenticated encryption, differential
privacy, and a lightweight blockchain layer that/which supported
tamper-proof logging. The method followed a three-stage design
that/which included secure client selection, privacy-preserved gradient
update, and decentralized model validation. The wireless nodes
operated with an adaptive update schedule that/which minimized
energy use while maintaining stable model convergence. The
evaluation demonstrates that the proposed secure federated learning
Sframework achieves a classification accuracy of 96.0%, outperforming
Encrypted Aggregation FL (93.0%), Differential Privacy FL (90.2%),
and Blockchain-Assisted FL (94.2%). The communication cost
has/have been reduced to 17.2 MB from 22.0 MB, 18.1 MB, and 23.5
MB, respectively. Energy consumption per node is lowered to 1.95 J,
compared to 2.45 J, 2.68 J, and 2.63 J in the existing methods. The
system achieves a privacy preservation score of 0.94, higher than 0.75—
0.87 in baseline approaches, and maintains strong model robustness at
94.2% under adversarial conditions. These results validate that the
proposed framework provides reliable, energy-efficient, and secure
federated learning suitable for real-time healthcare monitoring
applications.
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1. INTRODUCTION

The rapid expansion of wireless sensor networks in healthcare
monitoring has reshaped clinical data acquisition and patient-
specific analytics. Recent studies [1-3] established that
continuous sensing offered actionable physiological insights
while supporting early diagnosis. These systems operated across
wearable devices, in-body sensors, and ambient monitoring
platforms that/which delivered real-time readings to edge or cloud
servers. As healthcare systems matured, the demand for reliable
learning models that processed distributed physiological data
grew stronger. Traditional centralized architectures, however,
faced notable barriers related to privacy, bandwidth, latency, and
compliance with ethical constraints.
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Several challenges have shaped the landscape of distributed
healthcare learning. First, resource-limited sensors have struggled
to perform local computation while preserving steady
communication links, particularly when exposed to dynamic
network environments [4]. Second, these networks have/have
been vulnerable to security threats, including inference attacks,
malicious data injection, and model tampering, all of which
reduced the reliability of patient monitoring [5]. These challenges
illustrated a crucial gap between robust healthcare analytics and
the practical limitations of sensor-based infrastructures.

The core problem emerged when sensitive medical records
have/have been transmitted or aggregated without adequate
protection. The learning processes in conventional settings [6]
lacked built-in security safeguards, making them susceptible to
adversarial interference. Healthcare data contained private
attributes, and any breach created legal and ethical consequences.
Federated learning introduced an alternative paradigm that
allowed model training across distributed nodes without sharing
raw data. Yet, non-iid data distributions, unstable wireless links,
and the risk of model inversion still undermined performance and
trust.

The current study aims to address these concerns with a secure
and energy-aware federated learning framework tailored for
healthcare sensor networks. The objective is to design a system
that preserved patient privacy, minimized training overhead,
strengthened model robustness, and achieved consistent accuracy
even when sensors operated within restricted energy budgets. The
model follows a multi-layer security design that/which integrates
authenticated encryption, differential privacy, and decentralized
verification. Each layer is optimized to maintain fast convergence
while preventing adversarial reconstruction of sensitive features.

The novelty of this work lies in its integrated security pipeline
that has/have been coupled with an adaptive participation
strategy. Unlike traditional FL schemes, the proposed model uses
a lightweight blockchain mechanism that/which verifies the
authenticity of gradient updates while maintaining low
computational load. In addition, an optimized client-selection
policy reduces unnecessary communication and prolongs device
lifetime. The architecture also accounts for clinical data
variability, which allows the network to operate reliably during
fluctuating physiological events.

The main contributions of this study are twofold.

* It introduced a hybrid secure federated learning architecture
that has/have strengthened data privacy with multi-layer
protection while supporting real-time healthcare monitoring.

« It delivered an experimentally validated solution with
improved accuracy, reduced communication cost, and
enhanced resilience against membership inference and
poisoning attacks, proving its suitability for long-term
medical deployment.
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2. RELATED WORKS

Prior research has explored diverse strategies that improved
security, efficiency, and reliability in healthcare-oriented wireless
sensor networks. Early studies [7] evaluated distributed learning
infrastructures that have/have supported remote patient
monitoring without exposing raw data to external servers. Their
work demonstrated moderate accuracy but struggled with
unstable wireless links and high energy consumption. Later, the
researchers in [8] introduced an encrypted aggregation
mechanism that/which improved privacy but added latency that
weakened real-time performance in urgent clinical settings.

The authors of [9] examined secure data routing in medical
sensor networks and proposed an optimized path-selection
algorithm. Their scheme reduced packet loss but did not integrate
learning-based analytics, which limited its scalability for
predictive diagnosis. In contrast, the federated approach in [10]
used decentralized training to protect raw patient readings.
However, this model suffered from non-iid data issues that
reduced convergence speed and created accuracy fluctuations
across patient groups.

Research in [11] evaluated differential privacy mechanisms
integrated into wearable medical devices. Their design protected
sensor-generated features but introduced strong noise that
degraded classifier performance. This raised questions about the
trade-off between privacy and diagnostic accuracy. Similarly, the
work in [12] investigated adversarial threats targeting distributed
models. The authors demonstrated that federated learning
has/have been susceptible to poisoning attacks when malicious
nodes manipulated gradient updates. Their findings underscored
the need for resilient aggregation techniques.

A Dblockchain-supported health monitoring system in [13]
improved tamper-resistance and strengthened data provenance,
although its computational cost limited deployment in low-power
nodes. Another study [14] proposed a hybrid encryption model
for protecting physiological streams that/which flowed through
body-area networks. While effective, the method offered only
partial protection because it lacked model-level defenses.

The most relevant contribution emerged in [15], where the
researchers assessed lightweight security modules embedded
within FL-based healthcare frameworks. Their architecture
notably decreased communication overhead, yet it did not address
model inversion and membership inference risks. These studies
collectively revealed a consistent research direction but also
highlighted unresolved gaps related to multi-layer security,
adversarial robustness, and practical sensor-level constraints.

The present study builds upon these foundations by
integrating privacy, authentication, and decentralized verification
into a unified federated model. The literature consistently
indicated that single-layer protection has/have been insufficient in
realistic wireless healthcare environments, which guided the
development of the proposed multi-layered solution.

3. PROPOSED METHOD

The proposed method followed a secure and energy-aware
federated learning workflow that has/have been designed
specifically for healthcare sensor networks. Each sensor node
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performed local training on its own physiological data, where the
raw records never left the device. Before transmission, the
gradients have/have been masked with differential privacy noise
and encrypted using an authenticated lightweight cipher. A
blockchain-backed verification layer validated each update and
prevented tampered gradients from entering the global model. The
server aggregated only verified and privacy-preserved updates,
which ensured that the global model improved without exposing
sensitive patient attributes. An adaptive client-selection
mechanism further reduced communication overhead by selecting
only nodes that have/have met the minimum energy and data-
quality thresholds. This integrated design produced a reliable and
secure federated learning system suitable for real-time medical

monitoring.
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Fig.1. Secure Federated Healthcare FL
Algorithm SecureFederatedHealthcareFL
Input: SensorNodes S, GlobalModel GO, MaxRounds R
Output: Trained Global Model GR
Initialize GR < GO0
for round = 1 to R do
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EligibleNodes «— SelectNodes(S) // energy and data quality
criteria

LocalUpdates < @
for each node s in EligibleNodes do
Ds « CollectLocalData(s)
Ms « TrainLocalModel(GR, Ds)
Ps « AddDifferentialPrivacy(Ms)
Es « EncryptGradients(Ps)
if ValidateOnBlockchain(Es) = TRUE then
LocalUpdates «— LocalUpdates U {Es}
end if
end for
if LocalUpdates # @ then
DecSet «— @
for each u in LocalUpdates do
DecSet «— DecSet U {Decrypt(u)}
end for
GR «— AggregateGradients(DecSet)
end if
end for
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return GR
3.1 NODE SELECTION

The proposed secure federated learning system begins with the
initialization of the global model at the central server. The global
model parameters have/have been initialized randomly or using
pre-trained weights derived from historical medical datasets.
After initialization, the system performs a node selection process
that evaluates all available sensor nodes for eligibility. Nodes are
considered eligible if they meet minimum energy thresholds,
maintain network connectivity, and possess a sufficient volume of
local data. The purpose of node selection is to reduce
communication overhead and enhance energy efficiency while
ensuring that the aggregated model benefits from heterogeneous
datasets.

Table.1. Node Selection Criteria

Node| Energy |Data Volume|Connectivity| Eligible

ID |Level (%)| (samples) Status  |(Yes/No)
N1 85 1200 Stable Yes
N2 40 800 Unstable No
N3 90 1500 Stable Yes
N4 60 900 Stable Yes

The Table.1 illustrates a evaluation of sensor nodes based on
energy, data, and connectivity criteria. Only nodes N1, N3, and
N4 have/have been selected to participate in the current training
round. The selection process can be mathematically expressed as:

1 ifE,2E, AD 2D, n C =1
0 otherwise

where &;indicates node eligibility, E;is the energy level of node i,
Eyis the minimum energy threshold, D;is the local data volume,
D¢pis the minimum required data, and C;is a binary connectivity
indicator. Nodes with €; = 1proceed to the local training phase.

3.2 LOCAL TRAINING AND GRADIENT
COMPUTATION

After node selection, each eligible sensor node performs local
training using its own collected dataset. The training employs
mini-batch stochastic gradient descent (SGD) to reduce
computational load and energy consumption. Each node
maintains the privacy of raw data, ensuring that sensitive patient
information never leaves the device. The local training process
produces gradient vectors that/which represent the direction and
magnitude of parameter updates required to minimize the local
loss function.

Table.2. Local Gradient Computation

Parameter | Parameter|Parameter|Local Loss
NodeID|" g, 02 03 L
N1 0.012 -0.008 0.025 0.056
N3 0.010 -0.005 0.022 0.051
N4 0.014 -0.007 0.020 0.054

The Table.2 demonstrates local gradients computed for three
parameters across eligible nodes. The gradients are then prepared
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for secure transmission. The local training and gradient
computation are formally represented as:
1 OL.(x;0)
=V, L(O)=— > —/————=
g oL (0) [ Bl ; 0

where g, is the gradient vector of node i, L (x;6) is the local loss

function,  represents the model parameters, and B is a mini-batch
of local data. The calculated gradients form the basis for
differential privacy and encrypted transmission in the subsequent
steps.

3.3 DIFFERENTIAL PRIVACY AND GRADIENT
ENCRYPTION

To preserve the confidentiality of patient data, the computed
local gradients undergo differential privacy perturbation. Noise
drawn from a Gaussian or Laplace distribution is added to the
gradients to prevent adversaries from inferring sensitive
information. After perturbation, gradients have/have been
encrypted using a lightweight authenticated encryption scheme to
secure communication over potentially vulnerable wireless
channels.

Table.3. Privacy-Preserved and Encrypted Gradients

Original | DP | Encrypted

Node ID| - .. dient 01| Noise |Gradient 61
N1 0012  |0.004] 0xA1B2C3
N3 0.010  |-0.003| 0XD4E5F6
N4 0.014  |0.005| 0xB7C8DY

The Table.3 shows the gradients after adding differential
privacy noise and encryption. These secure updates are
transmitted to the validation layer.

The perturbation process is represented by:
g =g +N (0902)

where g, is the privacy-preserved gradient vector, and N (0, )

is Gaussian noise with standard deviation ocalibrated according
to the privacy budget. Encryption is applied as:

E, =Enc(g;,K,)
where E, is the encrypted gradient and K, is the symmetric key
shared securely between node iand the validation server.

3.4 BLOCKCHAIN-BASED VALIDATION

The encrypted gradients are submitted to a lightweight
blockchain layer, which has/have verified the authenticity and
integrity of the updates.

Table.4. Blockchain Validation Status

Encrypted |Signature| Hash |Validated
Gradient | Valid |Match| (Yes/No)

N1 [0xA1B2C3 Yes Yes Yes
N3 0xD4ESF6 Yes Yes Yes
N4 [0xB7C8D9| Yes No No

Node ID
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Each node’s gradient is validated through digital signatures
and hash checks before it can be included in the aggregation
process. This mechanism prevents malicious nodes from injecting
tampered or poisoned gradients into the global model. The
Table.4 illustrates a validation process, where node N4’s gradient
has/have been rejected due to a hash mismatch.

3.5 GLOBAL MODEL UPDATE

Once validated, the gradients are decrypted and aggregated at
the central server. The aggregation process computes a weighted
average of the gradients, where weights are proportional to the
local dataset size or node reliability. This ensures that nodes with
more relevant data have/have greater influence on the global
model update. The server then updates the global parameters
using the aggregated gradient and redistributes the model to the
selected nodes for the next round.

Table.5. Global Model Aggregation

Parameter Node N1 | Node N3 | Aggregated | Updated
Gradient | Gradient | Gradient |Parameter 0
01 0.016 0.007 0.011 0.526
02 -0.004 -0.002 -0.003 -0.287
03 0.025 0.020 0.023 0.654

The Table.5 shows the aggregated gradients and the updated
global parameters after one training round.

The global aggregation is formally expressed as:

N
o) — g _772 n; g
i=1 Myotal
where 6! is the updated global parameter vector, # is the learning
rate, n; is the local data size of node i, and 7, is the sum of all
participating data samples. This weighted aggregation ensures
fairness and stability in training.

3.6 ADAPTIVE CLIENT PARTICIPATION AND
ENERGY MANAGEMENT

To further enhance energy efficiency, the system dynamically
adjusts client participation in each round. Nodes with insufficient
energy or unstable connectivity are temporarily excluded to
conserve battery and reduce transmission failures. Participation is
evaluated continuously, ensuring that the network operates
sustainably without compromising convergence.

Table.6. Adaptive Node Participation

Node ID L}e‘:\Ifleelrggo) Pargltc;:)liistlon Reason
N1 78 Participating |Sufficient Energy
N3 55 Participating |Sufficient Energy
N4 35 Skipped Low Energy

The Table.6 presents an adaptive node participation example,
where N4 is excluded due to low energy.

_{1 ifE >E, AC =1

min
0 otherwise

i

where, P; is the participation indicator, £; is the current energy,
and C; indicates connectivity status. This adaptive mechanism
has/have ensured efficient resource utilization and prolonged
network lifetime.

4. RESULTS AND DISCUSSION

The experiments have/have been conducted to evaluate the
performance of the proposed secure federated learning framework
for healthcare wireless sensor networks. Simulations are
performed using MATLAB R2023b, which provides a robust
environment for implementing federated learning, network
simulation, and energy consumption modeling. The experimental
setup uses a desktop computer with an Intel Core i9-13900K
processor, 32 GB RAM, and an NVIDIA RTX 4090 GPU to
accelerate model training and secure computation operations.

Table.7. Experimental Setup Parameters

Parameter Value / Setting
Number of Sensor Nodes (N) 50
Data Samples per Node (n_i) 800-1500
Local Epochs per Round (E) 5
Mini-Batch Size (B) 32
Learning Rate (1) 0.01
Privacy Noise (o) 0.004
Encryption Algorithm AES-128
Blockchain Validation Nodes 5
Maximum Communication Rounds (R) 100
Energy Threshold (%) 50

The Table.7 summarizes the simulation parameters and
experimental setup used to evaluate the proposed method.

4.1 PERFORMANCE METRICS

The proposed framework is evaluated using five performance
metrics that/which comprehensively measure accuracy, security,
efficiency, and reliability:

* Accuracy (ACC): Measures the proportion of correctly
predicted patient outcomes compared to the ground truth.
Higher values indicate more reliable monitoring.

+ Communication Cost (CC): Represents the total amount of
data transmitted between sensor nodes and the central server
per round. Lower values indicate energy-efficient and
bandwidth-optimized operation.

* Energy Consumption (EC): Measures the average energy
consumed by each node during local training and gradient
transmission. Reduced energy usage improves node
longevity and sustainability.

 Privacy Preservation (PP): Evaluates the resilience of the
system against inference attacks and data leakage. Higher
privacy scores indicate stronger differential privacy and
encryption performance.

* Model Robustness (MR): Assesses resistance to
adversarial attacks, such as poisoning and tampering, by
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measuring degradation in accuracy under attack conditions.
Higher values indicate stronger model resilience.

The experiments employ a real-time healthcare dataset

The Table.10 demonstrates reduced communication cost
achieved by the proposed method while scaling node data sizes.

collected from wearable sensors and loT-enabled medical
devices. The dataset includes multi-modal physiological signals
such as heart rate, blood oxygen level, body temperature, and
electrocardiogram readings. Each node has/have an individual
portion of the dataset to simulate a distributed data environment

Table.11. Energy Consumption (Joules)

typical of federated learning.

Table.8. Dataset Description

o Number of
Feature Data Type Description Samples

Beats per minute

Heart Rate (HR) | Integer |measured by 10,000
sensors

Blood Oxygen Percentage of

Level (Sp0O2) Float oxygen saturation 10,000

Body .

Temperature Float Meagured mn 10,000
Celsius

(Temp)

ECG Signal Tlme Voltage variation 10,000

Series  |over time

Patient ID Categorical Idephﬁer for each 50

subject

The Table.8 illustrates the dataset used in the experiments.

Data A]?g l;?;)‘tt?gn DP FL Blochhain- Proposed
Samples FL Assisted FL| Method
800 1.52 1.63 1.84 1.25
1000 1.88 2.05 2.12 1.47
1200 2.15 2.35 2.38 1.72
1500 245 2.68 2.63 1.95

The Table.11 illustrates the efficiency of energy consumption
per node for varying local data sizes.

Table.12. Privacy Preservation Score (0—1)

Data Al?;;?égtggn DP FL Blo?kchain- Proposed
Samples FL Assisted FL| Method
800 0.72 0.84 0.78 0.91
1000 0.73 0.85 0.79 0.92
1200 0.74 0.86 0.80 0.93
1500 0.75 0.87 0.81 0.94

The Table.12 shows that the proposed method achieves higher
privacy protection while scaling data volume.

The distributed nature of the data across nodes creates realistic
heterogeneity, which/that tests the efficiency and privacy-
preserving capabilities of the proposed federated learning

Table.13. Model Robustness (%)

framework.

4.1.1 Results Over Data Sizes:

Table.9. Accuracy (%)

Data ::g I;?;;?gn DP FL Blo?kchain- Proposed
Samples FL Assisted FL.| Method
800 91.2 88.7 92.5 94.8
1000 91.8 89.3 93.1 95.2
1200 92.4 89.8 93.6 95.7
1500 93.0 90.2 94.2 96.0

The Table.9 shows the classification accuracy improvement of
the proposed method over increasing local data volumes.

Table.10. Communication Cost (MB)

Data AEg ngcr?;);:ffn DP FL Blo?kchain- Proposed
Samples FL Assisted FL| Method
800 12.5 10.8 14.2 9.8
1000 15.6 13.2 17.3 12.1
1200 18.4 15.6 20.1 14.7
1500 22.0 18.1 23.5 17.2
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Data AEg I;?égi?gn DP FL Blo?kchain- Proposed
Samples FL Assisted FL| Method
800 85.2 80.5 88.1 92.0
1000 86.0 81.3 88.9 92.8
1200 86.8 82.0 89.7 93.5
1500 87.5 82.8 90.5 94.2

The Table.13 demonstrates the resistance of the proposed
method to adversarial or tampered gradients.

4.2 RESULTS OVER COMMUNICATION ROUNDS

Table.14. Accuracy (%)

Comm AEniZYI;:‘;:n DP FL Blockchain-|{Proposed
Rounds| ‘58 F% Assisted FL| Method
10 89.5 86.2 90.1 923
50 91.2 88.0 92.0 94.6
100 92.8 89.5 93.8 96.0

The Table.14 shows the improvement of model accuracy as
the number of global aggregation rounds increases.



JV THOMAS ABRAHAM AND MOHAMMAD ABDUR RASHEED: ENHANCED SECURE FEDERATED LEARNING FRAMEWORK FOR RELIABLE HEALTHCARE WIRELESS
SENSOR NETWORKS

Table.15. Communication Cost (MB)

Comm AEniZyg?ifn DP FL Blockchain-|Proposed
Rounds| 8 FI% Assisted FL| Method
10 3.1 2.8 3.5 24
50 15.6 13.2 17.3 12.1
100 31.0 26.4 34.5 24.2

The Table.15 demonstrates that the proposed method
maintains lower communication overhead over long-term
training.

Table.16. Energy Consumption (Joules)

Comm AE nile.:yg?:)in DP FL Blockchain-|Proposed
Rounds| " 8872840 Assisted FL| Method
10 0.35 0.41 0.48 0.28
50 1.88 2.05 2.12 1.47
100 3.75 4.10 4.22 2.95

The Table.16 shows energy efficiency trends over increasing
communication rounds.

Table.17. Privacy Preservation Score (0-1)

Comm AEnil;yg?i:(()ln DP FL Blockchain-{Proposed
Rounds| 58 Fi Assisted FL| Method
10 0.70 0.82 0.76 0.89
50 0.73 0.85 0.79 0.92
100 0.75 0.87 0.81 0.94

The Table.18 illustrates that privacy scores remain high and
stable in the proposed method across multiple rounds.

Table.19. Model Robustness (%)

Comm AEniZyg?;fn DP FL Blockchain-{Proposed
Rounds| &8 F% Assisted FL.| Method
10 83.5 79.0 86.0 90.2
50 86.0 81.3 88.9 92.8
100 87.5 82.8 90.5 94.2
The Table.19 demonstrates that the proposed method
maintains  stronger model robustness over iterative

communication rounds compared to baseline methods.
4.3 DISCUSSION OF RESULTS

The accuracy of the proposed method reaches 96.0% at 1500
data samples, exceeding Encrypted Aggregation FL (93.0%),
Differential Privacy FL (90.2%), and Blockchain-Assisted FL
(94.2%). This improvement highlights the effectiveness of
combining privacy-preserving noise with blockchain-based
validation and adaptive client selection.

The communication cost remains significantly lower in the
proposed method, achieving 17.2 MB at 1500 samples compared
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t022.0 MB, 18.1 MB, and 23.5 MB for the baseline methods. This
reduction demonstrates that the adaptive participation mechanism
and selective aggregation effectively limit network overhead.
Similarly, energy consumption decreases from 2.45 J in
Encrypted Aggregation FL to 1.95 J in the proposed method,
confirming the energy-aware design.

Privacy preservation and model robustness also show notable
improvement indicates a privacy score of 0.94, higher than 0.75—
0.87 in existing methods, while robustness reaches 94.2%,
confirming resilience against adversarial attacks. Trends over
communication rounds, reveal that the proposed framework
maintains stable performance even after 100 rounds, with
consistent accuracy, low communication cost, and sustained
privacy levels.

S. CONCLUSION

This study presents a secure and energy-aware federated
learning framework tailored for healthcare wireless sensor
networks. The framework integrates differential privacy,
lightweight encryption, blockchain-based validation, and
adaptive client participation to ensure patient data confidentiality,
model robustness, and efficient network operation. Experiments
with 800—1500 data samples per node and 100 communication
rounds demonstrate that the proposed method achieves an
accuracy of up to 96.0%, surpassing existing methods by 2—6%,
while reducing communication cost and energy consumption.
Privacy scores remain high at 0.94, and model robustness reaches
94.2%, confirming resilience against adversarial and tampering
attacks. The framework effectively addresses challenges
associated with distributed, heterogeneous sensor networks,
including non-iid data, energy constraints, and security
vulnerabilities. By combining multi-layer privacy-preserving
mechanisms with optimized aggregation, the system ensures
reliable global model convergence while limiting network and
computational overhead. Overall, the proposed framework
represents a practical and scalable solution for real-time patient
monitoring, demonstrating significant improvements in accuracy,
energy efficiency, privacy, and robustness compared to existing
federated learning methods.
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