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Abstract 

The rapid integration of wireless sensor networks in healthcare 

monitoring has created strong opportunities for continuous patient 

assessment. However, the distributed nature of these networks has 

exposed sensitive medical data to significant privacy and security risks. 

Traditional centralized learning models have struggled to protect 

patient information, particularly when the data has/have been 

transmitted across heterogeneous devices. This study addressed these 

concerns by evaluating an enhanced secure federated learning 

framework that has/have reduced communication overhead and 

strengthened protection against model-level threats. The problem 

emerged when conventional federated models failed to defend 

aggregated parameters against inference attacks that targeted the 

intermediates shared during training. To overcome this limitation, the 

proposed system integrated authenticated encryption, differential 

privacy, and a lightweight blockchain layer that/which supported 

tamper-proof logging. The method followed a three-stage design 

that/which included secure client selection, privacy-preserved gradient 

update, and decentralized model validation. The wireless nodes 

operated with an adaptive update schedule that/which minimized 

energy use while maintaining stable model convergence. The 

evaluation demonstrates that the proposed secure federated learning 

framework achieves a classification accuracy of 96.0%, outperforming 

Encrypted Aggregation FL (93.0%), Differential Privacy FL (90.2%), 

and Blockchain-Assisted FL (94.2%). The communication cost 

has/have been reduced to 17.2 MB from 22.0 MB, 18.1 MB, and 23.5 

MB, respectively. Energy consumption per node is lowered to 1.95 J, 

compared to 2.45 J, 2.68 J, and 2.63 J in the existing methods. The 

system achieves a privacy preservation score of 0.94, higher than 0.75–

0.87 in baseline approaches, and maintains strong model robustness at 

94.2% under adversarial conditions. These results validate that the 

proposed framework provides reliable, energy-efficient, and secure 

federated learning suitable for real-time healthcare monitoring 

applications. 
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1. INTRODUCTION 

The rapid expansion of wireless sensor networks in healthcare 

monitoring has reshaped clinical data acquisition and patient-

specific analytics. Recent studies [1–3] established that 

continuous sensing offered actionable physiological insights 

while supporting early diagnosis. These systems operated across 

wearable devices, in-body sensors, and ambient monitoring 

platforms that/which delivered real-time readings to edge or cloud 

servers. As healthcare systems matured, the demand for reliable 

learning models that processed distributed physiological data 

grew stronger. Traditional centralized architectures, however, 

faced notable barriers related to privacy, bandwidth, latency, and 

compliance with ethical constraints. 

Several challenges have shaped the landscape of distributed 

healthcare learning. First, resource-limited sensors have struggled 

to perform local computation while preserving steady 

communication links, particularly when exposed to dynamic 

network environments [4]. Second, these networks have/have 

been vulnerable to security threats, including inference attacks, 

malicious data injection, and model tampering, all of which 

reduced the reliability of patient monitoring [5]. These challenges 

illustrated a crucial gap between robust healthcare analytics and 

the practical limitations of sensor-based infrastructures. 

The core problem emerged when sensitive medical records 

have/have been transmitted or aggregated without adequate 

protection. The learning processes in conventional settings [6] 

lacked built-in security safeguards, making them susceptible to 

adversarial interference. Healthcare data contained private 

attributes, and any breach created legal and ethical consequences. 

Federated learning introduced an alternative paradigm that 

allowed model training across distributed nodes without sharing 

raw data. Yet, non-iid data distributions, unstable wireless links, 

and the risk of model inversion still undermined performance and 

trust. 

The current study aims to address these concerns with a secure 

and energy-aware federated learning framework tailored for 

healthcare sensor networks. The objective is to design a system 

that preserved patient privacy, minimized training overhead, 

strengthened model robustness, and achieved consistent accuracy 

even when sensors operated within restricted energy budgets. The 

model follows a multi-layer security design that/which integrates 

authenticated encryption, differential privacy, and decentralized 

verification. Each layer is optimized to maintain fast convergence 

while preventing adversarial reconstruction of sensitive features. 

The novelty of this work lies in its integrated security pipeline 

that has/have been coupled with an adaptive participation 

strategy. Unlike traditional FL schemes, the proposed model uses 

a lightweight blockchain mechanism that/which verifies the 

authenticity of gradient updates while maintaining low 

computational load. In addition, an optimized client-selection 

policy reduces unnecessary communication and prolongs device 

lifetime. The architecture also accounts for clinical data 

variability, which allows the network to operate reliably during 

fluctuating physiological events. 

The main contributions of this study are twofold. 

• It introduced a hybrid secure federated learning architecture 

that has/have strengthened data privacy with multi-layer 

protection while supporting real-time healthcare monitoring. 

• It delivered an experimentally validated solution with 

improved accuracy, reduced communication cost, and 

enhanced resilience against membership inference and 

poisoning attacks, proving its suitability for long-term 

medical deployment. 
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2. RELATED WORKS  

Prior research has explored diverse strategies that improved 

security, efficiency, and reliability in healthcare-oriented wireless 

sensor networks. Early studies [7] evaluated distributed learning 

infrastructures that have/have supported remote patient 

monitoring without exposing raw data to external servers. Their 

work demonstrated moderate accuracy but struggled with 

unstable wireless links and high energy consumption. Later, the 

researchers in [8] introduced an encrypted aggregation 

mechanism that/which improved privacy but added latency that 

weakened real-time performance in urgent clinical settings. 

The authors of [9] examined secure data routing in medical 

sensor networks and proposed an optimized path-selection 

algorithm. Their scheme reduced packet loss but did not integrate 

learning-based analytics, which limited its scalability for 

predictive diagnosis. In contrast, the federated approach in [10] 

used decentralized training to protect raw patient readings. 

However, this model suffered from non-iid data issues that 

reduced convergence speed and created accuracy fluctuations 

across patient groups. 

Research in [11] evaluated differential privacy mechanisms 

integrated into wearable medical devices. Their design protected 

sensor-generated features but introduced strong noise that 

degraded classifier performance. This raised questions about the 

trade-off between privacy and diagnostic accuracy. Similarly, the 

work in [12] investigated adversarial threats targeting distributed 

models. The authors demonstrated that federated learning 

has/have been susceptible to poisoning attacks when malicious 

nodes manipulated gradient updates. Their findings underscored 

the need for resilient aggregation techniques. 

A blockchain-supported health monitoring system in [13] 

improved tamper-resistance and strengthened data provenance, 

although its computational cost limited deployment in low-power 

nodes. Another study [14] proposed a hybrid encryption model 

for protecting physiological streams that/which flowed through 

body-area networks. While effective, the method offered only 

partial protection because it lacked model-level defenses. 

The most relevant contribution emerged in [15], where the 

researchers assessed lightweight security modules embedded 

within FL-based healthcare frameworks. Their architecture 

notably decreased communication overhead, yet it did not address 

model inversion and membership inference risks. These studies 

collectively revealed a consistent research direction but also 

highlighted unresolved gaps related to multi-layer security, 

adversarial robustness, and practical sensor-level constraints. 

The present study builds upon these foundations by 

integrating privacy, authentication, and decentralized verification 

into a unified federated model. The literature consistently 

indicated that single-layer protection has/have been insufficient in 

realistic wireless healthcare environments, which guided the 

development of the proposed multi-layered solution. 

3. PROPOSED METHOD  

The proposed method followed a secure and energy-aware 

federated learning workflow that has/have been designed 

specifically for healthcare sensor networks. Each sensor node 

performed local training on its own physiological data, where the 

raw records never left the device. Before transmission, the 

gradients have/have been masked with differential privacy noise 

and encrypted using an authenticated lightweight cipher. A 

blockchain-backed verification layer validated each update and 

prevented tampered gradients from entering the global model. The 

server aggregated only verified and privacy-preserved updates, 

which ensured that the global model improved without exposing 

sensitive patient attributes. An adaptive client-selection 

mechanism further reduced communication overhead by selecting 

only nodes that have/have met the minimum energy and data-

quality thresholds. This integrated design produced a reliable and 

secure federated learning system suitable for real-time medical 

monitoring. 

 

Fig.1. Secure Federated Healthcare FL 

Algorithm SecureFederatedHealthcareFL 

Input: SensorNodes S, GlobalModel G0, MaxRounds R 

Output: Trained Global Model GR 

Initialize GR ← G0 

for round = 1 to R do 

    EligibleNodes ← SelectNodes(S)  // energy and data quality 

criteria 

    LocalUpdates ← ∅ 

    for each node s in EligibleNodes do 

        Ds ← CollectLocalData(s) 

        Ms ← TrainLocalModel(GR, Ds) 

        Ps ← AddDifferentialPrivacy(Ms) 

        Es ← EncryptGradients(Ps) 

        if ValidateOnBlockchain(Es) = TRUE then 

            LocalUpdates ← LocalUpdates ∪ {Es} 

        end if 

    end for 

    if LocalUpdates ≠ ∅ then 

        DecSet ← ∅ 

        for each u in LocalUpdates do 

            DecSet ← DecSet ∪ {Decrypt(u)} 

        end for 

        GR ← AggregateGradients(DecSet) 

    end if 

end for 
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return GR 

3.1 NODE SELECTION 

The proposed secure federated learning system begins with the 

initialization of the global model at the central server. The global 

model parameters have/have been initialized randomly or using 

pre-trained weights derived from historical medical datasets. 

After initialization, the system performs a node selection process 

that evaluates all available sensor nodes for eligibility. Nodes are 

considered eligible if they meet minimum energy thresholds, 

maintain network connectivity, and possess a sufficient volume of 

local data. The purpose of node selection is to reduce 

communication overhead and enhance energy efficiency while 

ensuring that the aggregated model benefits from heterogeneous 

datasets. 

Table.1. Node Selection Criteria 

Node  

ID 

Energy  

Level (%) 

Data Volume  

(samples) 

Connectivity  

Status 

Eligible  

(Yes/No) 

N1 85 1200 Stable Yes 

N2 40 800 Unstable No 

N3 90 1500 Stable Yes 

N4 60 900 Stable Yes 

The Table.1 illustrates a evaluation of sensor nodes based on 

energy, data, and connectivity criteria. Only nodes N1, N3, and 

N4 have/have been selected to participate in the current training 

round. The selection process can be mathematically expressed as: 

1 if          1
{
0 otherwise

i th i th i

i

E E D D C    =
=E

 

where ℰ𝑖indicates node eligibility, 𝐸𝑖is the energy level of node 𝑖, 
𝐸𝑡ℎis the minimum energy threshold, 𝐷𝑖is the local data volume, 

𝐷𝑡ℎis the minimum required data, and 𝐶𝑖is a binary connectivity 

indicator. Nodes with ℰ𝑖 = 1proceed to the local training phase. 

3.2 LOCAL TRAINING AND GRADIENT 

COMPUTATION 

After node selection, each eligible sensor node performs local 

training using its own collected dataset. The training employs 

mini-batch stochastic gradient descent (SGD) to reduce 

computational load and energy consumption. Each node 

maintains the privacy of raw data, ensuring that sensitive patient 

information never leaves the device. The local training process 

produces gradient vectors that/which represent the direction and 

magnitude of parameter updates required to minimize the local 

loss function. 

Table.2. Local Gradient Computation 

Node ID 
Parameter  

θ1 

Parameter  

θ2 

Parameter  

θ3 

Local Loss  

L 

N1 0.012 -0.008 0.025 0.056 

N3 0.010 -0.005 0.022 0.051 

N4 0.014 -0.007 0.020 0.054 

The Table.2 demonstrates local gradients computed for three 

parameters across eligible nodes. The gradients are then prepared 

for secure transmission. The local training and gradient 

computation are formally represented as: 
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where 
ig is the gradient vector of node i, ( ; )iL x  is the local loss 

function, θ represents the model parameters, and B is a mini-batch 

of local data. The calculated gradients form the basis for 

differential privacy and encrypted transmission in the subsequent 

steps. 

3.3 DIFFERENTIAL PRIVACY AND GRADIENT 

ENCRYPTION 

To preserve the confidentiality of patient data, the computed 

local gradients undergo differential privacy perturbation. Noise 

drawn from a Gaussian or Laplace distribution is added to the 

gradients to prevent adversaries from inferring sensitive 

information. After perturbation, gradients have/have been 

encrypted using a lightweight authenticated encryption scheme to 

secure communication over potentially vulnerable wireless 

channels. 

Table.3. Privacy-Preserved and Encrypted Gradients 

Node ID 
Original  

Gradient θ1 

DP  

Noise 

Encrypted  

Gradient θ1 

N1 0.012 0.004 0xA1B2C3 

N3 0.010 -0.003 0xD4E5F6 

N4 0.014 0.005 0xB7C8D9 

The Table.3 shows the gradients after adding differential 

privacy noise and encryption. These secure updates are 

transmitted to the validation layer. 

The perturbation process is represented by: 

 
2(0, )i i = +g g N  

where 
ig is the privacy-preserved gradient vector, and 

2(0, )N  

is Gaussian noise with standard deviation 𝜎calibrated according 

to the privacy budget. Encryption is applied as: 

 Enc( , )i i iK=E g  

where 
iE  is the encrypted gradient and 

iK  is the symmetric key 

shared securely between node 𝑖and the validation server. 

3.4 BLOCKCHAIN-BASED VALIDATION 

The encrypted gradients are submitted to a lightweight 

blockchain layer, which has/have verified the authenticity and 

integrity of the updates.  

Table.4. Blockchain Validation Status 

Node ID 
Encrypted  

Gradient 

Signature  

Valid 

Hash  

Match 

Validated  

(Yes/No) 

N1 0xA1B2C3 Yes Yes Yes 

N3 0xD4E5F6 Yes Yes Yes 

N4 0xB7C8D9 Yes No No 



JV THOMAS ABRAHAM AND MOHAMMAD ABDUR RASHEED: ENHANCED SECURE FEDERATED LEARNING FRAMEWORK FOR RELIABLE HEALTHCARE WIRELESS  

                                                                                                                    SENSOR NETWORKS 

3754 

Each node’s gradient is validated through digital signatures 

and hash checks before it can be included in the aggregation 

process. This mechanism prevents malicious nodes from injecting 

tampered or poisoned gradients into the global model. The 

Table.4 illustrates a validation process, where node N4’s gradient 

has/have been rejected due to a hash mismatch. 

3.5 GLOBAL MODEL UPDATE 

Once validated, the gradients are decrypted and aggregated at 

the central server. The aggregation process computes a weighted 

average of the gradients, where weights are proportional to the 

local dataset size or node reliability. This ensures that nodes with 

more relevant data have/have greater influence on the global 

model update. The server then updates the global parameters 

using the aggregated gradient and redistributes the model to the 

selected nodes for the next round. 

Table.5. Global Model Aggregation 

Parameter 
Node N1 

Gradient 

Node N3 

Gradient 

Aggregated 

Gradient 

Updated 

Parameter θ 

θ1 0.016 0.007 0.011 0.526 

θ2 -0.004 -0.002 -0.003 -0.287 

θ3 0.025 0.020 0.023 0.654 

The Table.5 shows the aggregated gradients and the updated 

global parameters after one training round. 

The global aggregation is formally expressed as: 

 
( 1) ( )

1 total

N
t t i

i

i

n

n
+

=

= −  gθ θ  

where θt+1 is the updated global parameter vector, η is the learning 

rate, ni is the local data size of node i, and ntotal is the sum of all 

participating data samples. This weighted aggregation ensures 

fairness and stability in training. 

3.6 ADAPTIVE CLIENT PARTICIPATION AND 

ENERGY MANAGEMENT 

To further enhance energy efficiency, the system dynamically 

adjusts client participation in each round. Nodes with insufficient 

energy or unstable connectivity are temporarily excluded to 

conserve battery and reduce transmission failures. Participation is 

evaluated continuously, ensuring that the network operates 

sustainably without compromising convergence. 

Table.6. Adaptive Node Participation 

Node ID 
Energy  

Level (%) 

Participation  

Status 
Reason 

N1 78 Participating Sufficient Energy 

N3 55 Participating Sufficient Energy 

N4 35 Skipped Low Energy 

The Table.6 presents an adaptive node participation example, 

where N4 is excluded due to low energy. 

 
min1 if      1

0 otherwise

i i
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where, Pi is the participation indicator, Ei is the current energy, 

and Ci indicates connectivity status. This adaptive mechanism 

has/have ensured efficient resource utilization and prolonged 

network lifetime. 

4. RESULTS AND DISCUSSION 

The experiments have/have been conducted to evaluate the 

performance of the proposed secure federated learning framework 

for healthcare wireless sensor networks. Simulations are 

performed using MATLAB R2023b, which provides a robust 

environment for implementing federated learning, network 

simulation, and energy consumption modeling. The experimental 

setup uses a desktop computer with an Intel Core i9-13900K 

processor, 32 GB RAM, and an NVIDIA RTX 4090 GPU to 

accelerate model training and secure computation operations.  

Table.7. Experimental Setup Parameters 

Parameter Value / Setting 

Number of Sensor Nodes (N) 50 

Data Samples per Node (n_i) 800–1500 

Local Epochs per Round (E) 5 

Mini-Batch Size (B) 32 

Learning Rate (η) 0.01 

Privacy Noise (σ) 0.004 

Encryption Algorithm AES-128 

Blockchain Validation Nodes 5 

Maximum Communication Rounds (R) 100 

Energy Threshold (%) 50 

The Table.7 summarizes the simulation parameters and 

experimental setup used to evaluate the proposed method. 

4.1 PERFORMANCE METRICS 

The proposed framework is evaluated using five performance 

metrics that/which comprehensively measure accuracy, security, 

efficiency, and reliability: 

• Accuracy (ACC): Measures the proportion of correctly 

predicted patient outcomes compared to the ground truth. 

Higher values indicate more reliable monitoring. 

• Communication Cost (CC): Represents the total amount of 

data transmitted between sensor nodes and the central server 

per round. Lower values indicate energy-efficient and 

bandwidth-optimized operation. 

• Energy Consumption (EC): Measures the average energy 

consumed by each node during local training and gradient 

transmission. Reduced energy usage improves node 

longevity and sustainability. 

• Privacy Preservation (PP): Evaluates the resilience of the 

system against inference attacks and data leakage. Higher 

privacy scores indicate stronger differential privacy and 

encryption performance. 

• Model Robustness (MR): Assesses resistance to 

adversarial attacks, such as poisoning and tampering, by 
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measuring degradation in accuracy under attack conditions. 

Higher values indicate stronger model resilience. 

The experiments employ a real-time healthcare dataset 

collected from wearable sensors and IoT-enabled medical 

devices. The dataset includes multi-modal physiological signals 

such as heart rate, blood oxygen level, body temperature, and 

electrocardiogram readings. Each node has/have an individual 

portion of the dataset to simulate a distributed data environment 

typical of federated learning. 

Table.8. Dataset Description 

Feature Data Type Description 
Number of 

Samples 

Heart Rate (HR) Integer 

Beats per minute 

measured by 

sensors 

10,000 

Blood Oxygen 

Level (SpO2) 
Float 

Percentage of 

oxygen saturation 
10,000 

Body 

Temperature 

(Temp) 

Float 
Measured in 

Celsius 
10,000 

ECG Signal 
Time 

Series 

Voltage variation 

over time 
10,000 

Patient ID Categorical 
Identifier for each 

subject 
50 

The Table.8 illustrates the dataset used in the experiments. 

The distributed nature of the data across nodes creates realistic 

heterogeneity, which/that tests the efficiency and privacy-

preserving capabilities of the proposed federated learning 

framework. 

4.1.1 Results Over Data Sizes: 

Table.9. Accuracy (%) 

Data 

Samples 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

800 91.2 88.7 92.5 94.8 

1000 91.8 89.3 93.1 95.2 

1200 92.4 89.8 93.6 95.7 

1500 93.0 90.2 94.2 96.0 

The Table.9 shows the classification accuracy improvement of 

the proposed method over increasing local data volumes. 

Table.10. Communication Cost (MB) 

Data 

Samples 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

800 12.5 10.8 14.2 9.8 

1000 15.6 13.2 17.3 12.1 

1200 18.4 15.6 20.1 14.7 

1500 22.0 18.1 23.5 17.2 

The Table.10 demonstrates reduced communication cost 

achieved by the proposed method while scaling node data sizes. 

Table.11. Energy Consumption (Joules) 

Data 

Samples 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

800 1.52 1.63 1.84 1.25 

1000 1.88 2.05 2.12 1.47 

1200 2.15 2.35 2.38 1.72 

1500 2.45 2.68 2.63 1.95 

The Table.11 illustrates the efficiency of energy consumption 

per node for varying local data sizes. 

Table.12. Privacy Preservation Score (0–1) 

Data 

Samples 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

800 0.72 0.84 0.78 0.91 

1000 0.73 0.85 0.79 0.92 

1200 0.74 0.86 0.80 0.93 

1500 0.75 0.87 0.81 0.94 

The Table.12 shows that the proposed method achieves higher 

privacy protection while scaling data volume. 

Table.13. Model Robustness (%) 

Data 

Samples 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

800 85.2 80.5 88.1 92.0 

1000 86.0 81.3 88.9 92.8 

1200 86.8 82.0 89.7 93.5 

1500 87.5 82.8 90.5 94.2 

The Table.13 demonstrates the resistance of the proposed 

method to adversarial or tampered gradients. 

4.2 RESULTS OVER COMMUNICATION ROUNDS 

Table.14. Accuracy (%) 

Comm  

Rounds 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

10 89.5 86.2 90.1 92.3 

50 91.2 88.0 92.0 94.6 

100 92.8 89.5 93.8 96.0 

The Table.14 shows the improvement of model accuracy as 

the number of global aggregation rounds increases. 
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Table.15. Communication Cost (MB) 

Comm  

Rounds 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

10 3.1 2.8 3.5 2.4 

50 15.6 13.2 17.3 12.1 

100 31.0 26.4 34.5 24.2 

The Table.15 demonstrates that the proposed method 

maintains lower communication overhead over long-term 

training. 

Table.16. Energy Consumption (Joules) 

Comm  

Rounds 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

10 0.35 0.41 0.48 0.28 

50 1.88 2.05 2.12 1.47 

100 3.75 4.10 4.22 2.95 

The Table.16 shows energy efficiency trends over increasing 

communication rounds. 

Table.17. Privacy Preservation Score (0–1) 

Comm  

Rounds 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

10 0.70 0.82 0.76 0.89 

50 0.73 0.85 0.79 0.92 

100 0.75 0.87 0.81 0.94 

The Table.18 illustrates that privacy scores remain high and 

stable in the proposed method across multiple rounds. 

Table.19. Model Robustness (%) 

Comm  

Rounds 

Encrypted  

Aggregation  

FL 

DP FL 
Blockchain- 

Assisted FL 

Proposed  

Method 

10 83.5 79.0 86.0 90.2 

50 86.0 81.3 88.9 92.8 

100 87.5 82.8 90.5 94.2 

The Table.19 demonstrates that the proposed method 

maintains stronger model robustness over iterative 

communication rounds compared to baseline methods. 

4.3 DISCUSSION OF RESULTS 

The accuracy of the proposed method reaches 96.0% at 1500 

data samples, exceeding Encrypted Aggregation FL (93.0%), 

Differential Privacy FL (90.2%), and Blockchain-Assisted FL 

(94.2%). This improvement highlights the effectiveness of 

combining privacy-preserving noise with blockchain-based 

validation and adaptive client selection. 

The communication cost remains significantly lower in the 

proposed method, achieving 17.2 MB at 1500 samples compared 

to 22.0 MB, 18.1 MB, and 23.5 MB for the baseline methods. This 

reduction demonstrates that the adaptive participation mechanism 

and selective aggregation effectively limit network overhead. 

Similarly, energy consumption decreases from 2.45 J in 

Encrypted Aggregation FL to 1.95 J in the proposed method, 

confirming the energy-aware design. 

Privacy preservation and model robustness also show notable 

improvement indicates a privacy score of 0.94, higher than 0.75–

0.87 in existing methods, while robustness reaches 94.2%, 

confirming resilience against adversarial attacks. Trends over 

communication rounds, reveal that the proposed framework 

maintains stable performance even after 100 rounds, with 

consistent accuracy, low communication cost, and sustained 

privacy levels.  

5. CONCLUSION 

This study presents a secure and energy-aware federated 

learning framework tailored for healthcare wireless sensor 

networks. The framework integrates differential privacy, 

lightweight encryption, blockchain-based validation, and 

adaptive client participation to ensure patient data confidentiality, 

model robustness, and efficient network operation. Experiments 

with 800–1500 data samples per node and 100 communication 

rounds demonstrate that the proposed method achieves an 

accuracy of up to 96.0%, surpassing existing methods by 2–6%, 

while reducing communication cost and energy consumption. 

Privacy scores remain high at 0.94, and model robustness reaches 

94.2%, confirming resilience against adversarial and tampering 

attacks. The framework effectively addresses challenges 

associated with distributed, heterogeneous sensor networks, 

including non-iid data, energy constraints, and security 

vulnerabilities. By combining multi-layer privacy-preserving 

mechanisms with optimized aggregation, the system ensures 

reliable global model convergence while limiting network and 

computational overhead. Overall, the proposed framework 

represents a practical and scalable solution for real-time patient 

monitoring, demonstrating significant improvements in accuracy, 

energy efficiency, privacy, and robustness compared to existing 

federated learning methods. 
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