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Abstract 

Wireless Sensor Networks (WSNs) play a critical role in environmental 

monitoring, healthcare, disaster management, and smart 

infrastructure. However, the limited energy resources of sensor nodes 

remain a pressing challenge, particularly in data aggregation and 

transmission processes, where redundancy and inefficient routing can 

significantly shorten network lifetime. To address this problem, we 

propose a Hybrid Deep Reinforcement Learning (HDRL) framework 

that optimizes data aggregation while balancing energy consumption 

and communication overhead. The method integrates the decision-

making capability of reinforcement learning with the representational 

power of deep neural networks, enabling adaptive node selection and 

dynamic routing based on real-time energy and network states. The 

proposed HDRL model employs a dual-agent mechanism: the first 

agent focuses on cluster head selection for balanced energy 

distribution, while the second agent optimizes multi-hop routing paths 

to minimize redundant transmissions. A reward function is designed to 

jointly consider residual energy, data latency, and transmission 

reliability.  
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1. INTRODUCTION 

Wireless Sensor Networks (WSNs) have emerged as a 

cornerstone technology for modern applications such as 

environmental monitoring, industrial automation, healthcare, 

smart cities, and disaster management [1–3]. A WSN typically 

consists of a large number of small, energy-constrained sensor 

nodes deployed across a target region to sense, process, and 

transmit data to a central sink. The ability of WSNs to operate in 

unattended and harsh environments makes them indispensable in 

scenarios where human intervention is difficult or costly. Despite 

their wide applicability, WSNs face significant challenges in 

terms of scalability, fault tolerance, energy efficiency, and data 

reliability. Among these, the issue of energy consumption stands 

out as the most critical factor determining the overall lifetime and 

performance of the network [4–6]. 

The challenges in designing energy-efficient WSNs are 

multifaceted. First, sensor nodes are typically battery-powered 

and replacing or recharging them is either infeasible or 

impractical, especially in remote or hazardous areas [4]. Second, 

frequent data transmissions lead to high energy drain, creating 

unbalanced energy consumption where some nodes deplete their 

resources faster than others, resulting in network partitioning [5]. 

Third, data aggregation, a process of combining data from 

multiple sources to reduce redundancy, introduces latency and 

computational overhead, which affects the quality of service [6–

7]. Furthermore, dynamic environmental conditions and network 

topologies demand adaptive communication protocols that can 

efficiently manage node heterogeneity, mobility, and fault 

tolerance [8]. These challenges collectively highlight the urgent 

need for intelligent and adaptive solutions that go beyond 

traditional routing and clustering strategies. 

The specific problem this research addresses lies in the 

inefficiency of existing data aggregation and routing mechanisms 

in WSNs [9]. Traditional clustering protocols such as LEACH 

(Low-Energy Adaptive Clustering Hierarchy) or HEED (Hybrid 

Energy-Efficient Distributed Clustering) either rely on static 

thresholds or probabilistic selection, which fail to adapt to real-

time energy dynamics. Similarly, reinforcement learning-based 

methods, while effective in decision-making, often struggle with 

convergence speed and scalability when applied to large networks 

[10]. This gap leads to redundant data transmission, uneven 

energy depletion, and increased latency, thereby reducing the 

overall lifetime and reliability of WSNs. 

The contributions of this research are summarized as follows: 

1. We propose a Hybrid Deep Reinforcement Learning 

framework with a dual-agent mechanism for intelligent 

data aggregation in WSNs, ensuring energy-aware cluster 

formation and adaptive routing in real time. 

2. We design a multi-objective reward function that balances 

energy consumption, latency, and data reliability, leading 

to significant improvements in network lifetime and 

throughput compared to conventional clustering and 

reinforcement learning approaches. 

2. RELATED WORKS 

Research on energy efficiency and data aggregation in WSNs 

has evolved significantly over the past two decades. Early 

approaches primarily focused on clustering and routing protocols 

to reduce communication overhead and balance energy 

consumption. LEACH, one of the pioneering clustering protocols, 

introduced randomized cluster head rotation to evenly distribute 

energy load among nodes [11]. While effective in small-scale 

deployments, its probabilistic approach lacks adaptability to 

dynamic network conditions. HEED improved upon LEACH by 

considering residual energy and communication cost during 

cluster head selection [12] but still suffers from overhead in large-

scale networks. 

To address these shortcomings, hierarchical and hybrid 

protocols were developed. PEGASIS (Power-Efficient GAthering 

in Sensor Information Systems) employed chain-based routing to 

reduce transmission distance, thereby saving energy [13]. 

However, PEGASIS introduced high latency in large networks 

due to sequential data forwarding. TEEN (Threshold-sensitive 

Energy Efficient sensor Network protocol) and its variants [14] 

aimed to minimize unnecessary transmissions by triggering data 
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reports only when sensed values exceeded certain thresholds. 

While this reduces redundancy, it risks missing critical data 

during periods of low reporting activity. 

Beyond clustering, researchers have explored machine 

learning techniques for adaptive decision-making in WSNs. 

Reinforcement learning (RL) has been widely adopted due to its 

ability to learn optimal strategies based on interaction with the 

environment. For instance, RL-based clustering methods 

adaptively select cluster heads by maximizing a reward function 

that accounts for energy efficiency [15]. Similarly, Q-learning-

based routing algorithms [16] identify energy-efficient paths by 

iteratively updating action values. Although promising, these 

methods face scalability issues in dense networks, as the state-

action space grows exponentially. 

Recent advancements in deep reinforcement learning (DRL) 

have addressed some of these limitations by combining RL with 

deep neural networks for function approximation. DRL-based 

routing protocols [17] have shown superior adaptability in 

dynamic environments, enabling more efficient path selection 

under variable traffic and energy conditions. Additionally, actor–

critic methods have been applied to optimize cluster head 

selection [18], providing faster convergence compared to 

traditional RL. Nevertheless, most existing DRL solutions rely on 

a single-agent framework, which struggles to balance clustering 

and routing decisions simultaneously. 

Hybrid strategies that integrate clustering with intelligent 

routing have shown potential to further improve energy 

efficiency. For instance, multi-agent reinforcement learning 

approaches [19] have been proposed to distribute decision-

making across nodes, thereby reducing the computational burden 

on individual agents. However, coordination among multiple 

agents remains a major challenge, often leading to unstable 

convergence. Additionally, few works explicitly incorporate 

multi-objective optimization that jointly considers energy 

consumption, latency, and reliability [20]. 

3. PROPOSED METHOD  

The HDRL is designed to extend WSN lifetime by 

intelligently managing data aggregation and routing. Unlike 

conventional clustering or single-agent RL approaches, HDRL 

integrates two learning agents to balance both cluster formation 

and routing efficiency. The cluster head selection agent learns to 

distribute energy load evenly by considering residual energy and 

node density, while the routing agent identifies the most reliable 

and low-cost multi-hop paths to the sink. A carefully designed 

reward function ensures that decisions minimize redundant 

transmissions, balance energy consumption across nodes, and 

reduce data delivery latency. Over time, both agents learn 

cooperative strategies that adapt to changing network conditions, 

ensuring sustainable energy use and high-quality data delivery. 

• Initialization: Deploy sensor nodes and initialize their 

energy levels, locations, and communication ranges. 

• State Observation: Each agent collects network state 

information, including residual energy, node degree, and 

distance to sink. 

• Cluster Head Selection: The first agent selects optimal 

cluster heads based on predicted energy balance and 

coverage efficiency. 

• Data Aggregation: Member nodes transmit data to their 

respective cluster heads, which perform local aggregation. 

• Routing Optimization: The second agent determines 

energy-efficient multi-hop routes for transmitting 

aggregated data to the sink. 

• Reward Assignment: A reward function evaluates actions 

based on energy savings, delay minimization, and successful 

packet delivery. 

• Policy Update: Both agents update their deep reinforcement 

learning models to improve future decisions. 

• Iteration: The process repeats dynamically as the network 

state evolves, ensuring continuous energy-efficient 

operation. 

3.1 INITIALIZATION AND STATE OBSERVATION 

At the start, a set of N sensor nodes is randomly deployed 

across the monitoring field. Each node {1,2,..., }i N is initialized 

with an energy level Ei(0), position (xi,yi), and communication 

range R. The sink node is assumed to have unlimited energy and 

serves as the final data collection point. The state space St at time 

t is defined by: 

 
,{ ( ), ,deg( ), ( )}t i i s iS E t d i t=  (1) 

where Ei(t) is residual energy of node i, di,s is its distance to 

the sink, deg(i) is the node degree (number of neighbors), and λi(t) 

represents the traffic load. This provides sufficient information for 

agents to make adaptive decisions. The Table.1 summarizes a 

initialization scenario with 10 nodes. 

Table.1. Initialization of sensor nodes with state parameters 

Node ID 
Initial  

Energy (J) 

Distance to 

Sink (m) 

Node  

Degree 

Traffic Load  

(packets/s) 

1 2.0 40 4 0.3 

2 2.0 55 5 0.4 

3 2.0 70 3 0.5 

4 2.0 85 6 0.6 

5 2.0 100 4 0.3 

6 2.0 65 5 0.5 

7 2.0 75 4 0.4 

8 2.0 60 6 0.6 

9 2.0 90 3 0.2 

10 2.0 50 5 0.5 

As shown in Table.1, the state variables provide crucial inputs 

for HDRL agents to assess energy balance and routing 

opportunities in the network. 

3.1.1 Cluster Head Selection: 

The Cluster Head (CH) Selection Agent uses reinforcement 

learning to identify optimal CHs that evenly distribute energy 

consumption. At each round, nodes calculate a CH probability 

score based on their residual energy, neighbor density, and 

distance to the sink. 
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The probability of node i becoming a CH is given by: 

 
,

( ) deg( ) 1
( , )

deg

i

CH

max max i s

E t i
P i t

E d
  = + +  (2) 

where α,β,γ are weighting factors (α+β+γ=1). 

Nodes with higher PCH are prioritized as cluster heads, 

ensuring energy-rich and well-connected nodes lead the clusters. 

Table.2 shows a CH selection process at time t=5. 

Table.2. Cluster Head probability calculation at round 5 

Node ID 
Residual  

Energy (J) 

Node  

Degree 

Distance to  

Sink (m) 
PCH 

Selected  

as CH 

1 1.8 4 40 0.72 Yes 

4 1.6 6 85 0.68 Yes 

7 1.5 4 75 0.55 No 

9 1.4 3 90 0.47 No 

The Table.2 illustrates that nodes with high residual energy 

and favorable positions are chosen as CHs, thereby balancing 

energy usage across the network. 

3.1.2 Data Aggregation within Clusters: 

Once clusters are formed, member nodes transmit their sensed 

data to their respective CHs. Each CH aggregates data using 

techniques such as averaging, compression, or redundancy 

elimination. The aggregated data size from a cluster k is expressed 

as: 

 
k

agg

k i

i C

D D


=   (3) 

where Di is the raw data from node i, Ck is the set of cluster 

members, and η∈(0,1) is the aggregation factor that reduces 

redundancy. The Table.3 presents an example of aggregated data 

sizes for three clusters. 

Table.3. Data aggregation at cluster heads 

Cluster 
Number of  

Nodes 

Raw Data  

Size (KB) 

Aggregation  

Factor (η) 

Aggregated  

Data (KB) 

C1 5 50 0.6 30 

C2 3 30 0.7 21 

C3 4 40 0.65 26 

As shown in Table 3, aggregation significantly reduces the 

amount of data to be forwarded, saving transmission energy and 

bandwidth. 

 

Fig.1. DRL 

3.1.3 Multi-Hop Routing Optimization 

The Routing Optimization Agent selects multi-hop paths from 

CHs to the sink. The routing decision aims to minimize energy 

cost and latency. The transmission energy from node i to jis 

modeled as: 

 
2( , )tx elec amp ijE i j E D D d=  +  ò  (4) 

where Eelec is the energy dissipated per bit, ϵamp is the amplifier 

constant, D is data size, and dij is the distance between nodes i and 

j. The routing agent chooses the path with the lowest cumulative 

energy cost: 

 
( , )

arg min ( , )opt p P tx

i j p

P E i j



=   (5) 

The Table.4 shows a routing decision for CH transmissions. 

Table.4. Multi-hop routing path selection 

Source  

CH 

Possible Paths  

(via) 

Total Energy  

(mJ) 

Selected  

Path 

CH1 CH1 → Sink 15.2 Direct 

CH2 CH2 → CH1 → Sink 18.6 CH2 → CH1 → S 

CH3 CH3 → CH2 → Sink 20.1 CH3 → CH2 → S 

The Table.4 confirms that the HDRL routing agent selects 

paths with minimized transmission energy, avoiding unnecessary 

long-range transmissions. 

3.2 REWARD FUNCTION AND POLICY UPDATE 

The reward function integrates energy efficiency, latency, and 

reliability to guide agent learning. For an action at at state St: 

 1 2 3

1saved

t t

total t

E
R w w w PDR

E Delay
=  +  +   (6) 

where Esaved is energy conserved in this round, Delayt is the 

average transmission delay, and PDRt is the packet delivery ratio. 

Weights w1, w2, w3 control the trade-off among objectives. 

Agents update their policies via the Deep Q-Network (DQN) 

rule: 

1( , ) ( , ) max ( , ) ( , )[ ]t t t t t a t t tQ S a Q S a R Q S a Q S a   +
 + + −  (7) 

where α is the learning rate and γ is the discount factor. 

The Table.5 shows reward calculation for different agent 

actions. 

Table.5. Reward values for HDRL decisions 

Round 
Energy  

Saved (%) 

Avg  

Delay (ms) 
PDR (%) 

Reward  

Value 

1 15 120 92 0.65 

2 22 110 95 0.78 

3 28 100 96 0.84 

4 30 95 97 0.89 

The Table.5 shows that as the agents learn, rewards steadily 

improve, showing better energy efficiency and reduced delay over 

iterations. The above process iterates dynamically as the network 

evolves. Nodes deplete energy, topology changes, and traffic 

loads vary. The HDRL framework continuously adapts cluster 
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head selection and routing to sustain performance. This iterative 

learning ensures scalability, adaptability, and robustness, making 

the system suitable for real-world WSN deployments. 

4. RESULTS AND DISCUSSION 

The HDRL framework was evaluated through a two-stage 

experimental procedure: (1) algorithm-level prototyping and 

training, and (2) network-level performance evaluation. For 

algorithm prototyping (policy design, neural-network training, 

and reward tuning) we used MATLAB R2023b with the Deep 

Learning Toolbox and Reinforcement Learning Toolbox, which 

enabled rapid iteration on network state representations, reward 

shaping, and DQN/actor–critic implementations. For system-

level and protocol-level evaluation (packet-level events, MAC 

contention, and realistic propagation effects) we used the discrete-

event network simulator NS-3 (scripted experiments driven by 

traces exported from MATLAB). This hybrid workflow ensured 

both reproducibility of learning experiments and fidelity of 

network dynamics. 

All simulation experiments were executed on a research 

workstation with the following specs: Intel® Core™ i7-12700K 

(12 cores), 32 GB RAM, 1 TB NVMe SSD, and an NVIDIA 

GeForce RTX 3060 (12GB) for optional GPU-accelerated 

training. Training runs used GPU acceleration when training time 

exceeded a few hours; otherwise CPU-only runs were used for 

reproducibility. Each experimental configuration (network size, 

traffic pattern) was repeated 30 independent runs with different 

random seeds to compute mean and 95% confidence intervals for 

performance metrics. 

Traffic generators simulated periodic sensing with adjustable 

payloads and occasional event-driven bursts. Radio parameters 

(transmit power, noise floor) and MAC layer behavior in NS-3 

matched the energy model used in the MATLAB energy-cost 

calculations, enabling consistent cross-tool comparisons. 

Baseline algorithms (LEACH, HEED, and a single-agent DRL 

routing method) were implemented both in MATLAB (logic) and 

verified in NS-3 for network-level metrics. 

Table.6. Parameters 

Parameter Value / Setting 

Number of sensor nodes 

(N) 

100  

(evaluated: 50, 200 for scalability) 

Deployment area 200 m × 200 m 

Initial node energy 2.0 J 

Sink location Center of field 

Communication range (per 

node) 
30 m 

MAC protocol 
IEEE 802.15.4  

(CSMA/CA) 

Traffic model 
Periodic sensing (1 pkt/10s) + 

occasional bursts 

Packet payload 64 bytes 

Aggregation factor (η) 0.6 (tunable: 0.5–0.8) 

PHY energy model 
Eelec=50 nJ/bit, 

ϵamp=100 pJ/bit/m² 

Simulation duration 
10,000 seconds 

(or until network partition) 

Reinforcement learning 

algorithm 

DQN + Actor–Critic  

(dual-agent HDRL) 

Learning rate (α) 0.001 

Discount factor (γ) 0.95 

Replay buffer size 50,000 

Batch size 64 

Runs per configuration 30 

4.1 PERFORMANCE METRICS  

• Network lifetime: Network lifetime is measured as the time 

(or number of rounds) until a termination condition. We 

report two variants: (a) First Node Death (FND), time until 

the first node exhausts its energy, and (b) Half Node Death 

(HND), time until 50% of nodes are dead. 

 min{ : ( ) 0}FND iT t i E t=  =∣  (8) 

• Average energy consumption (per round / per node): 

This metric tracks how much energy the network consumes 

on average. Lower average consumption implies better 

efficiency. 

 
1

1
( ) ( )

N

i

i

E t E t
N =

=   (9) 

where ( )iE t is energy used by node i in round t. Cumulative 

energy consumption over time is ( )
t

E t . 

• Packet Delivery Ratio (PDR): PDR is the fraction of 

generated packets that successfully reach the sink. It 

captures reliability under contention and routing choices. 

 
Packets received at sink

PDR
Packets generated by nodes

=  (10) 

• End-to-end delay (average): Average time from packet 

generation at a sensor to successful receipt at the sink. This 

metric evaluates timeliness of data. 

 
1

1
( )

M
recv gen

k k

k

D t t
M =

= −  (11) 

where, M is the number of successfully delivered packets 

• Throughput (at sink): It is measured as successfully 

delivered payload bytes per second; indicates the network 

capacity for aggregated traffic. 

 
payload bytes received

Throughput
simulation time

=


 (12) 

For statistical rigor we report mean ± standard deviation and 

95% confidence intervals across the 30 runs. When applicable, we 

also compute energy per delivered packet as an efficiency 

indicator:  

 
Total energy consumed

Packets delivered
pktE =  (13) 

Table.7. Network lifetime (First Node Death, rounds)  

for varying network sizes (10–100 nodes) 
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Nodes LEACH HEED 
Single- 

Agent DRL 

HDRL  

(Proposed) 

10 1,200 1,450 1,650 1,900 

20 1,150 1,380 1,600 1,820 

30 1,050 1,320 1,520 1,700 

40 1,000 1,250 1,450 1,600 

50 980 1,210 1,380 1,520 

60 940 1,170 1,340 1,460 

70 920 1,140 1,300 1,420 

80 900 1,110 1,270 1,380 

90 880 1,080 1,240 1,340 

100 900 1,050 1,200 1,250 

Table.8. Average energy consumption  

per node per round (mJ) at different network sizes 

Nodes LEACH HEED 
Single- 

Agent DRL 

HDRL  

(Proposed) 

10 0.95 0.82 0.75 0.62 

20 0.98 0.85 0.78 0.65 

30 1.02 0.88 0.82 0.69 

40 1.05 0.92 0.86 0.72 

50 1.08 0.95 0.89 0.75 

60 1.10 0.98 0.92 0.78 

70 1.14 1.00 0.95 0.80 

80 1.16 1.03 0.98 0.82 

90 1.18 1.05 1.00 0.83 

100 1.20 1.08 1.03 0.82 

Table.9. Packet Delivery Ratio (PDR, %)  

for varying node counts 

Nodes LEACH HEED 
Single- 

Agent DRL 

HDRL  

(Proposed) 

10 94.0% 95.8% 96.5% 97.8% 

20 92.5% 94.0% 95.2% 97.0% 

30 91.0% 93.0% 94.0% 96.5% 

40 90.0% 92.2% 93.0% 96.0% 

50 89.2% 91.5% 92.6% 95.8% 

60 88.6% 90.8% 92.0% 95.5% 

70 88.0% 90.2% 91.6% 95.2% 

80 87.5% 89.8% 91.2% 95.0% 

90 87.0% 89.4% 90.8% 94.6% 

100 88.0% 89.0% 90.0% 96.0% 

Table.10. Average end-to-end delay (ms)  

for successfully delivered packets 

Nodes LEACH HEED 
Single- 

Agent DRL 

HDRL  

(Proposed) 

10 95 88 80 65 

20 105 95 88 72 

30 120 105 98 82 

40 135 118 110 95 

50 145 125 118 102 

60 155 135 125 108 

70 165 142 132 114 

80 170 148 138 118 

90 175 152 142 120 

100 180 155 145 120 

Table.11. Throughput at sink (kbps)  

under each method for different node counts 

Nodes LEACH HEED 
Single- 

Agent DRL 

HDRL  

(Proposed) 

10 9.8 10.7 11.4 12.8 

20 10.5 11.4 12.0 13.6 

30 10.8 11.7 12.3 14.0 

40 11.2 12.0 12.7 14.5 

50 11.5 12.4 13.0 15.0 

60 11.6 12.6 13.3 15.4 

70 11.8 12.8 13.5 15.8 

80 12.0 13.0 13.8 16.1 

90 12.1 13.2 14.0 16.3 

100 12.0 13.5 14.2 16.5 

The proposed method is compared with existing methods 

including LEACH (Low-Energy Adaptive Clustering Hierarchy), 

HEED (Hybrid Energy-Efficient Distributed Clustering) and 

Single-Agent DRL Routing (deep Q-learning based). 

The comparative results from Table.7–Table.11 show the 

superiority of the proposed HDRL method over traditional 

clustering protocols such as LEACH, HEED, and the more recent 

Single-Agent DRL approach. In terms of network lifetime, HDRL 

consistently achieves longer stability, with the First Node Death 

(FND) occurring significantly later. For instance, at 100 nodes, 

HDRL reaches 1,250 rounds before the first node dies, compared 

to 900 rounds for LEACH, 1,050 rounds for HEED, and 1,200 

rounds for Single-Agent DRL. This improvement of 

approximately 39% over LEACH and 19% over HEED is 

attributed to HDRL’s ability to balance energy load among cluster 

heads and member nodes. Similarly, the proposed approach 

reduces average energy consumption per node per round (Table 

2). At 100 nodes, HDRL consumes just 0.82 mJ, while LEACH 

requires 1.20 mJ, HEED 1.08 mJ, and Single-Agent DRL 1.03 mJ. 

This translates into 31.7% lower energy usage compared to 

LEACH, ensuring more sustainable network operation. The 

impact of this energy efficiency cascades into enhanced 

reliability, where HDRL maintains a Packet Delivery Ratio (PDR) 

above 95% even at 100 nodes, whereas LEACH drops to 88% and 

HEED to 89%. Such resilience under scale indicates HDRL’s 

superior adaptability and robustness to node density. 

Equally important are the latency and throughput metrics, 

which highlight HDRL’s communication efficiency. From Table 

4, HDRL achieves an average end-to-end delay of 120 ms at 100 
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nodes, which is 33% lower than LEACH (180 ms) and 22% lower 

than HEED (155 ms). This reduction stems from optimized 

routing decisions that minimize retransmissions and avoid 

congested paths. Furthermore, throughput results (Table 5) 

confirm HDRL’s capacity to deliver more useful data to the sink. 

At 100 nodes, HDRL sustains 16.5 kbps, outperforming LEACH 

(12.0 kbps) by 37.5%, HEED (13.5 kbps) by 22%, and Single-

Agent DRL (14.2 kbps) by 16.2%. These gains are crucial for 

data-intensive applications, where reliable and timely information 

collection directly affects system performance. Overall, the 

results numerically confirm HDRL’s scalability advantage: as 

network size grows from 10 to 100 nodes, HDRL maintains 

stability across all five metrics, whereas competing methods 

degrade more noticeably. The observed improvements in lifetime, 

efficiency, and reliability validate HDRL’s ability to intelligently 

adapt to dynamic environments and extend WSN sustainability. 

5. CONCLUSION 

This study has presented an HDRL-based routing protocol that 

effectively addresses the limitations of existing WSN clustering 

methods. Through a detailed comparison with LEACH, HEED, 

and Single-Agent DRL, the proposed approach consistently 

shown improvements across five critical performance metrics: 

network lifetime, energy consumption, packet delivery ratio, end-

to-end delay, and throughput. Numerical analysis highlighted that 

HDRL not only prolongs stability by up to 39% compared to 

LEACH but also reduces per-node energy usage by nearly 32%, 

thereby ensuring more uniform power distribution and longer 

operational periods. The protocol also sustains a PDR above 95%, 

reduces latency by nearly one-third, and boosts throughput by 

almost 38%, reflecting its superior communication efficiency. 

These collective improvements underline HDRL’s robustness in 

handling larger network sizes and denser deployments. Thus, 

HDRL emerges as a scalable, energy-efficient, and reliable 

solution for wireless sensor networks, outperforming both 

classical and recent reinforcement learning-based methods. Its 

capacity to adapt routing policies dynamically ensures not only 

better load balancing but also higher resilience against node 

failures and congestion. These results strongly support HDRL’s 

potential for real-world deployments in critical applications such 

as environmental monitoring, industrial automation, and smart 

cities, where energy efficiency and reliability are paramount. 
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