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Abstract 

With the increasing demand for the deployment of machine learning 

models on energy-efficient and low-latency devices, TinyML stands out 

as an efficient solution for enabling intelligence on edge-constrained 

devices. TinyML workloads often need energy efficient hardware 

resources for reliable deployment of Machine Learning models. 

Existing hardware often lacks efficient hardware resources and is 

unable to perform efficient computations. The Multiply Accumulate 

Unit (MAC) plays a key role in defining the energy efficiency of the 

edge-constrained TinyML hardware. To bridge the gap, this work 

presents a novel architecture: a low power dynamic bit width-adaptive 

multiply accumulate unit (8-bit) for TinyML Accelerators. This 

architecture introduces a dynamic, multi-precision, bit width adaptive 

computational capability, supporting mixed-precision modes such as 2 

× 2, 2 × 4, 2 × 8, 4 × 4, 4 × 8 and 8 × 8 with signed × unsigned support, 

making it highly scalable for TinyML accelerators. In addition, zero-

aware gating and clock gating are implemented by employing a shift-

and-add-based multiplier enabling partial product elimination and 

hybrid carry lookahead adder (CLA) based accumulator enabling 

dynamic segment-wise activation targeting energy efficiency in 

TinyML Accelerators. Proposed architecture is simulated and verified 

on eSim EDA tool and synthesized on the technology node of 130 nm 

using Google SkyWater’s SKY130 PDK and the open-source EDA 

toolchain OpenLANE. The proposed Multiply Accumulate Unit 

reduces power by 59.36%, 68.78%, 74% and 80% when compared to 

PS4MAC, state-of-the-art (SotA) mixed precision MAC, Synopsys 

Design Ware MAC (DW) and approximate MAC unit respectively. 

Compared to prior works, this work stands out as an efficient 

architecture leading to the growth of energy-efficient TinyML 

Accelerators. 
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1. INTRODUCTION 

With the rapid evolution of Artificial Intelligence and 

Advanced Machine Learning models, there is a huge demand for 

intelligent devices especially in the field of Internet of Things 

(IoT) and embedded MCUs. This evolution resulted in the 

development of specialized hardware tailored for edge-

constrained ML models. This specialized hardware are termed as 

TinyML (Tiny Machine Learning), which focuses on deploying 

lightweight ML models on energy-efficient hardware. On these 

specialized TinyML-aware hardware, the Machine Learning 

models are locally hosted, eliminating the need for cloud-based 

processing while targeting on-board computations. 

While prioritizing energy efficiency, TinyML hardware needs 

to sacrifice performance but should remain within an acceptable 

operating frequency. Most of the TinyML-dedicated hardware 

operates in a range of 1 to 200 MHz. Prioritizing energy 

efficiency, there is a need for optimization at the level of the core 

building blocks. Around 99% of the computations in TinyML 

accelerators are performed by Multiply Accumulate (MAC) 

Units. For energy-efficient TinyML-dedicated hardware, the 

Multiply Accumulate Unit can be a bottleneck component. 

Existing MAC units are well adapted with mixed-precision 

scalability with signed and unsigned support optimized for 

computational efficiency, but they need to be more efficient in 

terms of power consumption. A power-aware variable-precision 

MAC unit employing a Baugh-Wooley array multiplier [19] 

offers an efficient architecture addressing the need for battery-

powered wireless sensors with a power reduction of 43% 

compared to a conventional power-aware scalable pipelined 

MAC unit. MAC units employing different types of 

adder/multiplier architectures such as Carry Save Adder and 

Array Multiplier (0.238 mW and 14.0829 ns) [2], Carry Select 

Adder and Vedic Multiplier (0.256 mW and 14.4358 ns) [2], and 

Carry Save Adder and Multiplier (0.253 mW and 14.1497 ns) [2] 

have succeeded in the design of low-latency and low-power 

hardware. 

Low power approximate Multiply Accumulate units [6] have 

also resulted in a reduction of power consumption and area by 

42.6% and 46.1%, respectively. As approximate computing is 

gaining attraction for its efficient architecture, it results in reduced 

computational accuracy. In addition to this, mixed-precision 

quantization techniques [9] have been widely considered for 

balancing computational efficiency and flexibility in quantized 

TinyML Neural Networks. Compared to conventional 

architectures, a mixed-precision scalable approach has proven to 

be efficient and is widely employed in the field of TinyML 

Accelerators. Although these architectures often fail when 

handling computationally heavy tasks, which often require an 

energy-efficient architecture. To address this issue, the proposed 

work proves to be efficient in handling such computationally 

heavy tasks with an energy-efficient architecture. By employing 

different Register Transfer Level (RTL) techniques tailored for 

ultra-low-power design, the proposed architecture results in a 

huge reduction in power consumption as well as leading to an 

energy-efficient design. The novel contributions towards the 

proposed work are summarized as below: 

• A novel mixed-precision scalable, zero-aware, clock-gated, 

signed-aware, bit-width-adaptive MAC architecture is 

devised with dynamic precision width detection allowing 

efficient computation with minimal power consumption 

leading to ultra-low-power design and low-latency inference 

for TinyML workloads. 

• The entire architecture is developed using Verilog hardware 

description language, simulated and verified through a 

mixed-signal approach [22] using the open-source EDA tool 

eSim, developed by FOSSEE (Free/Libre and Open Source 

Software for Education), IIT Bombay. 
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• The design is synthesized on a technology node of 130 nm 

(Google’s SkyWater SKY130A PDK) using the open-

source EDA toolchain OpenLANE. Experimental results 

show the ultra-low-power capabilities of the proposed 

architecture. 

2. LOW POWER MAC ARCHITECTURE FOR 

TINYML WORKLOADS 

The proposed work employs different Low Power Register 

Transfer Level (RTL) techniques in order to gain an efficient 

reduction in power consumption when compared to conventional 

MAC architecture.  

 

Fig.1. Proposed Multiply Accumulate Unit Architecture 

The Fig.1. represents the proposed MAC architecture aligned 

with TinyML constraints. The proposed MAC unit operates as a 

precision-adaptive computational block, dynamically adjusting its 

behaviour based on the bit width of incoming operands. This 

flexibility is governed by a runtime-detected precision mode, 

defined as 

 ( , ), , {2,4,8}I W I WM f B B B B=   (1) 

Such dynamic reconfiguration enables the unit to support 

multiple operand pairings. At the system level, the core 

computation performed by the MAC unit in each cycle follows: 

 ( ) 1

1

N

i i i

i

Y I W A −

=

=  +  (2) 

where Ai and Wi are the activations and weights at cycle i, and Ai-

1 is the previously accumulated value. By detecting operand 

widths and activating only the required datapath segments, the 

architecture achieves substantial power savings. In further 

sections, we will explore various features of the proposed MAC 

architecture in relevance with the TinyML workloads. 

2.1 DYNAMIC BIT-WIDTH ADAPTIVE MIXED 

PRECISION MULTIPLIER 

The proposed MAC unit consists of a multiplier unit 

implemented using a shift-add based partial product accumulation 

algorithm. This avoids the use of conventional multipliers, 

leading to area and power reduction ideal for TinyML 

accelerators. The multiplier is designed in a structured reusable 

architecture consisting of a Sign detector, dynamic precision 

mode detector along with 2’s complement transformation logic.  

In the first stage of the data path, the signed inputs are detected 

and converted to unsigned format using 2’s complement 

transformation logic. Let inputs A and B be 8-bit signed integers. 

Their unsigned equivalents A′, B′ are derived as: 

 
1, if  [7] 1

, otherwise

A A
A

A

 + =
= 


  (3) 

 
1, if  [7] 1

, otherwise

B B
B

B

 + =
= 


  (4) 

The output sign signp bit is computed separately using XOR 

of the sign bits. 

 sign [7] [7]P A B=   (5) 

The design supports true mixed-precision multiplication, 

including asymmetric combinations such as 2 × 4, 4 × 8, 2 × 8, 2 

× 2, 4 × 4 and 8 × 8 by dynamically detecting operand widths and 

activating only the required logic. Bitwidth detection is performed 

after sign conversion. The effective mode of each operand is 

detected by checking upper zero bits. For operand X ∈ {A', B'}: 

 

2, if  [7 : 2] 6 000000@4

mode 4, if  [7 : 4] 4 0000@8

8, otherwise

X

X b

X b

=


= =








 (6) 

To simplify computations, the multiplier handles the 

operations in unsigned format only, avoiding redundant hardware 

and simplifying integration. Moreover, based on the dynamic 

precision mode detector output, the multiplier adapts to operand 

widths (2-bit, 4-bit, or 8-bit) during runtime, allowing efficient 

computation with minimal switching. Logical slicing of operands 

into 2-bit, 4-bit, and 8-bit sections enables a highly structured and 

reusable design ideal for TinyML inference with varying 

precision needs. 

 

Fig.2. Dynamic Bitwidth adaptive Mixed precision Multiplier 

Architecture 

The Fig.2 represents the proposed Multiplier architecture 

tailored for Ultra-low power and low latency applications. This 

scalable architecture enables the multiplier to handle heavy 

computational tasks, with efficient power consumption relevant 

to TinyML workloads. Along with these features, partial products 

are generated for active bits of input, eliminating unnecessary 
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computations. To facilitate hardware-level partial product 

generation, the operand A′ is expanded into its binary 

representation, which acts as the control input for partial product 

generation. The operand is mathematically expressed as: 

 
1

0

2
AB

i

i

i

A a
−

=

 =   (7) 

where BA ∈ {2,4,8} is the effective bit width of A′, and ai is the ith 

bit of A′. Each bit ai determines whether a shifted version of the 

multiplicand B′ is included in the accumulation. The partial 

products are conditionally generated as: 

 
, if  1

0, otherwise

i

i

B i a
PP

=
= 
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 (8) 

The unsigned result is computed by summing all such partial 

products: 

 
1

unsigned

0

AB

i

i

P PP
−

=

=   (9) 

This formulation reveals the explicit control dependency on A′ 

where the bit pattern of A′ determines which instances of B'≪i are 

activated and accumulated. This mechanism is efficiently 

implemented in the data path using Verilog. This partial product 

elimination plays a key role in power reduction especially when 

input sparsity is high. Furthermore, this multiplier architecture is 

zero-aware, enabling us to eliminate unnecessary switching when 

input is zero.  

 0 or 0 0A B P= =  =  (10) 

Finally, sign correction is performed on the accumulated 

unsigned result: 

 
unsigned

unsigned

1, if sign 1

, otherwise

PP
P

P

 + =
= 


 (11) 

This architecture effectively eliminates unnecessary 

switching, supports operand sparsity, and adapts to runtime 

precision, making it highly energy-efficient and scalable. This 

novel scalable architecture, combining different low-power RTL 

techniques, makes it highly efficient for TinyML aware 

applications. 

2.2 ADAPTIVE ZERO AWARE CLA BASED 

ACCUMULATOR 

In conventional MAC units, several adder architectures are 

employed like Carry Save Adder, Carry Select Adder, Carry skip 

Adder [2] etc., and have gained an efficient power reduction. 

However, with the new era of intelligent hardware systems, there 

is a need for more energy-efficient architecture to be developed to 

gain an efficient trade-off between power and delay. In the 

proposed work, A power optimized, dynamic bit width adaptive, 

Hybrid CLA based Adder-Accumulator is integrated, with several 

Carry lookahead adders connected in a ripple carry configuration. 

Since the output of the multiplier is 16-bit, adder-accumulator 

block is designed with a 32-bit configuration to prevent overflow 

and ensure safe accumulation. Prior to accumulation, the 16-bit 

signed multiplier output M is sign-extended to 32 bits to preserve 

signed arithmetic during accumulation: 

 out

{16 1111 1, }, if  [15] 1
Mult

{16 0000 0, }, if  [15] 0

b M M

b M M





  =
= 

 =
 (12) 

The Fig.3 represents the proposed architecture for Adder 

accumulator in which each CLA block is of 4-bit configuration.  

 

Fig.3. Dynamic bit-width adaptive Hybrid CLA based 

Accumulator Architecture 

Since adder-accumulator is of 32-bit configuration, total 8 

CLA blocks are connected in ripple carry configuration. The bit-

widths of the current accumulator value Ai-1 and the sign-extended 

multiplier output are compared to derive the required operational 

width W: 

 max( , )A MW W W=  (12) 

where WA and WM are operational widths of Accumulated output 

and Multiplier output respectively. Based on the highest precision 

mode(4-bit/8-bit/12-bit/16-bit/20-bit/24-bit/28-bit/32-bit) 

detected, enable signals for eight CLA blocks are generated to 

activate necessary CLA blocks, eliminating the unnecessary 

switching leading to reduction in dynamic power consumption. 
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CLA 8 00000111, 12

8 11111111, 32
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 (13) 

Each CLA block CLKk receives an enable signal ek∈{1,0}. If 

disabled, the block output is either all 1s or 0 s based on the sign 

of the result. The sign of the accumulation is computed from the 

MSB of the last active CLA block: 

 
max

sign [3]kS=  (14) 

where ek=1 and kmax=max(k). 

Each CLA block computes an output sumk based on ek and sign 

of the accumulated output as shown below: 

 

CLA( , ), if 1

sum 4 0000, if 0&sign 0

4 1111, if 0&sign 1

k k k

k k

k

A M e

b e

b e

=


= =

= =

= 




 (15) 

where Ak and Mk represent the kth 4-bit segments of the 

accumulator and multiplier output respectively, ek is the 

corresponding enable signal, and sign represents the MSB of the 

highest active CLA output segment. Each CLA block internally 
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incorporates the carry propagate and carry generate logic as 

shown below: 

 ,i i i i i ip a b g a b=  =   (16) 

where ai and bi are the input bits. These Carry propagate (pi) and 

generate (gi) terms are used for the calculation of sum and carry 

results as shown below: 

 
1sum ,i i i i i i ip c C g p c−=  = +   (17) 

where si is the sum bit and Ci-1 is the carry-out to the previous 

stage. 

In addition, zero-aware adaptive signed accumulation is 

implemented, enabling accumulation, only when non-zero inputs 

are fed. If any one of the inputs to the accumulator is zero, it 

results in zero output eliminating unnecessary switching efficient 

for low power design.  

 
1

Sum, If 0

, otherwise
i

i

M
A

A



−


= 


 (18) 

where, Ai is the current accumulated output, M is the multiplier 

output, and Ai-1 is the previous accumulated output. In order to 

make the proposed architecture, an Ultra-low power design, 

Integrated Clock gating (ICG) cell is integrated, to disable the 

clock signal whenever the product output is zero. All these RTL 

low power techniques are integrated in order to improve the 

computational capability and energy efficiency of the MAC unit 

tailored for TinyML edge constrained devices. 

2.3 ZERO AWARE CLOCK GATING 

While implementing a low-power design, conventional 

approaches often result in a huge reduction in power 

consumption.  

 

Fig.4. Integrated Clock Gated Cell 

One of the exceptional techniques leading to Ultra-low power 

design is Clock Gating. Clock gating refers to deactivation of 

clock signal which is considered as a critical signal in low power 

designs, for prevention of unnecessary transitions, where active 

computation is not requires, dramatically, results in reduction of 

dynamic power consumption. The Fig.4 represents a clock-gated 

cell used to implement clock gated architecture, in order to 

eliminate metastability issues and signal glitches. In the proposed 

MAC architecture, clock signal is gated whenever the multiplier 

output is zero. At that time, as accumulation is not required i.e., is 

not an active computation, it prevents the unnecessary toggling of 

the clock signal resulting in reduction of dynamic power 

consumption. The gated clock maintains synchronism with the 

input clock signal eliminating signal glitches. 

2.4 TINYML CENTRIC HARDWARE DESIGN 

TinyML hardware is often powered by batteries, so energy 

efficiency is very important. The proposed architecture uses an 

Adaptive Shift-Add logic-based Multiplier and an Adaptive 

Segment-wise Activated Hybrid CLA-based Accumulator. This 

combination plays a key role in developing hardware for TinyML. 

Thanks to advancements in technology, this architecture stands 

out for its ultra-low power consumption and high energy 

efficiency. By integrating multiple techniques into a single MAC 

(Multiply-Accumulate) unit, the design can handle complex 

computational tasks typically found in TinyML applications. To 

further enhance suitability for edge deployment, the architecture 

emphasizes minimal silicon footprint and low-leakage design 

strategies. This makes it highly compatible with compact, 

resource-constrained embedded systems. 

3. ARCHITECTURAL EVALUATION  

3.1 MIXED SIGNAL SIMULATION USING ESIM 

After the architecture level development, the proposed 

architecture is simulated using eSim, through a mixed signal 

approach. eSim is an open-source tool tailored for electronic 

design simulation and verification with features such as circuit 

design, PCB design, Mixed signal simulations, analog and digital 

simulations, Register Transfer level (RTL) design simulations 

using Hardware description languages (HDL) like Verilog, 

System Verilog, VHDL and TL-Verilog and Device modelling. 

For simulation, the RTL code is converted into a NgVeri 

(NgSpice + Verilator) model using NgVeri model editor of eSim. 

Model editor is capable of converting the Hardware description 

language into a digital Model that can be integrated into a mixed 

signal circuit. The NgVeri model is interfaced with ADC and 

DAC bridges available in eSim component library in order to 

design a mixed signal circuit. The circuit is designed using KiCad, 

a tool responsible for circuit design in eSim. 

 

Fig.5. Schematic design of mixed signal circuit for MAC Unit in 

eSim 

The Fig.5 represents the Schematic design in eSim in order to 

simulate and verify the NgVeri model of MAC unit. Further steps 

include conversion of KiCad file into Spice file through KiCad to 

Spice converter in eSim. Fig.6 shows the simulation results of 
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NgSpice, through which the proposed MAC architecture is 

successfully verified. The use of eSim seamlessly verifies the 

functional behaviour of the MAC architecture, which also lets the 

proposed work contribute towards the open-source development.  

 

 

 

 

Fig.6. eSim Simulation Results for MAC Unit 

This not only validates the design methodology but also 

demonstrates the capability of open-source tools in enabling 

sophisticated digital and mixed-signal hardware design, reducing 

dependency on costly commercial software, and fostering 

collaborative innovation. Building upon the successful functional 

verification using eSim, the proposed work progresses towards 

hardware realization using an ASIC design flow to demonstrate 

real-time operability of the proposed MAC unit.    

3.2 HARDWARE EVALUATION USING 

OPENLANE EDA TOOLCHAIN 

The proposed architecture is fully synthesized using the Open-

source EDA toolchain OpenLANE, based on the 130nm 

technology node from Google's SkyWater SKY130A Process 

Design Kit. The OpenLANE toolchain includes several EDA 

tools, each serving different purposes in the design process. 

Additionally, the design is simulated using Icarus Verilog, an 

open-source RTL simulation tool. 

 

Fig.7. Simulation results for MAC Unit from Icarus Verilog 

The Fig.7 shows the simulation results obtained using Icarus 

Verilog. The design is fully synthesized using Yosys, an open-

source synthesis tool integrated within the OpenLANE toolchain. 

For the experimental results, synthesis uses the sky130_fd_sc_hd 

library, which is a high-density standard cell library. The 

synthesis strategy is set to ‘DELAY 2’, a high-effort in 

OpenLANE focused on delay optimization. This helps achieve 

optimal delay, making the design suitable for low-latency devices. 

The experimental results for timing and power analysis are 

summarized in the table below. 

Table.1. Power ad Timing analysis results for MAC Unit 

Parameter Description Value Unit 

Internal Power (54.4%) 45.7 μW 

Switching Power (40.3%) 33.9 μW 

Leakage Power (5.2%) 4.41 μW 

Total Power (100%) 84 μW 

Worst Negative Slack (WNS) 0 ns 

Total Negative Slack (TNS) 0 ns 

Energy per Operation 3.5 pJ 

Energy Efficiency 0.286 TOPS/W 

Throughput 24 MOPS 

Note: Above results are taken at an operating frequency of 

24MHz. 

The Table.1. shows results of post-synthesis power and timing 

analysis. In addition to this, Fig.8 shows the results for 

Combinational and Sequential power analysis performed using 

Yosys. These results show that due to the complexity of the 

architecture in order to design a computational efficient hardware, 
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resulted in a more combinational power, completely opposite to 

that of the conventional cases, in which sequential power always 

dominates the combinational power. The proposed work shows a 

throughput and energy efficiency of 24 MOPS and 286 GOPS/W 

respectively, which is very efficient in terms of performance and 

energy efficiency compared to conventional MAC units tailored 

for TinyML accelerators. From these results, we can conclude 

that, the proposed Multiply Accumulate Unit is an efficient Ultra 

Low power architecture tailored for TinyML workloads.  

 

Fig.8. OpenSTA power analysis results for MAC Unit 

 

Fig.9. Frequency (MHz) vs Power (μW) analysis for MAC unit 

 

Fig.10. Frequency (MHz) vs Efficiency (TOPS/W) analysis for 

MAC unit 

The Fig.9 and Fig.10 demonstrates the power and energy 

efficiency analysis of the proposed TinyML MAC unit across a 

range of operating frequencies. As TinyML accelerators mostly 

operates over a range of 1 to 100 MHz, the analysis is performed 

over this range to show the trade-off between power efficiency 

and a range of operating frequencies. Meanwhile, energy 

efficiency (TOPS/W) improves with frequency up to around 50 

MHz, after which it saturates, indicating optimal operating 

regions for low-power inference workloads. These results validate 

the MAC unit’s suitability for energy-constrained TinyML 

applications.  

At lower frequencies (<10 MHz), static power dominates, 

reducing overall energy efficiency, while at higher frequencies 

(>70 MHz), dynamic switching and clock tree power become 

significant contributors. The flat energy efficiency curve beyond 

50 MHz suggests that further increasing the frequency yields 

diminishing returns in performance-per-watt. This insight is 

particularly important for always-on and battery-operated 

inference systems, where energy proportionality plays a key role. 

Hence, the proposed MAC unit achieves a favorable balance 

between latency, power, and energy efficiency across typical 

TinyML operating conditions. 

4. COMPARATIVE ANALYSIS  

Numerous MAC architectures have been proposed and 

implemented in existing TinyML accelerators. A comparative 

analysis of these architectures in terms of power and energy 

efficiency is essential for informed design choices. Prior work in 

this domain often incorporates techniques such as approximate 

computing, mixed-precision scalability, and zero aware 

adaptiveness. While these approaches are well-suited for TinyML 

applications, due to their resource efficiency, they often lack in 

delivering optimal computational energy efficiency. 

The Table.2. demonstrates the comparative analysis between 

the proposed work and other MAC architectures [6], [9], [20] in 

terms of power and energy efficiency. In comparison, the 

proposed work stands out as an optimized architecture with a 

power consumption and energy efficiency of 84uW and 286 

GOPS/W respectively, making it efficient in powering TinyML 

accelerators 

Table.2. Power Consumption of various MAC Architectures 

Approximate 

[6] 

DW 

[20] 

SOTA 

[9] 

PS4MAC 

[9] 
Proposed 

420 325 269 206.7 84 

 

Fig.11. Comparative analysis between various MAC 

architectures in terms of Power Consumption 
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5. CONCLUSION 

Aiming at the TinyML workloads, this paper proposes a power 

optimized mixed precision scalable, Zero-aware, clock gated, 

signed aware, bit-width adaptive MAC architecture devised with 

dynamic precision width detection allowing efficient 

computations with minimal power consumption leading to ultra-

low power design and low latency inference for TinyML 

workloads. The proposed work achieves a power reduction of 

68.78% when compared to State-of-the-art mixed precision MAC 

units, making it suitable for ideal for energy efficient TinyML 

Accelerators. With an energy efficiency and throughput of 0.286 

TOPS/W and 24 MOPS respectively, the proposed work stands 

out as an exceptional choice for energy efficient hardware 

accelerators. The proposed work is evaluated and verified using 

open source tools eSim, and Open LANE EDA toolchain as a 

contribution towards Open source community. And finally, a 

comparative analysis between the proposed work and existing 

architectures is performed, from which we can conclude that the 

proposed MAC architecture is highly efficient for TinyML 

workloads. 
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