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Abstract 

Facial Expression Recognition (FER) has emerged as a crucial 

component in Human–Computer Interaction (HCI), enabling 

applications in healthcare, education, surveillance, and social robotics. 

Despite considerable progress, achieving robust FER in unconstrained 

environments remains challenging due to variations in illumination, 

pose, occlusion, and intra-class similarity. Conventional approaches 

relying solely on handcrafted features or deep learning often suffer 

from redundancy in extracted features, sensitivity to noise, and sub-

optimal performance on subtle emotions such as fear and disgust. 

These limitations hinder their deployment in real-world, dynamic HCI 

scenarios where reliability and generalization are essential. This work 

proposes a hybrid FER framework that integrates Haar Cascade-based 

feature localization with a Convolutional Neural Network augmented 

by Evidential Deep Learning (CNN+EDL). Preprocessing stages 

include image resizing, grayscale conversion, histogram equalization, 

Gaussian smoothing, face alignment, and normalization. Haar 

Cascade is employed to extract primary Regions of Interest (eyes, nose, 

mouth), reducing computational overhead and focusing learning on 

salient features. These features are then classified using CNN+EDL, 

which leverages uncertainty modeling and adaptive optimization to 

improve classification robustness. Experimental evaluations conducted 

on the FER2013 dataset demonstrate that the proposed model 

consistently outperforms conventional CNN, ResNet-34, MobileNet-

V1, EJH-CNN-BiLSTM, and DCNN-Autoencoder baselines. At 100 

epochs, CNN+EDL achieves the highest accuracy (97.1%), precision 

(95.6%), recall (94.5%), and F1-score (94.9%), surpassing the closest 

baseline by 3–5%. Emotion-wise performance is also superior, with 

accuracy values of 96.2% (Happy), 94.1% (Sad), 91.3% (Disgust), 

90.2% (Fear), 93.5% (Angry), 95.6% (Surprise), and 94.4% (Neutral). 

These results highlight the system’s generalization ability, particularly 

for complex emotions. 
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1. INTRODUCTION 

Facial expressions are one of the most natural and universal 

means of non-verbal communication, providing critical cues 

about a person’s emotional state, intentions, and reactions [1]. In 

recent years, Facial Expression Recognition (FER) has gained 

significant attention due to its applications in Human–Computer 

Interaction (HCI), where understanding emotions can improve 

personalization, empathy, and adaptability of intelligent systems 

[2]. For instance, FER is increasingly used in telemedicine to 

monitor patient well-being, in e-learning platforms to assess 

student engagement, in surveillance to detect suspicious 

behaviors, and in social robotics to natural communication [3,4]. 

Despite the progress, FER remains a complex task because 

facial expressions vary across individuals, cultures, and 

environmental contexts. Factors such as illumination changes, 

head pose variations, occlusion by accessories, and intra-class 

similarities (e.g., between fear and surprise) introduce significant 

challenges [5]. Moreover, datasets collected “in-the-wild” contain 

noisy backgrounds, partial occlusions, and uncontrolled lighting 

conditions, making feature extraction more difficult [6]. Another 

critical challenge lies in balancing model complexity and 

efficiency, while deep learning models such as ResNet or 

MobileNet achieve high accuracy, they often demand heavy 

computational resources, which restricts their applicability on 

resource-constrained devices [7]. Furthermore, traditional FER 

models frequently ignore uncertainty in classification, leading to 

overconfident but incorrect predictions that compromise trust in 

real-time decision-making [8]. 

Existing FER methods either rely heavily on handcrafted 

feature extraction (e.g., Gabor filters, wavelets, and local binary 

patterns) or depend exclusively on deep neural networks for 

automated representation learning. While handcrafted methods 

lack adaptability and robustness in unconstrained conditions, deep 

learning methods may suffer from redundant features, overfitting, 

and poor handling of ambiguous expressions [9]. Consequently, 

there is a need for a hybrid approach that leverages the strengths 

of traditional feature localization and modern deep learning while 

addressing uncertainty and generalization in FER. 

This research aims to design and evaluate a hybrid FER 

framework with the following objectives: 

• To develop an effective preprocessing pipeline for 

standardizing facial images and mitigating noise, 

illumination, and alignment challenges. 

• To employ Haar Cascade for reliable feature localization, 

focusing on Regions of Interest (ROI) such as eyes, nose, 

and mouth. 

• To integrate CNN with Evidential Deep Learning (EDL) for 

robust classification, leveraging uncertainty modeling to 

improve confidence calibration. 

• To experimentally compare the proposed method against 

state-of-the-art CNN, ResNet, MobileNet, BiLSTM-CNN 

hybrids, and autoencoder-based models. 

The novelty of this work lies in the integration of classical 

Haar Cascade feature extraction with deep evidential learning. 

Unlike conventional CNN models that directly process entire 

facial images, the Haar Cascade ensures that only the most 

discriminative ROIs are considered, thereby reducing redundant 

information and computational cost. Furthermore, incorporating 

EDL allows the system to explicitly model uncertainty in 
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classification, which enhances reliability in real-world HCI 

scenarios where subtle and ambiguous emotions are common. 

This research makes the following key contributions: 

• A hybrid FER framework combining Haar Cascade-based 

ROI detection with CNN+EDL classification. This design 

optimizes both computational efficiency and recognition 

accuracy, outperforming conventional handcrafted and 

deep-only methods. 

• The proposed model achieves state-of-the-art results across 

accuracy, precision, recall, and F1-score, with up to 97.1% 

accuracy and 94.9% F1-score, surpassing strong baselines 

by 3–5%. Emotion-wise analysis further demonstrates 

superior performance in recognizing challenging 

expressions such as disgust and fear. 

2. LITERATURE SURVEY 

2.1 HANDCRAFTED FEATURE-BASED 

APPROACHES 

Early FER systems primarily relied on handcrafted features to 

capture local texture, edge, and frequency information from facial 

regions. Methods such as Gabor filters and wavelet transforms 

were widely adopted to extract orientation- and scale-invariant 

features [10]. Gabor features proved effective in capturing fine-

grained local details, particularly around the eyes and mouth, 

which are critical for differentiating emotions like happiness and 

anger. Similarly, Local Binary Patterns (LBP) gained popularity 

for their robustness to illumination changes and computational 

efficiency [11]. LBP encodes local texture by thresholding 

neighborhood intensities, enabling FER models to achieve 

reliable performance in controlled environments. 

Another prominent category involved geometric features, 

where the relative positions and movements of facial landmarks 

(e.g., eye corners, lip contours) were used to represent expressions 

[12]. Landmark-based approaches performed well in constrained 

datasets but struggled under head pose variations and occlusion. 

While handcrafted features offered interpretability and required 

fewer resources, their limited adaptability to unconstrained “in-

the-wild” conditions restricted their scalability. Studies 

consistently reported reduced accuracy for subtle expressions like 

fear and disgust due to overlapping feature patterns [13]. 

2.2 HYBRID APPROACHES COMBINING 

HANDCRAFTED AND MACHINE LEARNING 

To address the shortcomings of pure handcrafted techniques, 

hybrid frameworks combining feature engineering with machine 

learning classifiers emerged. For example, Gabor + Support 

Vector Machines (SVM) demonstrated notable improvements in 

classification accuracy by leveraging discriminative hyperplanes 

for separating emotion classes [14]. Similarly, LBP combined 

with Principal Component Analysis (PCA) reduced feature 

dimensionality while retaining essential discriminative 

information, thus enhancing recognition efficiency [15]. 

Some works integrated wavelet-based multiresolution 

analysis with k-Nearest Neighbors (kNN) classifiers, yielding 

strong performance on smaller benchmark datasets [16]. Another 

hybrid strategy involved Active Appearance Models (AAM), 

which captured both shape and texture variations, offering 

improved robustness against facial deformation [17]. While these 

approaches improved performance relative to handcrafted-only 

methods, they still suffered from two limitations: (i) dependence 

on manually engineered feature selection pipelines, and (ii) 

inability to generalize across large, heterogeneous datasets with 

uncontrolled lighting and pose variations. 

2.3 DEEP LEARNING MODELS FOR FER 

The advent of deep learning revolutionized FER research, 

enabling automatic extraction of hierarchical features from raw 

pixel data. Convolutional Neural Networks (CNNs) quickly 

became the dominant architecture, as they can learn spatially 

localized features through convolutional filters and pooling layers 

[18]. CNN-based FER models demonstrated significant 

improvements over handcrafted methods, achieving high 

accuracy on benchmark datasets like FER2013 and CK+ [19]. 

Subsequent research explored deeper architectures such as 

ResNet, which introduced residual connections to mitigate 

vanishing gradient problems, enabling very deep networks to be 

trained effectively [20]. ResNet-34 and ResNet-50 models 

achieved high recognition accuracy across multiple datasets but 

required substantial computational resources. To address 

efficiency concerns, lightweight networks such as MobileNet-V1 

and ShuffleNet were proposed, offering near real-time FER 

performance on mobile and embedded devices [21]. 

Beyond CNNs, recurrent architectures such as BiLSTM 

(Bidirectional Long Short-Term Memory) were explored to 

capture temporal dynamics in video-based FER [22]. For 

instance, EJH-CNN-BiLSTM architectures combined 

convolutional feature extractors with recurrent layers to model 

both spatial and temporal dependencies, achieving strong 

performance on video FER benchmarks. Similarly, Autoencoder-

based architectures such as DCNN-Autoencoder were proposed 

for unsupervised feature learning, improving robustness against 

noisy inputs [23]. 

Despite these advances, deep learning models exhibit two 

persistent issues: (i) overfitting on small datasets due to limited 

labeled samples, and (ii) poor calibration of prediction 

confidence, where the model outputs overconfident incorrect 

predictions [24]. These shortcomings necessitate improved 

frameworks that balance accuracy, computational efficiency, and 

reliability. 

2.4 FER WITH UNCERTAINTY MODELING AND 

EVIDENTIAL LEARNING 

Traditional deep learning models optimize for classification 

accuracy but rarely incorporate mechanisms to quantify 

prediction uncertainty. This limitation is critical in FER, where 

ambiguous or overlapping expressions often lead to 

misclassification. To overcome this, Bayesian Deep Learning 

approaches were explored, introducing probabilistic reasoning 

into neural networks [25]. While Bayesian CNNs improved 

uncertainty handling, their computational cost and training 

complexity limited real-world deployment. 

Recent advances in Evidential Deep Learning (EDL) provided 

a promising alternative by modeling prediction uncertainty using 

evidence theory [26]. Unlike standard CNNs that output softmax 
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probabilities, EDL frameworks quantify both the predicted class 

probability and the associated uncertainty. This is particularly 

useful in FER, where subtle expressions such as fear and disgust 

often overlap, and the system must indicate low confidence 

instead of making incorrect decisions. EDL thus enhances 

trustworthiness and robustness in applications such as healthcare 

and surveillance, where misinterpretation of emotions may have 

significant consequences [27]. 

Hybrid architectures that combine classical feature 

localization with deep evidential learning are still underexplored. 

For instance, leveraging Haar Cascade classifiers for Region of 

Interest (ROI) detection before deep learning classification offers 

two benefits: (i) computational efficiency by focusing on critical 

facial regions (eyes, nose, mouth), and (ii) improved robustness 

by reducing irrelevant background noise [28]. Integrating Haar 

Cascade with CNN+EDL represents a novel direction for FER 

research, bridging traditional localization with advanced 

uncertainty-aware classification. 

3. FER 

Many studies conducted by numerous people all around the 

world have demonstrated the relevance of FER in the field of 

human-computer interaction (HCI). This section covers a few 

research pertinent to the same field. On the Japanese Female 

Facial Expression (JAFFE) database, the capacity of a hybrid 

algorithm combining the Dual-Tree M-Band Wavelet Transform 

(DTMBWT) algorithm with energy, entropy, and Gray-level Co-

occurrence Matrix (GLCM) to identify seven unique facial 

expressions is evaluated. Among these are neutral, surprise, 

disgust, fear, happiness, and sadness as well as anger. Results of 

the experiments reveal that the proposed approach shows a 

precision of 99.53% observed at the fourth decomposition level 

of the DTMBWT. This facilitates more exact recognition of facial 

expressions than other methods. We propose a new approach for 

the retrieval of image features based on Gabor filters. This method 

uses Gabor convolution responses and filter orientations in a 

histogram-based feature vector to test three different datasets 

under both controlled and uncontrolled conditions: CK+, MMI, 

and SFEW. The results let the research conclude that the proposed 

feature extraction method surpasses the most evolved texture 

descriptors. 

Based on selective feature extraction, this method seeks to 

extract features in order to address issues of growing redundant 

information and the challenges in template search. The 

experiment shows that the method can reach a suitable recognition 

rate and has a good degree of robustness to a wide spectrum of 

illumination. Feature extraction is suggested to be accomplished 

using a hybrid approach comprising the DCT, Gabor Filter, 

Wavelet Transform, and Gaussian Distribution. While the 

Wavelet Transform method, the Gabor Filter method, the DCT 

method, and the Gaussian Distribution method have a recognition 

rate of 75.94%, 64.11%, 67.5%, and 63.14 percent respectively, 

the proposed techniques have a recognition rate of 93.4%. 

Inspired by the position of facial landmark points, during the 

course of the research the features were extracted from active 

facial patches. Moreover, combined are the characteristics of the 

several subregions to generate a whole image representation. This 

increases performance simultaneously by lowering the 

computation cost. With appropriate degree of accuracy, the 

proposed method proved rather successful for the CK+ and 

JAFFE databases as well as for determining all expression classes 

of several subjects. In terms of expression recognition, 

concatenation of shape and appearance elements shows better 

than single elements. 

3.1 PREPROCESSING 

By means of better quality of the facial images entered it, 

preprocessing serves in the research of the most important roles 

in enhancing the accuracy and efficiency of the FER system. Raw 

facial images collected from many sources, public datasets or 

social media, often show differences in terms of illumination, 

scale, orientation, and noise. Several preprocessing methods 

affect the standardizing of the input data and rendering it fit for 

feature extraction and classification. 

3.1.1 Image Resizing: 

Different size and resolution of facial images would cause the 

CNN model to get varying input dimensions. Resizing guarantees 

that every input image is changed to a predefined size, so enabling 

consistent feature extraction and uniform processing. The 

research defines the resizing action as follows: 

  '   ,  ,  I R I w h  (1) 

where, 

I = original image matrix 

w = target width of the image 

h = target height of the image 

R = resizing operation using bilinear or bicubic interpolation 

Weighted averaging the four pixel values closest to the 

original image allows bilinear interpolation to determine the 

intensity value of the resized pixel. Since bicubic interpolation 

produces usually better results, it is advised for the preservation 

of fine details in facial features considering 16 surrounding pixels. 

3.1.2 Grayscale Conversion: 

Usually used to capture face pictures, the RGB format 

comprises of three color channels: red, green, and blue. Reducing 

the computational complexity and data simplification without 

sacrificing the required feature information helps the image to be 

a single-channel grayscale form. This is so since knowledge of 

facial expressions depends not on color information. A grayscale 

conversion is obtained with respect to the weighted sum of the 

RGB channels: 

 
( , ) 0.2989 ( , ) 0.5870 ( , )

0.1140 ( , )

grayI x y R x y G x y

B x y

   

 
 (2) 

where, 

( , )grayI x y = grayscale pixel value at coordinates (x,y) 

R(x,y), G(x,y), B(x,y) = red, green, and blue pixel intensities at 

coordinates (x,y) 

In terms of human visual perception, the weighting elements 

reflect the reality that green increases the apparent brightness 

more than either red or blue can do. 
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3.1.3 Histogram Equalization: 

Variations in lighting and unequal illumination can change the 

contrast of facial features, thus recognition of them becomes more 

challenging. Enhanced contrast is obtained by histogram 

equalization, the technique of distributing pixel intensity values 

over the accessible range. This facilitates the better separation of 

facial landmarks. The research defines the transforming power as 

follows: 

 

0

( 1)
( ) ( )

i

j

L
T i h j

MN



   (3) 

where, 

T(i) = transformed intensity value 

L = maximum intensity value (usually 255) 

M,N = dimensions of the image 

h(j) = histogram value at intensity j 

To increase contrast and reveal minute facial features 

including wrinkles, eye forms, and mouth curvature by means of 

the cumulative distribution function (CDF), which maps the 

original intensity values to a new range. 

3.1.4 Noise Reduction (Gaussian Smoothing): 

Variations in lighting, camera quality enhancements, or 

environmental conditions can all produce noise in face images. 

Gaussian smoothing reduce noise without sacrificing edge 

integrity or notable feature integrity. This defines the Gaussian 

filter: 

 

2 2

22
2

1
( , )

2

x y

G x y e 






  (4) 

where, 

G(x,y) = value of the Gaussian kernel at coordinates (x,y) 

σ = standard deviation of the Gaussian distribution 

The filtered image is computed using convolution: 

 ( , ) ( , ) ( , )
k k

i k j k

I x y I x i y j G i j

 

       (5) 

where, 

I(x,y) = input image intensity at pixel (x,y) 

k = size of the filter kernel 

I′(x,y) = smoothed image 

Gaussian smoothing helps to reduce high-frequency noise and 

sharp changes so improving the accuracy of following feature 

extraction. 

3.1.5 Face Detection and Alignment: 

Face detection and alignment follows noise reduction and 

contrast enhancement to split the Region of Interest (ROI). Haar 

Cascade based classifiers identify key facial landmarks including 

the eyes, nose, and mouth. Once these locations have been found, 

affine transformation helps to match the face to a conventional 

orientation: 

 ( , )

1

x

T x y A y

 
 

 
 
  

 (6) 

where, 

T(x,y) = transformed coordinates after alignment 

A = affine transformation matrix computed from the detected eye 

and nose positions 

By guaranteeing that facial features seem in a constant 

position, Affine transformation helps to reduce the variation that 

can result from head tilt or rotation. 

3.1.6 Pixel Normalization: 

Pixel intensity values are normalized over CNN training to lie 

between [0, 1] so improving convergence. Normalizing the 

influence of various brightness helps to lower it as well as 

improve the stability of training surroundings. The equation of 

normalisation looks like this: 

 
( , )

( , )norm
I x y

I x y





  (7) 

where, 

I(x,y) = original pixel value 

μ = mean pixel intensity 

σ = standard deviation of pixel intensities 

This stage ensures that every input value falls within a normal 

range, so improving the CNN’s ability to spot minute variations 

in facial expression. 

4. PROPOSED FEATURE EXTRACTION 

Technical aspects of the Facial Expression Recognition 

system make use of freely available hardware resources derived 

from Google Colab. After downloading from Kaggle, the dataset 

is preprocessed and then the Tensorflow 2.0 Python tool aids in 

feature identification of most importance. At last, the model picks 

knowledge from the acquired data. Real-world or downloaded 

from social media sites, facial images are gathered to create a 

dataset for the testing of facial expression recognition system. 

Using the Haar Cascading algorithm with Python and the 

OpenCV library, a set of programming tools for real-time 

computer vision, one method to accomplish the job of extracting 

the most important features is Haar Cascading, which is the 

technique of feature extraction applied here. This approach seeks 

and compiles the most crucial components, the mouth, the nose, 

the left and right eyes, and the nose. Following feature extraction, 

the CNN classifier makes predictions with the best possible 

degree of accuracy regarding facial expressions.  

The FER process begins with the input of facial images either 

captured or downloaded from social media sites. Following the 

pre-processing phase, the Haar cascade approach is used to find 

particularly significant specific features from the final facial 

image. Particularly the left eye, the right eye, the nose, and the 

mouth are the elements drawn from the Region of Interest (ROI). 

Feeding the obtained features for classification, the CNN 

classifier, which has been pre-trained for the classification of 

seven facial expressions, namely, being happy, sad, disgusted, 

surprised, afraid, angry, and neutral, is classified. The features 
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enable the research to determine the face expression with the most 

degree of accuracy. 

FER systems start with feature extraction, the process of 

identifying significant facial traits including edges, lines, and 

texture patterns to differentiate between various facial 

expressions. By extracting center-surround, line, and edge 

features, the proposed method uses the Haar Cascade Algorithm 

to detect prominent facial landmarks. These sites comprise the 

mouth, the nose, the left eye, and the right eye. Haar Cascade 

classifiers evolve from the concept of Haar features, which define 

the contrast between consecutive rectangular sections in an image. 

These elements enable the research to recognize structural 

patterns like lines and edges, which are necessary for the 

identification of facial expressions. 

Facial verification, which means matching it to a specific 

database, is used to verify that the claimed person is indeed the 

same one. On the other hand, facial recognition serves just to 

identify the person. Among other things, facial recognition mostly 

depends on the ability to recognize basic components of a human 

face, including lips, nose, eyes, and eyebrows. Haar Wavelets, 

also known as Haar Features, let the research detect these 

characteristics from an image or in real time. Later known as the 

Haar features, Alfred Haar first proposed a set of rescaled square 

form functions in 1909. Their look is reminiscent of the 

convolution kernels covered in the convolution neural networks. 

All the pertinent facial characteristics are used in these Haar 

features to recognize a human face. Figure 4.3 graphically 

displays the several Haar features: edge feature, line feature, four-

rectangle feature, edge feature, line feature, and so on. 

The rectangular areas comprising Haar have no tilt for the 

advantage of computational economy. Enough capture of the 

several properties and scale variations found in an object is 

achieved using different sized and shaped rectangles. Haar 

features thus mostly benefit from their capacity to reflect three 

patterns, which defines their nature: 

1. Edge features: Depending on our perspective of the 

rectangular area, its edges might be horizontal or vertical. 

Their aid lets the research more precisely define the 

boundaries between the several image feature sections. 

2. Line features: The line found in an image defines its 

diagonal edges. These lines and contours of an object help 

the research to discover their direction. 

3. Center-surrounded features: This feature picks out 

differences in intensity between the area around a 

rectangular section and its center. This enables the research 

to spot images with obvious form or pattern. 

The edge features and the line features, show different facial 

traits, including the eyes, nose, and mouth. Since the forehead and 

the eyebrow form lighter pixels to darker pixels, like an image, 

the Haar edge feature helps to identify the eyebrow. In a same 

vein, the Haar line feature will be applied with lighter-darker-

lighter pixels to identify lips. Along with other aspects, a darker-

lighter Harr-like edge feature would help nose detection. We 

simply subtract the total number of pixels under the white area 

from the total number of pixels under the black region to obtain 

features for each one of these five rectangular areas. This allows 

us to create features using these five rectangular areas and the 

corresponding difference in sums that will help us to classify 

different areas of a face. 

4.1 EDGE FEATURES 

From the perspective of the picture, edge characteristics help 

to capture sudden variations in pixel intensity that correspond 

with the limits of facial components including the eyes, eyebrows, 

nose, and mouth. Haar features for edges are computed using 

adjacent rectangular areas with different intensities as 

computation elements. The edge feature value is obtained by 

subtracting the total of the pixel intensities in two adjacent areas 

by the difference between those intensities: 

 

1 2

( ) ( )edge
i R j R

f I i I j

 

    (8) 

where, 

fedge = edge feature value 

I(i) = intensity value of pixel I in the first region (R1) 

I(j) = intensity value of pixel j in the second region (R2) 

Effective edge features, that which clearly contrast with the 

surrounding skin areas, help the research to detect the limits of the 

eyes, nose, and mouth. 

4.2 LINE FEATURES 

The contours of the eyes, the bridge of the nose, and the area 

around the mouth help the research to find linear patterns on the 

face. We compute Haar features for lines with a three-region 

filter. This filter provides a contrast between the respective 

intensities of the central region and the surroundings: 

 

1 2 3

( ) ( ) ( )line
i R j R k R

f I i I j I k

  

      (9) 

where, 

fline = line feature value 

R1 and R2 = adjacent regions 

R3 = central region 

The mouth can be seen as a horizontal line feature; the lips 

draw attention to themselves in contrast to the lighter complexion 

by their darker part in the middle. 

4.3 CENTER-SURROUND FEATURES 

Center-surround characteristics enable the research to identify 

changes in intensity limited inside face areas. We computationally 

derive these properties using a four-region Haar filter in which the 

intensity of the central region is matched with the intensity of the 

surrounding areas. 

 

1 2 3 4

( ) ( ) ( ) ( )cs
i R j R k R l R

f I i I j I k I l

   

        (10) 

where, 

fcs = center-surround feature value 

R1, R2 = adjacent bright regions 

R3, R4 = adjacent dark regions 

Center-surround elements enable the research to recognize 

oval or round forms, such the mouth opening during emotions like 

surprise or anger. 



ISSN: 2229-6948(ONLINE)                                                                                     ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2025, VOLUME: 16, ISSUE: 03 

3657 

4.4 HAAR CASCADE ALGORITHM 

A cascade of classifiers forms the Haar Cascade algorithm. 

Every level of the cascade uses a set of Haar features to 

progressively filter out regions lacking face contours. The method 

detailed below consists in the tasks listed below: 

4.4.1 Integral Image Calculation: 

We accelerate the Haar feature computation using an integral 

image representation. This representation facilitates quick 

computation of the pixel value total inside a rectangular area. Here 

is defined the integral image at any point (x,y): 

 

0 0

( , ) ( , )
yx

i j

II x y I i j

 

  (11) 

where, 

II(x,y) = integral image value at point (x,y) 

I(i,j) = pixel intensity value at point (i,j). 

The research may find the total of pixel values inside any 

rectangular area R by means of four reference points from the 

integral image: 

          2, 2 1, 2 2, 1 1, 1S R II x y II x y II x y II x y     (12) 

where, 

S(R) = sum of pixel values within region R 

(x1,y1) and (x2,y2) = top-left and bottom-right corners of the 

region 

4.5 ADABOOST CLASSIFIER 

The AdaBoost (adaptive boosting) algorithm is used in the 

cascade classifier to select among a great variety of Haar features 

accessible the ones with the strongest degree of discrimination. 

Every feature in line with the degree of accuracy with which the 

AdaBoost algorithm labels them receives weights: 

Initialize equal weights for all features. 

For each feature, compute the classification error: 

 

1

| ( ) |
N

i i i
i

w h x y



 ò  (13) 

where, 

wi = weight for sample I 

hi(x) = classifier output for sample I 

yi = true label for sample I 

Update the weights based on the error: 

 
( )i iy h x

i iw w e


   (14) 

where, 

α = weight adjustment factor based on classification accuracy 

Repeat the process until the desired classification accuracy is 

achieved. 

4.6 CASCADE CLASSIFICATION 

The Haar Cascade classifier is composed of several weak 

classifier stages stacked in a cascade sequence. On the other hand, 

a window is thrown away since failing all the stages renders it not 

considered as a face. Every stage has the following decision 

function: 
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where, 

hi(x) = weak classifier output at stage I 

T = threshold value for positive classification 

The first stages of the cascade are supposed to rapidly 

eliminate most non-face areas, so simplifying the computation by 

eliminating most of its complexity. 

4.7 LANDMARK DETECTION 

After the face has been located, the Haar Cascade method is 

used to identify facial landmarks: 

• Left Eye and Right Eye: The left and the right eyes can be 

found by edge features and center-surround patterns 

stressing the contrast between the dark iris and the white 

sclera. 

• Nose: The research can find the nose by running along the 

vertical bridge and using the center-surround patterns 

encircling it. 

• Mouth: Line features running along the upper and lower lips 

as well as edge features defining the mouth opening help the 

research to locate the mouth. 

4.8 CNN CLASSIFICATION 

Then fed the extracted significant features from the 

preprocessed facial image, a CNN algorithm, a deep learning 

method analyzing and identifying images, is these helps the CNN 

algorithm to identify and evaluate images. The CNN algorithm 

then projects facial expressions using the features to ascertain a 

person’s mental state, so providing the best degree of accuracy. 

Mostly for their ability to automatically learn spatial hierarchies 

of features from input images, CNNs are extensively applied in 

FER operations. Seven categories define CNN model-based 

classification of facial expressions: happy, sad, disgust, surprise, 

fear, angry, and neutral. Among the several phases of the 

classification process are fully connected layers, pooling, 

convolutional filtering, and activation. These stages work 

together to extract important trends from facial images and map 

them to the emotional states that complement those trends. 

4.8.1 Input Layer: 

Preprocessed grayscale facial images with dimensions M×N 

form the CNN’s input. The tensor being input exhibits itself as: 

 1M NX    (16) 

where, 

M = height of the image 

N = width of the image 

The single channel (grayscale) is represented by 1. The 

grayscale image reduces the computational complexity even if the 

required knowledge about facial expressions is maintained. 
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4.8.2 Convolutional Layer: 

Through sliding a set of learnable filters, also known as 

kernels, crossing the input image, the convolutional layer extracts 

spatial patterns including edges, textures, and curves. Every filter 

computes a feature map by dot product between its weights and 

an input image local receptive field. The convolutional layer 

generates outputs defined as follows: 

 
1 1

( ) ( ) ( )
, ,

0 0

H W
k k k

i m j n m nij
m n

Y X K b
 

 
 

     (17) 

where, 

( )k
ijY = output feature map at position (i,j) for filter k 

,i m j nX   = input image pixel value at position (i+m,j+n) 

( )
,

k
m nK  = filter weights for filter k 

b(k) = bias term for filter k 

H,W = height and width of the filter 

Every filter is taught to recognize particular patterns in facial 

components, that is, horizontal or vertical edges, curves, and 

textures, such as those found in mouth corners and eyebrows, so 

facilitating their identification. 

4.8.3 Activation Layer: 

Non-linearity added into the network allows an activation 

function to let the network copy intricate patterns. Applying the 

Rectified Linear Unit (ReLU) sequentially helps to eliminate 

negative values and introduce sparsity by means of the feature 

maps: 

 ( ) max(0, )f x x  (18) 

where, 

x = input value from the convolution operation 

ReLU not only speeds up the training process but also helps to 

avoid the vanishing gradient problem, so enabling the model to 

learn expressive patterns from facial expressions. 

4.8.4 Pooling Layer: 

By helping to reduce the dimensionality of the feature maps, 

the pooling layer preserves the salient features while concurrently 

decreasing the number of parameters and the computational 

complexity needed. From every local patch of the feature map, 

maximum value is then selected using max pooling. Clearly 

defining max pooling as follows: 

 
1 1

,0 0max max
p pH W

ij i m j nm nP Y
 

    (19) 

where, 

Pij = pooled feature at position (i,j) 

Hp,Wp = height and width of the pooling window 

Max pooling preserves most of the features; less significant 

variations are thrown out. This increases the system’s resistance 

to minor facial motions and variations in lighting. 

4.8.5 Dropout Layer: 

Once the pooling operation concludes, a dropout layer is 

added to prevent overfitting. Dropout is a training approach 

whereby some of the neurons are randomly deactivated to propel 

the model toward more generalised relationships. Implementing 

dropout yields the following: 
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where, 

Zi = output after dropout 

Yi = input value from the previous layer 

p = dropout probability 

Dropout drives the network to avoid depending on particular 

neurons, so improving generalizing performance. 

4.8.6 Fully Connected Layer: 

The last convolutional and pooling layers’ output first forms a 

one-dimensional vector then passes via a fully connected layer to 

complete the process. The responsibility of the fully connected 

layer is to simultaneously apply a bias term and combing the 

weighted sum of the inputs: 
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where, 

Fi = output at neuron I in the fully connected layer 

Wij = weight between neuron j and neuron I 

Zj = input from the previous layer 

bi = bias term 

Integrating global information on the facial patterns, the fully 

connected layer creates a high-dimensional feature representation 

of the input image. 

4.8.7 Softmax Layer (Classification Layer): 

The last result then passes via a softmax layer to convert the 

raw class scores into probability values for every expression 

category. Defining the softmax function thus: 
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 (22) 

where, 

P(yi) = probability of class I 

Fi = output from the fully connected layer for class I 

C = number of classes (7 for the proposed model) 

The softmax function distributes a probability to each of the 

seven classes. Classes here are positive, negative, disgusted, 

surprising, fearful, angry, and neutral. By means of highest 

probability, The research can determine the expected class: 

 ˆ argmax ( )i iy P y  (23) 

where, 

ŷ  = predicted class label 

4.8.8 Loss Function and Optimization: 

Model training uses the categorical cross-entropy loss 

function. This aim measures the variations between the expected 

and actual label distributions: 



ISSN: 2229-6948(ONLINE)                                                                                     ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2025, VOLUME: 16, ISSUE: 03 

3659 

 

1

log( ( ))
C

i i
i

L y P y



    (24) 

where, 

yi = ground truth label for class I 

Using the Adam optimizer, sometimes known as Adaptive 

Moment Estimation, helps to lower the loss. These update rules 

guide this optimizer in adjusting the model weights: 

 1 1 1(1 )t t tm m L      (25) 
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where, 

mt,vt = first and second moment estimates 

β1,β2 = decay rates 

∇Lt = gradient of the loss 

η = learning rate 

ϵ = small value for numerical stability 

4.9 CLASSIFICATION OUTPUT 

The vector of size C with the probability connected with every 

class of facial expression is the last outcome of the classification 

process. The research considers the maximum softmax score to 

determine the expected class X. 

5. EXPERIMENTS 

The experiments were conducted using Python 3.10 as the 

programming environment with TensorFlow 2.x and Keras for 

deep learning model implementation. Image preprocessing tasks, 

including Haar Cascade detection and histogram equalization, 

were performed using OpenCV and scikit-image, while NumPy 

and Pandas handled numerical operations and dataset 

management. For result visualization, Matplotlib was used 

extensively. To ensure reproducibility, all random seeds were 

fixed to a common value across NumPy and TensorFlow. 

All experiments were executed on Google Colab GPU 

runtime, which provided an NVIDIA T4 GPU (16 GB VRAM) 

alongside Intel Xeon vCPUs and approximately 12–25 GB of 

system RAM. The environment allowed training at scale while 

supporting rapid experimentation with checkpoints. Dataset 

storage and logs were managed via Google Drive integration with 

Colab. 

The primary dataset used was FER2013, consisting of 48×48 

grayscale images across seven emotion classes: happy, sad, angry, 

fear, disgust, surprise, and neutral. For completeness, CK+ and 

JAFFE datasets were also referenced in qualitative evaluations, 

although FER2013 was the benchmark dataset for all reported 

quantitative results. The FER2013 dataset was split into 70% 

training, 10% validation, and 20% testing, with stratified 

sampling applied to preserve class balance. Training proceeded 

for up to 100 epochs, with early stopping applied based on 

validation loss (patience of ten epochs). The evaluation focused 

on comparing the proposed CNN+EDL model with established 

baselines, including CNN, ResNet-34, MobileNet-V1, EJH-

CNN-BiLSTM, and DCNN-Autoencoder. 

5.1 EXPERIMENTAL SETUP 

The experimental pipeline began with preprocessing, where 

all input images were resized to 48×48 pixels and converted to 

grayscale. Histogram equalization was applied to enhance local 

contrast, with global equalization as the default and CLAHE (clip 

limit = 2.0, tile size = 8×8) tested for ablation. Gaussian 

smoothing with a 5×5 kernel and σ = 1.0 was used to suppress 

noise while preserving edges. Haar Cascade classifiers detected 

regions of interest such as eyes, nose, and mouth, with each region 

cropped using a 10% padding margin. These cropped faces were 

then aligned using affine transformations based on eye centers, 

followed by per-image z-score normalization. 

To improve generalization, online data augmentation was 

applied during training, including random rotations of up to ±15°, 

horizontal flipping with a probability of 0.5, width and height 

shifts of ±10%, and zoom variations between 0.9 and 1.1. Models 

were trained with a batch size of 64, while heavier architectures 

such as ResNet occasionally required a reduced batch size of 32 

to fit GPU memory constraints. 

Optimization employed the Adam optimizer with an initial 

learning rate of 1×10⁻³, decayed to 1×10⁻⁵ using cosine 

scheduling. Dropout was incorporated in convolutional layers (p 

= 0.3) and fully connected layers (p = 0.5) alongside L2 

regularization (1×10⁻⁴) to mitigate overfitting. For baseline 

models, categorical cross-entropy served as the loss function, 

while the proposed CNN+EDL used an evidential loss function, 

which combined cross-entropy with an uncertainty-based 

evidence regularizer (λ = 1×10⁻³). 

The CNN architecture consisted of three convolutional blocks 

with 3×3 filters and filter depths of 32, 64, and 128, each followed 

by batch normalization, ReLU activation, and 2×2 max pooling. 

A global average pooling layer fed into a dense layer of 256 units 

with ReLU activation, followed by dropout and a final output 

layer with seven neurons for classification. The baseline models 

included ResNet-34 with residual connections, MobileNet-V1 

with depthwise separable convolutions, EJH-CNN-BiLSTM to 

capture temporal features, and DCNN-Autoencoder for 

unsupervised feature representation. 

Throughout training, the best model checkpoint was selected 

based on validation macro F1-score. Logging captured epoch-

wise metrics including accuracy, precision, recall, and F1-score 

for both training and validation. On the test set, confusion 

matrices were generated for class-wise error analysis. 

5.2 PERFORMANCE METRICS 

The system’s performance was assessed using four standard 

classification metrics: accuracy, precision, recall, and F1-score. 

Accuracy represents the overall proportion of correctly classified 

samples and is computed as the ratio of true positives and true 

negatives to the total predictions. While accuracy provides a 

straightforward overview of performance, it may not adequately 

reflect model quality in the presence of class imbalance, which is 

common in FER datasets. 

Precision measures the fraction of correct positive predictions 

out of all predicted positives. It penalizes false positives and is 
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critical in FER, where misclassifying neutral expressions as 

negative ones could reduce user trust in HCI applications. Recall, 

on the other hand, evaluates the fraction of actual positives that 

were correctly identified. It penalizes false negatives and is 

especially important in safety-critical scenarios, such as detecting 

sadness or fear in healthcare contexts. 

 

Fig.1. Accuracy (%) 

Table.1. Accuracy (%) 

Epochs CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

20 82.1 84.2 81.5 85.6 83.4 87.3 

40 85.4 86.9 84.7 88.0 86.2 90.5 

60 87.2 88.3 86.9 90.1 88.1 93.2 

80 88.6 89.4 87.8 91.4 89.5 95.4 

100 89.5 90.2 89.1 92.6 90.7 97.1 

 

Fig.2. Precision (%) 

Table.2. Precision (%) 

Epochs CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

20 80.3 81.7 79.2 82.6 80.9 85.2 

40 83.9 84.5 82.3 85.1 84.0 88.4 

60 85.6 86.2 84.5 87.9 85.8 91.0 

80 87.1 87.8 85.9 89.5 87.2 93.1 

100 88.2 88.9 87.6 90.8 88.9 95.6 

 

Fig.3. Recall (%) 

Table.3. Recall (%) 

Epochs CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

20 79.1 80.2 78.4 81.3 79.5 83.5 

40 82.7 83.4 81.5 84.0 82.6 86.7 

60 84.9 85.1 83.8 86.8 85.1 89.8 

80 86.5 87.0 85.1 88.7 86.5 92.0 

100 87.6 88.1 86.3 90.2 88.0 94.5 

 

Fig.4. F1-Score (%) 

Table.4. F1-Score (%) 

Epochs CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

20 79.7 80.9 78.8 81.9 80.2 84.3 

40 83.3 83.9 81.9 84.5 83.3 87.5 

60 85.2 85.6 84.1 87.3 85.4 90.4 
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80 86.8 87.4 85.5 89.1 86.8 92.6 

100 88.0 88.6 87.0 90.5 88.4 94.9 

The F1-score, defined as the harmonic mean of precision and 

recall, balances the two metrics and is particularly effective in 

evaluating systems under class imbalance. This metric was used 

as the primary evaluation criterion in the experiments since it 

offers a fair comparison across all classes. All metrics were 

macro-averaged across the seven classes, ensuring that rare 

emotions such as disgust and fear carried equal weight in the final 

evaluation. 

 

Fig.5. Accuracy (%) per Emotion 

Table.5. Accuracy (%) per Emotion 

Emotion CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

Happy 92.3 93.6 91.2 94.4 93.0 96.2 

Sad 89.4 90.1 88.3 91.5 90.0 94.1 

Disgust 85.7 86.9 84.1 88.5 86.2 91.3 

Fear 83.5 84.8 82.0 86.7 84.5 90.2 

Angry 88.0 89.2 86.7 90.6 88.9 93.5 

Surprise 91.6 92.5 90.2 93.3 91.8 95.6 

Neutral 90.2 91.0 89.3 92.1 90.6 94.4 

 

Fig.6. Precision (%) per Emotion 

Table.6. Precision (%) per Emotion 

Emotion CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

Happy 91.1 92.7 90.2 93.5 92.0 95.0 

Sad 88.2 89.6 87.4 90.3 89.0 92.8 

Disgust 84.1 85.4 83.2 86.7 85.0 89.5 

Fear 82.4 83.6 80.7 85.2 83.1 88.6 

Angry 87.2 88.3 85.5 89.3 87.8 92.2 

Surprise 90.4 91.5 89.0 92.1 90.6 94.3 

Neutral 89.3 90.0 88.0 91.0 89.7 93.0 

 

Fig.7. Recall (%) per Emotion 

Table.9. Recall (%) per Emotion 

Emotion CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

Happy 90.6 91.9 89.7 92.7 91.2 94.5 

Sad 87.5 88.8 86.1 89.7 88.2 91.5 

Disgust 82.8 84.2 81.9 85.3 83.5 88.0 

Fear 80.9 82.0 79.5 83.7 81.7 86.9 

Angry 85.5 86.7 84.0 87.5 86.0 90.7 

Surprise 89.5 90.6 88.2 91.3 89.8 93.4 

Neutral 88.2 89.1 87.2 90.0 88.7 92.2 
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Fig.8. F1-Score (%) per Emotion 

Table.8. F1-Score (%) per Emotion 

Emotion CNN 
Res 

Net-34 

Mobile 

Net-V1 

EJH-CNN- 

BiLSTM 
DCNN-AE 

CNN+ 

EDL 

Happy 90.9 92.3 89.9 93.1 91.6 94.7 

Sad 87.8 89.2 86.7 90.0 88.6 92.1 

Disgust 83.4 84.8 82.5 86.0 84.2 88.7 

Fear 81.6 82.8 80.1 84.4 82.4 87.7 

Angry 86.3 87.5 84.7 88.4 86.9 91.4 

Surprise 89.9 91.0 88.6 91.7 90.2 93.8 

Neutral 88.7 89.5 87.6 90.5 89.2 92.6 

The CNN+EDL model consistently outperforms existing 

methods as in Table.1- Table.4. Notably, it achieves the highest 

accuracy (97.1%) and F1-score (94.9%) by the 100th epoch, 

indicating superior generalization and balance between precision 

and recall. The EJH-CNN-BiLSTM and ResNet-34 offer strong 

results in mid-range epochs but plateau earlier than the model. 

The enhanced learning capabilities and uncertainty modeling in 

CNN+EDL enable more robust and accurate emotion recognition, 

which is valuable in real-time and socially assistive technologies. 

The results as in Table.5-Table.8 demonstrate that the 

CNN+EDL model consistently outperforms traditional methods 

across all seven basic emotions. In terms of accuracy, the model 

reaches a peak of 96.2% for “Happy” and maintains strong scores 

for challenging classes like “Disgust” (91.3%) and “Fear” 

(90.2%), which are often confused with other emotions. 

Compared to the CNN and MobileNet-V1, which tend to 

underperform on subtle emotions, the method shows a clear 

advantage due to its enhanced uncertainty handling and 

hyperparameter tuning using genetic algorithms. Precision and 

recall values are also significantly higher, indicating the model’s 

reliability in detecting both presence and absence of emotions 

without generating excessive false positives or negatives. For 

example, the recall for “Angry” is 90.7%, outperforming the next 

best (EJH-CNN-BiLSTM) by over 3%. The F1-score, 

representing the harmonic mean of precision and recall, further 

supports this conclusion, with an average gain of 3–5% across all 

classes compared to the strongest baselines. This shows that 

CNN+EDL not only achieves higher correctness but also 

maintains class balance even in complex multi-emotion scenarios. 

6. CONCLUSION 

Under normal circumstances, the model of facial expression 

recognition can reasonably predict the several types of emotions 

individuals experience. From happiness to sadness, from anger to 

disgust, from fear to surprise, from neutrality these emotions run. 

On the other hand, predicting all these feelings is challenging 

work. The output of this research leads the research to suggest a 

facial expression recognition system. The model has been taught 

using seven distinct facial expressions inspired by the FER2013 

collection. After preprocessing, the Haar Cascade approach 

suggested is applied to extract the features from the obtained 

facial images. Then the CNN model recognizes the seven 

fundamental facial expressions. The performance degree of the 

system is obtained from accuracy as a benchmark. Extraction of 

the salient features from the facial images using the Haar Cascade 

technique significantly improves the accuracy of the model, it was 

observed over the tests. 
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