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Abstract 

Blind Source Separation (BSS) plays a crucial role in signal 

processing, enabling the extraction of individual sources from mixed 

signals without prior knowledge of their origin. This capability is 

essential in applications such as speech enhancement, hearing aids, 

multimedia forensics, and human–computer interaction. Traditional 

approaches, however, often struggle with noisy environments, 

overlapping frequency components, and highly correlated audio-visual 

data streams. While Independent Component Analysis (ICA) and 

conventional matrix factorization methods have achieved 

noTable.success, their performance often degrades when signals 

exhibit sparsity or when temporal dependencies are nonlinear. In 

particular, mixed audio-visual data pose challenges due to the presence 

of redundant information, cross-domain interference, and the demand 

for high reconstruction accuracy. This study introduces an Enhanced 

Sparse Adaptive Decomposition (ESAD) framework integrated with 

Non-Negative Matrix Factorization (NMF) to address these 

limitations. The ESAD component adaptively enforces sparsity 

constraints, ensuring that the decomposed sources are well-separated 

and less prone to interference. NMF is then applied to extract 

meaningful latent structures, leveraging non-negativity to maintain 

physical interpretability of both audio and visual features. Together, 

the hybrid approach exploits both the sparsity and the structural 

coherence of the signals. Results showed a 15–20% improvement in 

separation accuracy and a noticeable enhancement in the intelligibility 

of speech under noisy conditions. 
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1. INTRODUCTION 

Blind Source Separation (BSS) has emerged as a powerful 

paradigm in signal processing, particularly in applications where 

multiple signals overlap and the goal is to recover the original 

sources without prior knowledge of their characteristics [1]. This 

capability has transformed domains such as speech enhancement, 

audio surveillance, biomedical imaging, multimedia content 

analysis, and human–machine interaction [2]. Audio and visual 

data often coexist in real-world environments, creating highly 

correlated but complex mixtures that challenge traditional 

separation methods [3]. 

Despite considerable progress, several challenges remain in 

applying BSS to real-world scenarios. First, the presence of noise 

and reverberation severely limits the efficiency of separation 

algorithms [4]. Most conventional methods, including 

Independent Component Analysis (ICA), assume statistical 

independence among sources, which is rarely satisfied in natural 

settings where signals often share overlapping frequency bands 

[5]. Second, temporal dependencies across signals, especially in 

dynamic environments such as conversations or moving visual 

objects, make separation highly non-linear and difficult to model 

[6]. Third, audio-visual mixtures carry redundant and cross-modal 

interference, further complicating accurate decoupling [7]. These 

limitations show the pressing need for hybrid approaches that can 

exploit structural and statistical features of signals more 

effectively. 

The problem with existing methods is twofold. On one hand, 

ICA and classical matrix decomposition techniques achieve 

moderate separation but degrade under sparse or non-stationary 

signal conditions [8]. On the other hand, Non-Negative Matrix 

Factorization (NMF), while effective in extracting interpretable 

latent structures, struggles when signals are dense or highly 

overlapping, leading to incomplete reconstruction [9]. 

Consequently, conventional techniques often fail to achieve 

robustness across diverse environments, which restricts their 

practical utility. 

The objectives of this research are: (i) to develop a hybrid 

blind source separation framework that addresses the weaknesses 

of conventional ICA and NMF by introducing enhanced sparsity-

driven adaptive decomposition, (ii) to benchmark the proposed 

method on challenging audio-visual datasets and demonstrate its 

robustness under noisy and correlated conditions, and (i) to 

provide an interpretable and computationally efficient solution 

that bridges the gap between theoretical advances and real-world 

deployment. 

The novelty of this study lies in its hybrid integration of 

Enhanced Sparse Adaptive Decomposition (ESAD) with Non-

Negative Matrix Factorization (NMF). Unlike existing 

approaches that rely on either statistical independence or 

structural factorization alone, the proposed framework 

simultaneously enforces sparsity and leverages non-negativity 

constraints. Sparsity ensures that signal components are well-

isolated, reducing interference, while NMF maintains physically 

interpretable decompositions for both audio and visual domains. 

This dual mechanism equips the model to handle non-linear, 

redundant, and noisy mixtures with improved separation 

accuracy. 

The contributions of this work are twofold: 

• A novel hybrid separation algorithm that integrates sparsity-

driven adaptive filtering with non-negative matrix 

factorization, offering robustness and interpretability in 

audio-visual signal decoupling. 
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• A comprehensive benchmarking study that compares the 

proposed ESAD-NMF framework with conventional ICA, 

standard NMF, and other baselines, demonstrating superior 

performance in terms of Signal-to-Interference Ratio (SIR), 

Signal-to-Distortion Ratio (SDR), and Perceptual 

Evaluation of Speech Quality (PESQ). 

2. RELATED WORKS 

Research on Blind Source Separation has spanned a broad 

spectrum of methods, ranging from statistical models to machine 

learning-driven approaches. Among the most notable early 

techniques is Independent Component Analysis (ICA), which 

assumes mutual statistical independence among sources and has 

been widely applied in speech and biomedical signal processing 

[10].  

Another classical technique, Principal Component Analysis 

(PCA), has been employed for dimensionality reduction prior to 

separation [11]. Similarly, sparse component analysis has been 

developed to exploit the sparsity property of signals, assuming 

that in the time-frequency plane, only one source is active at a 

given point [12].  

Non-Negative Matrix Factorization (NMF) introduced a 

paradigm shift by leveraging non-negativity constraints, which 

lead to parts-based, interpretable representations [13]. Variants 

such as sparse NMF, supervised NMF, and convolutional NMF 

have been proposed to address these shortcomings [14], yet 

challenges persist in terms of scalability and robustness. 

For instance, methods combining ICA with NMF have been 

explored to exploit both independence and non-negativity 

properties [15]. Similarly, adaptive filtering techniques have been 

incorporated into BSS frameworks to deal with non-stationary 

signals, enabling real-time separation under dynamic 

environments [16].  

More recently, advances in deep learning have introduced 

neural network–based separation models, including recurrent 

neural networks (RNNs), convolutional networks (CNNs), and 

transformers [17].  

3. PROPOSED METHOD 

The proposed ESAD-NMF combines sparsity-driven adaptive 

filtering with matrix factorization techniques to achieve robust 

source separation. The process is as follows: 

• Preprocessing: Mixed audio-visual data are normalized, 

and noise reduction techniques are applied to minimize 

background interference. 

• Sparse Adaptive Decomposition (SAD): A sparsity-

enforcing adaptive filter decomposes the mixed signals into 

components while minimizing overlap and redundancy. This 

step ensures that dominant features of each source are 

showed. 

• Enhanced Adaptation: The decomposition process is 

dynamically updated using adaptive learning rates, allowing 

the method to handle non-stationary signals and varying 

noise conditions. 

• Non-Negative Matrix Factorization (NMF): The 

decomposed signals are factorized into non-negative basis 

and coefficient matrices, ensuring interpretable 

representation of both audio and visual sources. 

• Reconstruction: Individual sources are reconstructed by 

mapping factorized components back into the signal space, 

producing clean and well-separated outputs. 

• Post-Processing: Refinement techniques such as Wiener 

filtering and normalization are applied to further enhance 

quality and reduce residual noise. 

3.1 PREPROCESSING 

The first stage prepares the mixed signals for decomposition 

by normalizing input data and reducing background noise. Let the 

observed mixture be represented as: 

 
1

( ) ( ) ( )
N

i

i

X t S t t
=

= +  (1) 

where X(t) is the observed signal, Si(t) denotes the ith source, and 

η(t) is the additive noise. 

Normalization ensures all signals lie within comparable 

ranges, preventing bias toward high-amplitude components. For 

noise reduction, a spectral subtraction approach is applied, where 

the noise spectrum is estimated during silent frames and 

subtracted from the observed signal. The Table.1 illustrates the 

effect of preprocessing on the signal-to-noise ratio (SNR). 

Table.1. Improvement of SNR after preprocessing 

Dataset 
Input  

SNR (dB) 

After  

Normalization (dB) 

After Noise  

Reduction (dB) 

Audio  

Mixture 1 
5.2 6.7 11.5 

Audio  

Mixture 2 
3.9 5.6 10.2 

Audio- 

Visual Set 
4.4 6.3 12.0 

As shown in Table.1, preprocessing improves the SNR by 

approximately 6–7 dB, which facilitates effective decomposition 

in subsequent stages. 

3.2 SPARSE ADAPTIVE DECOMPOSITION (SAD) 

Sparse Adaptive Decomposition is applied to isolate dominant 

features of each signal. The central idea is that most real-world 

signals are sparse in the time-frequency domain, meaning only a 

few coefficients carry significant information at any given time. 

We define the optimization problem as: 

 2

2 1minW X WS S− +‖ ‖ ‖ ‖  (2) 

where W is the mixing matrix, S is the estimated source matrix, 

and λ is the regularization parameter controlling sparsity. The ℓ1-

norm penalty enforces sparsity, ensuring fewer overlapping 

components between sources. 

The decomposition process adaptively updates the separation 

filters using gradient descent: 

 ( )( 1) ( ) 2

2

k kW W X WS+ = −  −‖ ‖  (3) 

where α is the adaptive learning rate. 
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The Table.2 demonstrates sparsity levels before and after 

applying SAD. 

Table.2. Sparsity index before and after SAD 

Signal Type Initial Sparsity Index After SAD 

Speech Mixture 0.32 0.12 

Music Mixture 0.45 0.18 

Audio-Visual Mix 0.39 0.14 

Here, the sparsity index is measured as the ratio of non-zero 

coefficients to total coefficients. Lower values indicate better 

sparsity enforcement, confirming SAD’s effectiveness. 

3.3 ENHANCED ADAPTATION 

Unlike static decomposition, the enhanced adaptation step 

dynamically tunes the filter parameters to handle non-stationary 

signals. Traditional algorithms often fail when the underlying 

source distributions change over time, as in moving speakers or 

shifting visual frames. 

We model the adaptive update using a variable learning rate 

schedule: 

 0

1
t

t





=

+
 (4) 

where αt decreases over iterations, and β controls the rate of 

decay. This ensures faster convergence in early stages and 

stability in later updates. 

Additionally, the error between estimated and observed 

signals is monitored: 

 2

2
ˆ( ) ( ) ( )E t X t X t= −‖ ‖  (5) 

and the adaptation mechanism minimizes E(t) over time. 

The Table.3 compares convergence speed of standard versus 

enhanced adaptation. 

Table.3. Iteration count to reach convergence 

Method Average Iterations Final Error (E) 

Standard Gradient 450 0.092 

Enhanced Adaptation 280 0.051 

As shown in Table.3, enhanced adaptation reduces 

convergence time by ~40% and achieves lower residual error, 

proving its efficiency in dynamic conditions. 

4. NMF 

Following SAD, the decomposed signals are fed into NMF to 

achieve interpretable separation. NMF factorizes the input matrix 

X into two non-negative matrices: 

 X WH  (6) 

where 
m rW   contains the basis vectors and 

r nH   

contains the activation coefficients. 

 

Fig.1. NMF 

The optimization is performed by minimizing the divergence 

measure: 
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subject to 0, 0W H  . 

The Table.4 reports the reconstruction error under NMF 

compared to PCA. 

Table.4. Reconstruction error across methods 

Method Reconstruction Error (RMSE) 

PCA 0.118 

Standard NMF 0.094 

ESAD-NMF 0.071 

The hybrid ESAD-NMF approach yields the lowest 

reconstruction error, indicating better interpretability and 

accuracy. 

Once the factorized components are obtained, the sources are 

reconstructed by mapping the separated features back into the 

time domain. The estimated source is expressed as: 

 ˆ ( )i i iS t W H=  (8) 

for the ith source, where Wi and Hi are the corresponding rows 

of the factorized matrices. An inverse Short-Time Fourier 

Transform (STFT) is then applied to restore the time-domain 

signals. The Table.5 shows the improvement in separation quality 

metrics. 

Table.5. Separation performance metrics 

Dataset SIR (dB) SDR (dB) PESQ 

ICA Baseline 9.1 6.7 2.15 

Standard NMF 11.4 8.2 2.46 

ESAD-NMF 14.8 11.5 3.12 

The ESAD-NMF method clearly outperforms ICA and 

standard NMF in all three metrics, especially in perceptual speech 

quality (PESQ). The final stage refines the separated signals to 

further suppress residual interference. Wiener filtering is applied, 

defined as: 

 

2

2

| ( ) |ˆ ( ) ( )
| ( ) |

i
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j

S f
S f X f
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=


 (9) 

where ˆ ( )iS f is the enhanced spectral estimate of the ith source. 



PARIMALA GANDHI AYYAVU et al.: ADVANCED BLIND SOURCE SEPARATION VIA ENHANCED SPARSE ADAPTIVE DECOMPOSITION WITH NON-NEGATIVE MATRIX  

                                                                   FACTORIZATION: BENCHMARKING PERFORMANCE IN AUDIO-VISUAL SIGNAL DECOUPLING 

3648 

Normalization ensures consistent amplitude scaling across 

reconstructed sources. The Table.6 summarizes the post-

processing improvements. 

Table.6. Effect of post-processing on output quality 

Metric Before post-processing After post-processing 

SDR (dB) 11.5 13.2 

PESQ 3.12 3.41 

SSIM (Visual) 0.84 0.91 

The improvements in Table.6 show that post-processing 

enhances both perceptual and structural quality, completing the 

separation pipeline. 

5. COMPUTING ENVIRONMENT 

All experiments were performed using a hybrid MATLAB–

Python workflow to leverage established signal-processing 

libraries and reproducible machine-learning toolchains. Signal 

pre-processing, STFT/IFFT operations, and classical baselines 

(ICA, PCA) were implemented in MATLAB R2023b (Signal 

Processing Toolbox, Audio Toolbox). NMF variants, the ESAD 

module, and post-processing blocks were implemented in Python 

3.11 using NumPy, SciPy, Librosa (for audio IO and STFT 

utilities), and scikit-learn for matrix factorization baselines; 

custom numerical routines used efficient BLAS/LAPACK calls 

via NumPy. For experiments that required accelerated matrix 

updates (large NMF factorizations, batch gradient updates), we 

used PyTorch 2.2 to exploit GPU linear algebra where indicated. 

All experiments were run on a workstation configured as 

follows: Intel Core i9-12900K CPU (16 cores, 24 threads), 64 GB 

DDR4 RAM, NVidia RTX 4090 GPU (24 GB VRAM) for 

PyTorch-accelerated runs, 2 TB NVMe SSD. Code, random 

seeds, and configuration files were stored using Git to ensure 

reproducibility; experiments were repeated five times with 

different seeds and averaged to report sTable.metrics. 

Datasets: benchmark audio-visual mixtures were created by 

synthetically mixing publicly available clean speech corpora 

(sampled at 16 kHz) and canonical visual sequences (frame rate 

25–30 fps). For reproducibility we used presegmented utterances 

with controlled SNR values (−5 dB to +10 dB) and a mix of 

reverberation conditions (anechoic, mild, and medium 

reverberation simulated using room impulse responses). 

Evaluation protocol: for each experiment we (i) split data into 

train/dev/test where required (70/10/20) for any learned 

hyperparameters, (ii) applied identical preprocessing to all 

methods (STFT with same window/hop), (i) tuned 

hyperparameters on the dev set, and (iv) reported mean ± standard 

deviation over test mixtures. 

Table.7. Experimental parameters 

Parameter Value / Description 

Audio sampling rate 16,000 Hz 

Visual frame rate 25 fps 

STFT window 32 ms (512 samples) Hamming 

STFT hop size 8 ms (128 samples) 

NMF rank (r) 40 (audio basis) / 25 (visual basis) 

Sparsity regularizer λ 0.01 (tuned in [0.001,0.05]) 

Adaptive learning rate α₀ 1e-3 (with decay) 

Learning rate decay β 1e-4 

SAD filter length 256 taps (for adaptive FIR) 

Batch size (if using batches) 16 time-frequency frames 

Optimization method Adam 

Number of iterations/ 

epochs 
300 (or until convergence) 

Post-processing 
Wiener filtering (spectral) +  

amplitude normalization 

Number of repeated runs 5 (different random seeds) 

Values reported are the defaults used in benchmarking; final 

hyperparameter values were chosen via small grid search on the 

development set. 

5.1 PERFORMANCE METRICS  

We evaluated separation output using five complementary 

metrics, three standard BSS-Eval measures for audio, one 

perceptual speech metric, and one image similarity metric for the 

visual channel. Below each metric we provide the operational 

definition and how to interpret results. 

5.1.1 Signal-to-Interference Ratio (SIR): 

SIR quantifies how well the method suppresses interfering 

(non-target) sources. Given an estimated source ˆ ( )is t and the true 

target ( )is t , BSS-Eval decomposes the estimation error into 

contributions from interference, noise, and artifacts. SIR is 

computed as: 

 

2

,target 2

10 2

interf 2

SIR 10log (dB)
is

e
=

‖ ‖

‖ ‖
 (10) 

Higher SIR indicates better suppression of other sources. 

Improvements of several dB are meaningful; a 3 dB increase 

roughly halves the interfering energy. 

5.1.2 Signal-to-Distortion Ratio (SDR): 

SDR measures overall fidelity of the estimated source by 

comparing the target energy to the total error (interference + noise 

+ artifacts): 

 

2

,target 2

10 2

interf noise artif 2

SDR 10log (dB)
is

e e e
=

+ +

‖ ‖

‖ ‖
 (11) 

SDR is the principal single-number metric for separation 

quality; higher is better. SDR captures both residual interference 

and any distortion introduced by the algorithm. 

5.1.3 Signal-to-Artifacts Ratio (SAR): 

SAR isolates artifacts introduced by the separation algorithm 

(e.g., musical noise, decomposition artifacts). It is defined as: 

 

2

,target interf noise 2

10 2

artif 2

SAR 10log (dB)
is e e

e

+ +
=

‖ ‖

‖ ‖
 (12) 



ISSN: 2229-6948(ONLINE)                                                                            ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2025, VOLUME: 16, ISSUE: 02 

3649 

Higher SAR indicates fewer algorithmic artifacts. A method 

may have good SIR but poor SAR (aggressive suppression with 

strong artifacts), so SAR complements SIR/SDR. 

5.1.4 Perceptual Evaluation of Speech Quality (PESQ): 

PESQ (ITU-T P.862) predicts perceived speech quality by 

comparing the reference and processed signals through a 

perceptual model. PESQ outputs a score typically in the range 

[1.0, 4.5] (higher = better). PESQ is sensitive to distortions 

perceptually important to human listeners and therefore 

complements signal-energy metrics. 

5.1.5 Structural Similarity Index Measure (SSIM): 

When visual streams are separated (e.g., isolated object 

textures or contrast maps), SSIM quantifies structural fidelity with 

respect to ground truth frames. For two image patches x and y, 

 
1 2

2 2 2 2

1 2

(2 )(2 )
SSIM( , )

( )( )

x y xy

x y x y

C C
x y

C C

  

   

+ +
=

+ + + +
 (13) 

where μ, σ2, σxy are means, variances, and covariance; C1, C2 

stabilize the denominator. SSIM ∈ [−1,1] (practically 0–1); values 

closer to 1 indicate better structural preservation. The research 

selects two representative baselines to compare against ESAD-

NMF: 

1. FastICA (Independent Component Analysis), classical 

statistical baseline [10] 

2. Convolutional / Sparse NMF variant (conv-NMF / sparse 

NMF), structured factorization baseline [14] 

Table.8. Signal-to-Interference Ratio (SIR, dB) across iterations 

Iter FastICA conv-NMF ESAD-NMF 

30 5.2 7.1 8.4 

60 5.6 7.8 9.3 

90 5.9 8.6 10.1 

120 6.3 9.1 10.8 

150 6.7 9.8 11.6 

180 7.1 10.4 12.5 

210 7.5 10.9 13.2 

240 8.0 11.3 14.0 

270 8.5 11.8 14.7 

300 8.9 12.1 15.2 

ESAD-NMF reaches the highest SIR and converges faster 

than the baselines (see Table.8). 

Table.9. Signal-to-Distortion Ratio (SDR, dB) across iterations 

Iter FastICA conv-NMF ESAD-NMF 

30 3.5 5.2 6.1 

60 3.8 5.8 6.9 

90 4.1 6.6 7.7 

120 4.4 7.2 8.4 

150 4.7 7.8 9.2 

180 5.0 8.5 9.9 

210 5.4 9.0 10.6 

240 5.8 9.4 11.1 

270 6.3 9.7 11.4 

300 6.8 9.9 11.6 

ESAD-NMF consistently yields higher SDR (better Thus 

fidelity) than conv-NMF and FastICA across iterations (see 

Table.9). 

Table.10. Signal-to-Artifacts Ratio (SAR, dB) across iterations 

Iter FastICA conv-NMF ESAD-NMF 

30 7.0 7.8 8.2 

60 7.1 8.1 8.7 

90 7.2 8.5 9.1 

120 7.4 8.9 9.5 

150 7.6 9.2 9.9 

180 7.8 9.5 10.1 

210 7.9 9.7 10.3 

240 8.0 9.9 10.6 

270 8.1 10.1 10.8 

300 8.1 10.2 10.5 

ESAD-NMF maintains strong SAR (fewer artifacts) while 

conv-NMF improves SAR steadily; FastICA shows modest 

artifact suppression (see Table.10).  

Table.11. PESQ (Perceptual Evaluation of Speech Quality) 

across iterations 

Iter FastICA conv-NMF ESAD-NMF 

30 1.85 2.05 2.30 

60 1.90 2.20 2.55 

90 1.95 2.35 2.75 

120 2.00 2.45 2.95 

150 2.05 2.55 3.05 

180 2.10 2.65 3.15 

210 2.12 2.70 3.22 

240 2.16 2.76 3.28 

270 2.20 2.82 3.35 

300 2.25 2.85 3.40 

ESAD-NMF achieves the largest perceptual gains (PESQ) 

over iterations, indicating noticeably better speech quality for 

listeners (see Table.11). 

Table.12. SSIM (Structural Similarity Index) for visual outputs 

across iterations 

Iter FastICA conv-NMF ESAD-NMF 

30 0.62 0.67 0.71 

60 0.63 0.69 0.74 

90 0.64 0.71 0.77 

120 0.65 0.73 0.79 

150 0.66 0.75 0.81 
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180 0.67 0.77 0.83 

210 0.67 0.78 0.85 

240 0.68 0.79 0.87 

270 0.68 0.80 0.89 

300 0.69 0.80 0.91 

As seen in Table.12, ESAD-NMF consistently outperforms 

both baselines in terms of Signal-to-Interference Ratio (SIR), 

reaching 15.2 dB at 300 iterations, compared to 12.1 dB for conv-

NMF and only 8.9 dB for FastICA. This margin of nearly 6.3 dB 

over FastICA underscores the superior interference suppression 

capabilities of the hybrid approach. Similarly, in terms of Signal-

to-Distortion Ratio (SDR, Table.9), ESAD-NMF achieves 11.6 

dB, surpassing conv-NMF (9.9 dB) and FastICA (6.8 dB). These 

improvements are significant, as even a 1–2 dB gain in SDR 

translates to noticeable fidelity enhancements in source 

reconstruction.  

Signal-to-Artifacts Ratio (SAR, Table.10) further validates 

ESAD-NMF’s robustness; while FastICA stabilizes at 8.1 dB and 

conv-NMF at 10.2 dB, the proposed method maintains 10.5 dB, 

balancing interference suppression with minimal introduction of 

artifacts. The trajectory of results also reveals faster convergence 

for ESAD-NMF, with substantial improvements already evident 

by 120 iterations, whereas the baselines require more iterations 

for modest gains. 

Beyond energy-based measures, perceptual and structural 

metrics provide additional insights. As reported in Table.11, 

ESAD-NMF attains a PESQ score of 3.40, compared to 2.85 for 

conv-NMF and 2.25 for FastICA, marking a perceptual leap of 

approximately 0.55 MOS points over conv-NMF and 1.15 points 

over FastICA. Since PESQ directly correlates with listener 

experience, these results confirm the framework’s capacity to 

deliver cleaner and more intelligible speech under noisy 

conditions. Visual signal decoupling results mirror this trend: the 

Structural Similarity Index (SSIM, Table.12) for ESAD-NMF 

improves steadily to 0.91, whereas conv-NMF and FastICA 

plateau at 0.80 and 0.69, respectively. This 17–22% relative 

improvement in SSIM indicates that ESAD-NMF not only excels 

in audio separation but also in preserving fine-grained structural 

details in visual streams.  

6. CONCLUSION 

This study introduced ESAD-NMF, a hybrid blind source 

separation framework that integrates sparsity-enforced adaptive 

decomposition with non-negative matrix factorization to address 

the limitations of conventional ICA and NMF methods. 

Experimental evaluations conducted over 300 iterations shown 

substantial improvements in both quantitative and perceptual 

metrics. Specifically, ESAD-NMF achieved superior 

performance in SIR, SDR, SAR, PESQ, and SSIM, with margins 

ranging from 15–25% improvement over conv-NMF and up to 

50–70% over FastICA. These enhancements translate into better 

interference suppression, reduced distortion, fewer artifacts, 

improved speech intelligibility, and higher visual fidelity. 

Importantly, the method exhibited faster convergence, ensuring 

computational efficiency alongside robustness. The results 

confirm that the dual enforcement of sparsity and non-negativity 

not only strengthens separation accuracy but also ensures 

interpretability and generalization across multimodal datasets. 

Thus, ESAD-NMF represents a significant advancement in blind 

source separation, with strong potential for applications in speech 

enhancement, multimedia analysis, and audio-visual 

communication systems. 
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