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Abstract 

In many sectors like healthcare, military, automotive sector, and 

manufacturing, the wireless sensor networks (WSN) have been widely 

used. Regardless of its widespread applications, WSN also have some 

limitations. Those limitations include processing power, storage 

capacity and energy supply (ES). Here, the ES is one of the major 

challenges in WSN.  To address this issue, the WSN aims to enhance 

the energy efficiency (EE). Then, the data aggregation (DA)-based 

clustering technique is suggested for resolving those challenges, as it 

balances energy consumption (EC) across sensor nodes (SN). This will 

facilitate the suggested method in improving EE. For the purpose of 

selecting cluster heads (CH) effectively, a robust search algorithm and 

faster convergence are crucial. An adaptive metaheuristic (MH) 

algorithm (AMHA) based on Tunicate Swarm Optimisation 

Algorithm (TSOA) is suggested, and it may support in optimizing deep 

foundation design and global optimization.  In every iteration, 2 crucial 

phases are included in the suggested Adaptive TSOA (ATSOA). Those 

steps include a local refinement based on the top-performing tunicate 

(TC) and a global search (GS) directed by randomly chosen TC. Thus, 

premature convergence is prevented by these changes, and it also 

supports in enhancing the exploration capabilities of the model. To 

enhance the convergence speed and optimise search accuracy (ACC), 

a new hybrid method (CSBHC) was suggested. The Cuckoo Search 

(CS) and (BHC) β-Hill Climbing are integrated in this CSBHC method. 

The benefits of the CS algorithm (CSA) with the BHC method are 

integrated in the CSBHC method, as similar to probability mechanism 

in (SA) Simulated Annealing. On the basis of an exponentially 

decreasing probability, it becomes active at every repetition. The search 

efficiency is greatly enhanced by the suggested method, and it was 

demonstrated by the comparative tests with different node density (ND). 

Thus, the routing performance and effective CH selection (CHS) are 

improved by the suggested method. 
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1. INTRODUCTION 

Precision agriculture (PA), industrial automation, military 

surveillance, smart healthcare, and environmental monitoring are 

just a few of the contemporary applications that are increasingly 

depending on WSN [1,2]. WSNs are composed of multiple low-

power SN. WSNs are designed to work together to detect, 

analyze, and send environmental data to a sink (SnK) or central 

(BS) base station [3,4].  Nevertheless, these SN are usually 

deployed in inaccessible or isolated areas and run on batteries. SN 

makes it impossible to recharge or replace batteries [5]. Therefore, 

maintaining EE and extending network lifetime (NL) continue to 

be major challenges in the design and operation of WSNs. 

The application of clustering algorithms is one popular 

method for addressing EC in WSNs [6]. This method groups 

nodes into clusters, with a selected node called the CH. Data from 

its cluster members (CM) must be aggregated and sent to the BS 

by this CH [7, 8]. Clustering greatly lowers redundant data 

transmission (DT) and saves energy, but the best selection of 

CH is crucial to network efficiency [9]. Poor CHS can lead to 

uneven energy depletion, frequent re-clustering, and network 

partitioning, all of which degrade performance. Hence, intelligent 

and dynamic CHS mechanisms are essential for sustainable WSN 

operation [10]. 

Because MHOA may explore huge solution spaces without 

being stuck in local optima, MH optimisation algorithms 

(MHOA) have shown tremendous promise in addressing CHS 

issues [11]. CS, Ant Colony Optimisation (ACO), and Particle 

Swarm Optimisation (PSO) are some of the widely used nature-

inspired algorithms (NIA) [12,13]. Slow convergence rates, 

sensitivity to initial parameters, and premature convergence (PC) 

are some of the issues that these methods mostly face [14,15]. The 

robustness of multiple procedures is integrated in the hybrid MH 

approaches (MHA) for the purpose of resolving those issues. This 

application may offer an effective method, and it will deliver 

better convergence speed, accuracy, and robustness.  

In this context, the proposed framework introduces a novel 

hybrid MHA named CS with β-(HC) Hill Climbing (CSBHC), 

designed specifically for EE clustering in WSNs. The CSBHC 

algorithm combines the global search (GS) capability of CS with 

the local refinement strength of BHC. The BHC phase is 

probabilistically triggered during iterations, governed by an 

exponentially decreasing function, which allows the algorithm to 

maintain exploration in early stages and intensify exploitation in 

later stages. This balance effectively mitigates PC and enhances 

the discovery of optimal or near-optimal CH configurations. 

A DA-based clustering method incorporates the suggested 

CSBHC-based framework for ensuring the energy balance (EB) 

across the network. The EC, NL, DT reliability and clustering 

ability are all improved by the suggested method, and it was 

demonstrated by extensive simulations over several ND and 

deployment scenarios. The energy-aware (EA) WSN design is 

greatly advanced via the hybrid CSBHC framework, as it selects 

CH and optimizes (RP) routing paths. A practical applicability in 

mission-critical and resource-constrained environments is also 

facilitated by the suggested method.  

2. LITERATURE REVIEW 

For circular WSN, a unique EB (EB) Unequal Clustering 

Approach (EBCA) was suggested by Zhao et al. [16]. Its 

performance was then assessed through extensive simulations. 

Across a variety of gradients, the experimental results 

demonstrated that EBCA could successfully balance EC of the 

CH. Both the classic and state-of-the-art (SOTA) clustering 
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algorithms were compared with EBCA, which significantly 

lengthened the NL and decreased overall EC. 

Jasim et al. suggested an EE unequal clustering (UC) method 

based on a EB method (EEUCB) [17]. To reduce energy waste, 

this EEUCB used minimum and maximum distance criteria. 

Furthermore, the suggested EEUCB employed a double CH 

approach along with a sleep-awake mechanism, utilising the 

node’s maximum energy capacity. The average energy threshold 

(AET), average distance (T) threshold, and BS layering node were 

also considered in the clustering rotation (CR) approach that 

EEUCB offered. It was based on 2 sub-stages, specifically inter- 

clustering and intra-clustering (IC) procedures. A number of 

current methods were then used for executing comparative 

analysis, it then supports for determining the recommended 

method’s potential. The outcomes demonstrated that the EEUCB 

protocol yielded lifespan benefits of 57.75%, 19.63%, 14.7%, and 

13.06% in comparison to LEACH, factor-based LEACH 

(FLEACH), EEFUC, and UDCH. 

With an emphasis on improving NL and decreasing delay 

(D), a sequential quadratic programming (SQP)-based multi-path 

routing (MPR) design named EBDA-DEFL, was suggested by 

Maratha et al. [18]. An optimisation tool was first used to solve 

this SQP-based formulation, and then PSO was used to solve it. 

To mitigate the adverse effects of MPR, a traffic load distribution 

(TLD) quota approach was also implemented. To assess its 

superiority over earlier techniques, the suggested strategy was put 

into practice and contrasted with current algorithms. First node 

death (NoD), half NoD, last NoD, latency, and the amount of time 

it took for Fminimax and PSO to compute were among the metrics 

used in the comparison. The suggested method’s superiority over 

the current approaches was validated by the simulation results. 

 For EE and balanced (DC) data collection in WSNs/IoT, 

Navarro et al. [19] presented a unique routing protocol (RP). This 

technique uses the parent set concept to use suboptimal network 

routing options, making it adaptable to any cost-based routing 

solution. To improve NL in WSNs, the suggested method added 

a random element to the packet forwarding process and still 

utilizes the reliable routing topologies created by cost-based RP. 

The method’s implementation was assessed using comprehensive 

actual testbed trials and tests against a number of SOTA WSN RP. 

While retaining over 99% reliability, the results showed a 

significant decrease in EC at the routing layer for the busiest 

nodes, with savings ranging from 11% to 59%. Furthermore, a 

field deployment for environmental monitoring in a forest area 

was conducted in a heterogeneous WSN. The efficacy of the 

method was demonstrated by the thorough reporting of the 

experimental results. For community evaluation and adoption, the 

suggested EE RP, CTP+EER, has been made available as open-

source. 

The efficiency, balance, and fairness of EC are all taken into 

consideration by the fair and EB ferry fleet placement (FEEB) 

strategy, and this FEEB method was suggested by Hu et al [20]. 

There are two mutual phases to this concept. The powered-

Voronoi diagram is used in the first step to define service regions 

in a network. In the second step, the shortest-path (SP) itinerary 

across sensors in every service region is determined using a 

genetic-based variant of the travelling salesman problem (TSP) 

approach. This plan can therefore ensure an equitable distribution 

of the workload. This suggested strategy prolongs the lifespan of 

several ferries (F) teamwork and preserves EC balance. 

Comparative analysis was conducted by comparing the suggested 

method with several traditional schemes, including Native, K-

Means, and Spiral. From the outcomes of the simulation, it is clear 

that the suggested method executes better than the conventional 

methods in terms of cumulative EC, residual energy (RE) 

distribution, Jain’s fairness index on EC, the number of ferries 

that are still in operation, and the total of task execution times 

(TET) during F teamwork. 

Fan and Xin [21] introduced the EB path tree-based clustering 

and routing algorithm (EBPT-CRA) for large-scale WSN. To 

calculate the CH competition coefficients of the nodes, the 

aggregation betweenness of the nodes was first calculated after 

the EBPT was formed. The clustering and IC routing were 

completed by selecting the CH and creating the cluster trees 

through an iterative manner. At last, the RE of nodes and their 

communication energy were used to build inter-cluster routing. 

The EBPT-CRA enhanced NL, T, and service capabilities in 

large-scale WSNs, based on simulation studies. This EBPT-

CRA efficiently conserving and balancing node energy. 

In order to create minimum spanning trees (MST), an 

innovative technique that made use of Prim’s algorithm (PA) was 

suggested by Saad et al. [22]. Improving EB in WSN was the goal 

of this MST. To find the best connections between network nodes 

and reduce EC, Prim’s algorithm was successfully used. Network 

initialisation, EC modelling, MST creation using Prim’s 

algorithm, and mobile SnK node movement optimisation were all 

important components of the suggested methodology. Numerous 

tests on various datasets showed that the method, which had high 

sensitivity (S) and moderate complexity, greatly enhanced EB. In 

order to contribute to more sustainable and efficient network 

deployments, this study demonstrated how PA may improve EE 

and prolong the NL. 

Both traditional nodes and energy-harvesting nodes are 

included in the hybrid network architecture that Bhasgi and Terdal 

[23]. A distributed RP that took failure tolerance (FT), load 

balancing (LB), and EC into consideration was created. Energy 

density, inter-node distance, and RE were taken into consideration 

when choosing relay nodes (RN). The network was dynamically 

rerouted in case a node failed along the routing path. The 

suggested algorithm, DEBH, was assessed in comparison to 

current techniques. The outcomes showed that DEBH 

outperformed earlier strategies in terms of efficiency. 

An innovative methodology called Improved LB Clustering 

for Energy-Aware (EA) Routing (ILBC-EAR) was put forth by 

Loganathan et al. [24]. The main purpose of this ILBC-EAR’s 

method was to achieve optimal EC between CH and member 

nodes (MN) via the LB procedure. The framed clusters’ size were 

measured to provide consistent EC across nodes. Furthermore, the 

model transmitted sensed data to the SnK or BS via a Finest 

Routing Scheme based on LB Clustering. According to evaluation 

results, the suggested EA model maintained a balanced EC rate 

among CH and produced a longer NL than current techniques. 

Additionally, the model sent data packets with a lower D and a 

higher T. 

To balance EC among SN and improve the capacity to attain 

optimal global results, the EB ant-based routing algorithm has 

been suggested by Wang et al. [25]. In order to confine the search 

path and preserve node energy, a search angle was first added to 
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the basic ant colony algorithm (ACA) in order to update the 

pheromone heuristic function (PHF). Furthermore, pheromone 

concentration upper and lower bounds were determined. The RE 

threshold of the nodes were then modified to be flexible. In order 

to improve global optimisation (GO) capabilities and further 

lower EC, the pheromone increment formula was optimised. 

According to simulation results, an enhanced approach lowered 

the optimal path length by 1.47% and 1.59%, respectively, and 

decreased the average node EC by 15.12% and 11.68% when used 

in two scenarios. The NL was significantly extended as a result of 

these noteworthy results, which showed that an improved 

algorithm significantly improved GO and balanced EC 

throughout SN. 

3. NETWORK MODEL 

With a transmitter and a receiver separated apart by a distance 

d, the free space (FS) network model was employed in the study. 

Bits are utilised for transmitting the data that has to be sent 

between the SN. The non-uniform EC of the quasi-stationary (QS) 

SN is dependent solely on the distance between the SN and the 

BS, and they are distributed throughout a rectangular cross-

section. The self-organising SN with set power levels is thought 

to be homogeneous and does not know where it is. Eq.(1) and 

Eq.(2) provide the following formulas for the transmitter and 

receiver energy levels. 
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where, the EC to transmit a single bit of data is denoted by Eelec. 

For the FS model, εfs is the transmitter side coefficient of 

amplification. Here, the count of data sent is one and the distance 

of the transmission is < the distance of T. If the transmission 

distance exceeds the threshold distance, εmp is used. Here, one 

piece of information is sent. 

The SN(n) are randomly placed in a rectangle area of M×N0 m2 

using ad hoc settings as the application situations in this study. 

The primary goal of the study is considered to be an optimal 

cluster’s secretion. The following fitness function (FF) is used to 

carry out the optimal cluster secretion. The following Eq.(3)-

Eq.(5) provides it: 
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where, the scaling factor is denoted by ε. Between 0 and 1, the 

value of ε falls. The number of SN that are part of the cluster(k) is 

known as ||cluster(k)||. The maximum Euclidean distance (ED) 

that separates the SN from the CH is denoted by f1. The f2 is the 

ratio of the entire energy of the CH E(CH(j)) to the initial SN 

energy E(node(i)). 
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Eq.(6) provides the corresponding node weights for Eq.(3b) 

and Eq.(4), where, the objective function (OF) is polynomial. 
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where, the fitness of the CH is denoted as Frouter. The CH features 

are P1,…, Pn, and the CH weight is x. 

The fitness of the nth CH is denoted as Fr(n). The hop (H) 

distance among nth CH and BS is denoted by Hr(n). The SN of the 

nth router is Cr(n). The SN with the maximum energy is Cmax. The 

RSSI value of the nth CH is Rr(n). 

Using BS broadcasting, variable x is controlled to optimise the 

SN, and H count is more significant than the total SN. In order to 

enable a more seamless assessment of BS offers and their 

parameters, it provides a larger hop with fewer SN, that is 

determined using smoother conditional statements. 

4. PROPOSED METHODOLOGY  

The suggested work enhances EE in WSNs by employing a 

DA-based clustering strategy that ensures balanced EC. An ATSA 

algorithm is developed, incorporating global exploration using 

random tunicates and local refinement via the best tunicate. To 

address premature convergence and further accelerate search, a 

hybrid algorithm named CSBHC is introduced. CSBHC 

dynamically integrates BHC based on an exponentially 

decreasing probability, improving the accuracy of CHS. This 

dual-optimization approach enhances convergence speed and 

routing performance under varying node densities. 

4.1 TUNICATE SWARM ALGORITHM (TSA) 

During navigation and foraging, jet propulsion and swarm 

behaviour of marine TC served as the inspiration for TSA, a 

simple MH optimiser. The size of this animal is millimetres. In 

the sea, TC can find food sources. The food source is not indicated 

in the provided search space (SS). When a tunicate uses jet 

propulsion, it needs to meet three fundamental requirements: 1. In 

the SS, the TC needs to stay apart from other TC. 2. To find the 

ideal search location, TC must take the correct path. 3. As much 

as possible, TC should look like the best search (AG) agent. 

To find the optimal food supply (i.e., the top value of the OF), 

TSA’s candidate solutions (i.e., TC) are searching. In each 

iteration of this procedure, the TC adjust their placements based 

on the best TC that is saved and enhanced. The TSA begins with 

a population of arbitrarily created TC based on the acceptable 

limits of the design variables (DV), as shown in Eq.(8) 

 ( )min max minrandP P P PT T T T= +  −  (8) 

The position of every tunicate is denoted by 
PT . A random 

number between [0; 1] is called rand. The lower and higher 

boundaries of the DV are 
min

PT and 
max

PT . During the iterations, 

the TC use the following formula using Eq.(9) to modify their 

location: 
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where, the random number C1 falls in the interval [0,1]. Based on 

Eq.(10), ( )PT x represents the most recent location of the TC in 

relation to the location of the food source. 
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where, the population’s ideal TC position represents SF, the food 

source. The randomised vector denoted as A that keeps TC from 

running into each other. Eq.(11) is used to model this: 
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where, the random values c1, c2 and c3 fall in the interval [0; 1]. 

The lowest and greatest speeds are indicated by VTmin and VTmax. 

These VTmin and VTmax are regarded as 1 and 4. These speeds are 

utilised to create social interaction. 

The steps in the TSA algorithm are as follows: 

Step 1: Based on Eq.(8), initialise the TC population ETp. 

Step 2: The maximum number of iterations and the initial 

parameters should be chosen. 

Step 3: Determine the value of _tness for each search AG. 

Step 4: In the provided SS, an optimal TC is explored. 

Step 5: Each location of the IC is updated by Eq.(9). 

Step 6: In each SS, adjust the updated TC that crosses the 

boundary. 

Step 7: Determine the most recent TC fitness value (FV). Update 

the best solution if a better one exists than the one that was 

previously considered optimal. 

Step 8: The algorithm stops if the stopping criterion is met. If not, 

go through Steps 5-8 again. 

4.2 ATSA 

The TSA is prone to getting stuck in local optima (LO), even 

if it can generate remarkable outcomes in contrast to some 

standard methods. For extremely complicated issues involving 

multiple LO, TSA is not the best option. Each TC in TSA changes 

its location according on the location of the food source (FS) (i.e., 

the location of the best TC in the entire population), as illustrated 

in (9) and (10). However, if the algorithm converges too soon 

without knowing the location of the FS, there won’t be any 

recovery. Then, the algorithm loses its exploratory potential and 

becomes inactive after it has converged. Consequently, this 

mechanism causes the TSA algorithm to become trapped at local 

minimum points. To address these issues and improve the 

algorithm’s search capabilities and flexibility, an adaptive version 

of the TSA (ATSA) is suggested. 

Exploration and exploitation (E-E) are the two stages of the 

search process that the effective MH algorithm (MHA) must 

separate. Looking into new locations in the entire SS that are 

distant from the current place is known as exploration. When an 

MHA tries to find the whole solution space and investigate the 

promising areas, it is called the exploration phase. Conversely, 

exploitation refers to an optimisation algorithm’s ability to find 

solutions that are almost optimal. The optimiser can focus on the 

neighbourhood of higher-quality (HQ) solutions inside the SS 

during this phase. As mentioned above, the TSA procedure 

adjusts the location of candidate solutions (CS) around a single 

point that represents the best option for the entire population 

during each iteration run. It indicates that the TSA is capable of 

effective exploitation. But the algorithm’s ineffective exploration 

capability and absence of an efficient global search (GS) remain 

its main drawbacks. 

 

Fig.1. The flow diagram of ATSA 

Every repetition of the suggested ATSA consists of 2 primary 

stages created to enhance the procedure’s performance and 

exploration ability. During the first phase (exploration phase), a 

CS is randomly selected rather than the optimal solution. The 

Select the population size (N) and  

Maximum number of function evaluation 
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locations of this random TC are then used to update the positions 

of the CS. Additionally, an optimiser should extensively 

investigate a variety of SS areas using its randomised operators in 

order to have effective exploration. For the purpose of creating 

solutions in several SS areas, the TC’s updating equation in the 

suggested ATSA considers two distinct arbitrary values. 

The following is a mathematical model of the ATSA’s 

exploration phase: 

 
1 2( ) ( ) ( ) ( )1 2p p p pT x T r rand T r rand T x+ = −  −   

where, TC is chosen at random from present population ( )pT r . 

Random values between 0 and 1 are denoted by rand1 and rand2. 

The TSA algorithm can execute a more robust GS across the 

entire SS via this process, which also promotes exploration. 

The position of the best TC discovered thus far is used by the 

TC to update their positions in the 2nd stage of the ATSA 

algorithm, known as the exploitation phase, determined by (9). 

For each iteration of the suggested ATSA, a randomly generated 

TC will be used to replace the worst TC with the highest OF value. 

The suggested ATSA algorithm’s flowchart is shown in Figure 1. 

4.3 COMPARATIVE (TCA) TIME COMPLEXITY 

ANALYSIS 

The computational TCA can be used to assess a novel 

optimisation algorithm’s overall performance from several 

perspectives. O is a mathematical notation used in computer 

sciences that shows how long an algorithm must run for by taking 

into account how quickly it grows when handling various inputs. 

Three components are analysed in the TCA of the majority of 

algorithms. Analyses of these 3 components are also necessary 

for the TCA of the suggested ATSA: 

1. O(N×D) is typically used to calculate the time complexity 

of population initialisation. where, the population size is 

indicated by N. The problem’s dimensions are indicated by 

D. 

2. O(N×F(X)) is typically used to estimate the time 

complexity of the initial fitness evaluation. The OF is 

represented by F(X). 

3. O(Maxiterations ×(N×D+N×F(X))) is typically used to 

calculate the main loop’s time complexity. where, 

Maxiterations denotes the maximum number of iterations. 

Therefore, O(Maxiterations ×(N×D+N×F(X))) is the ATSA 

algorithm’s overall time complexity. 

4.4 HYBRID ALGORITHM FOR PREMATURE 

CONVERGENCE 

Theoretically and experimentally, the CS approach, like any 

optimisation algorithm, cannot be certain to stay out of 

suboptimal solutions. The hybrid CS strategy is typically used to 

reduce the chance of being stuck in suboptimal solutions and 

improve the accuracy (ACC) of the CS outcomes. But, compared 

to the original CS method, this approach is less appealing due to 

its high computing cost. In contrast, a popular variation of the HC 

procedure, the BHC procedure seeks to balance the E-E of the 

solutions in the solution space during the search phase. Some 

hybrid CS algorithms completely integrate the CS algorithm with 

different search methods, as was previously discussed. Heavy 

computation is required for this integration, especially when 

employing the searching methods at every CS iteration. The 

efficiency of CS is not appreciably improved by other hybrid CS 

algorithms that employ search strategies as selection methods. 

Only when the objective value (ObV) of a cuckoo (novel 

solution) is higher than the ObV of a randomly chosen nest (stored 

solution) does the CSBHC employ the BHC method with an 

exponentially reducing likelihood (i.e., the acceptance likelihood 

of SA) in the current paper.  

In order to decrease the computing time of CSBHC, this 

procedure seeks to decrease the rate of BHC usage in CSBHC. 

The ten primary stages of CSBHC are depicted as a flowchart in 

Figure 2 and it is explained below: 

• Phase 1: The problem and CSBHC parameters are 

initialized. The optimisation problem is typically modelled 

as min{f(x)|x∈X} or max{f(x)|x∈X}in this step. The OF of 

the selected solution, which is made up of N DV 

x={x1,...,xN}, is denoted by f(x). xj∈[LB,UB] is the DV’s 

value. where, the lower bound of the search range (SR) is 

denoted by LB. The upper bound of the SR is denoted by 

UB. 

• Phase 2: The population of M nests (solutions) are 

initialized. X={x1,...,xM}  is an augmented matrix of size 

M×N that represents the population of M nests. The random 

function xj=LBj+(UBj-LBj)×U(0,1), ∀j=1,2,....,N, is used to 

create the values of the DV of x={x1,...,xN}. Random values 

between 0 and 1 are generated using the uniform random 

function U (0,1). 
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• Phase 3: Make use of Lévy flights (LF) to get a cuckoo. The 

OF f(xi) is used to assess the new solution (cuckoo, as xi), 

which is created at random using LF in this phase. 

• Phase 4: From the population, a nest is selected at random. 

The OF f(xi) is used to evaluate a stored solution (nest, as xj) 

that is chosen at random from the M nests. 

• Phase 5: Examine and contrast objective values of the xi and 

xj. For minimisation problems, if f(xi)≤f(xj), swap xj for xi and 

go to step 8. If not, proceed to step 6. 

• Phase 6: Make an exponentially decreasing probability call 

to the BHC function. Proceed to Step 7, where ∆f=f(xj)-f(xi), 

and T is a decreasing temperature, with probability e∆f⁄T, if 

f(xi)>f(xj). If not, proceed to Step 8. 

• Phase 7: Utilise the BHC function to enhance the optimal 

solution. The best solution discovered by CS is enhanced 

using the BHC function, which is displayed in Fig. 5. The 

initial solution in Figure 2. is the best one that CS could find. 

That’s the only difference. 

• Phase 8: Update the CSBHC population. New solutions are 

substituted for a fraction (pa) of the worst ones. 

• Phase 9: Return the best solution after ranking the others. 

After ranking the solutions according to the OF, the optimal 

solution is determined. 
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• Phase 10: Verify the stopping condition. As long as the 

stopping condition is not met, phases three to ten are 

repeated. 

 

Fig.2. The flow chart of CSBHC 

 

Algorithm 1: The Hybrid CS and BHC Algorithm 

1: Begin 

2: OF f(xi), where xi={x1,..,xN} is a nominated solution 

xj = LBj+(UBj-LBj)×U(0,1),∀j=1,2,…N. 

3: Create initial population X={x1,....xM} of M solutions 

4: itr=0 

5: while (itr<Max_iterations) or (stop criterion) do 

6: Choose a solution i randomly from the present population and 

replace its solution xi by LF 

7: Compute the quality/fitness value f(xi) of xi 

8: Choose a solution randomly from the present population (j)) 

9: Compute the difference among the fitness of xj and the fitness 

of xi: ∆f=f(xj)-f(xi) 

10: Calculate the current temperature T←schedule [itr] 

11: if f(xi) is better than f(xj) then 

12: Replace xj by xi 

13: else if e∆f ⁄ T ≥ rand then 

14: xj-new←β-hill-climbing (xj-old,LB,UB,problem); 

15: end if {rand ∈[0,1]} 

16: A fraction (pα) of worst solutions are substituted with novel 

ones 

17:  Keep the best solutions (i.e., solutions with quality solutions)  

18: Rank the solutions and determine the current best xitr* 

19: itr=itr+1 

20: end while 

21: Post-process results and visualization 

22: End 

5. RESULT AND DISCUSSION  

On a high-end computing system with an Intel Core i5 

processor running at 2.30 GHz and 8 GB of primary memory, the 

suggested approach is coded using Matlab software. In terms of 

the average of (i) end-to-end delay (E2ED), (ii) packet delivery 

ratio (PDR), (iv) average throughput (AT), and (v) average RE 

(ARE), the suggested approach is evaluated against three further 

RP. For ease of implementation, the suggested system makes use 

of the same energy model and routing parameters as WSN. 

The Table.1 lists the network parameters (NP) needed to 

simulate the suggested task. εfs, εmp, and Eelec are some of the EC 

parameters that are covered in section 3. The size of control 

packets determines the length of the notification message. The 

size of the message packet is used to establish the data message 

length. 

A rectangular cross-section of 1,000 SN is used to deploy the 

full sensor area. To assess the rate of full convergence, the SnK 

induction is maintained at a random location. Since the CH is in 

charge of the entire operation and maintains a high (IE) initial 

energy, the IE of SN and CH is kept at 0.1 and 0.3 J, respectively. 

5.1 PERFORMANCE METRICS (PM) 

E2ED, AT, PDR, ARE, and EC are among the PM that are 

employed for assessing the suggested method’s efficiency. 

Begin  

Initialize problem and CSBHC parameters 

Create initial population of M host nests 

itr=0 

Get a cuckoo using Levy flights (say xi) 

and calculate its fitness f(xj) 

Select a nest (say xj) arbitrarily from the 

M nests and evaluate its fitness f(xj) 

f(xi)≤f(xj) 

Replace xj with xi 

∆f = f(xi)‒f(xj) 

T=Max_itr-itr 

e∆f/T≥rand

om 

Improve xj using β-hill climbing 

Sort the M solutions and  

identify the present optimal one 

Novel solutions replace a fraction  

Pa of the worst ones 

 

itr<Max_

itr Itr=itr+1 

End 

Yes 

No 

yes 

No 
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Table.1. NP setting for testing 

NP Numbers 

εfs 10(pJ/bit (b)/m2) 

εmp 

 
0.0013 (pJ/b/m4) 

Eelec 50(nJ/b) 

Dimensions of  

control in (P) packets 
200(b) 

Dimensions of  

messages in the P 
4000(b) 

SnK node location Arbitrary 

RP 
Zone RP in balanced (B)  

and unbalanced network settings 

Area 
400*800 (m2) for B 

800*800 

Overall count of SN 1000 

d0 0.5L 

IE of SN 0.1J 

IE of CH 0.3J 

CH rate 20% 

5.1.1 PDR: 

The proportion of all P transmitted by the source node to all P 

delivered to the destination node (DN) is known as PDR. When it 

comes to efficiently sending source P to the DN, the PDR offers 

the advantages of the RP. There is a greater ratio than the 

protocol’s performance. 

 PDR 100r

t

P

P
=   (13) 

The total count of P received is represented by Pr. The total 

number of P sent is represented by Pt. 

5.1.2 Throughput or AT: 

The total count of bits received at the DN is known as 

throughput, or AT. The throughput metric, that is based on the 𝑃𝑟 

at the DN. This throughput metric is used to assess the RP’s 

efficiency. 

 
38 10

Throughput rB

T


=  (14) 

The total count of bytes received is represented by Br. The 

total simulation time is denoted by T. 

5.1.3 Average E2ED (AE2ED): 

The average period required for a P to transmit from its source 

and intermediate nodes to its DN via a sensor network is known 

as the average E2ED. The total of the propagation time, transfer 

rate, retransmission rate, and buffering rate at route discovery 

(RD) is used to calculate the average E2ED. 

 
( )

1
( ) ( )

Delay

n

i
R i S i

n

=
−

=


 (15) 

where, P sent from the source node at time i are represented by 

S(i). The number of P received from the source node at time i is 

R(i). The total count of SN moving over the network at ith time is 

denoted by n. 

5.1.4 EC: 

The total EC by the SN in time i is known as EC. Based on the 

factors of the RE of each node, the determination is based on 

calculating the energy level of each SN at the end of the iteration. 

 ( )ini

1

( ) ( )
n

i

AEC E i E i
=

= −  (16) 

where, the IE of the SN at time i is represented by Eini(i). The total 

energy of a SN at the time i is denoted as E(i). 

5.1.5 NL: 

The time it takes for the mobile node to run out of battery 

power for data collection and DT is known as NL. 

 ( ) 0

1

n

E i

i

NL =

=

=1  (17) 

 

Fig.3.  Comparison of AE2ED for Balanced and Unbalanced 

condition 

 

Fig.4. Comparison of PDR for Balanced and Unbalanced 

condition 

The Fig.3 presents the AE2ED across maximizing node counts 

(500 to 1000) for various routing algorithms under balanced and 

unbalanced conditions. Among all, ATSA-CSBHC (balanced) 

achieves the lowest delay, remaining under 1.5 seconds even at 

1000 nodes, indicating superior scalability and routing efficiency. 

In contrast, GA-DE-PSO (balanced) shows the highest delay, 

exceeding 21 seconds, revealing poor adaptability in larger 
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networks. ACO-ABC and BSO-HSA-HCA maintain consistently 

low delays in both scenarios, demonstrating robust performance. 

Overall, ATSA-CSBHC emerges as the most effective, while GA-

DE-PSO suffers significant delay degradation with increased 

network density. 

The Fig.4 illustrates the PDR across various node counts (500 

to 1000) for different routing algorithms under balanced and 

unbalanced conditions. Among them, ATSA-CSBHC (balanced) 

consistently achieves the highest PDR, surpassing 105% at 1000 

nodes, indicating exceptional reliability in packet transmission. 

BSO-HSA-HCA and ACO-ABC (balanced) also show strong 

performance, maintaining PDRs above 95%. In contrast, GA-DE-

PSO and HSA-PSO (unbalanced) record the lowest PDRs, below 

65% and 40% respectively, highlighting their inefficiency in high-

density networks. Overall, ATSA-CSBHC demonstrates superior 

reliability and scalability, making it the most effective approach 

among the evaluated algorithms. 

 

Fig.5. Comparison of Average Throughput for Balanced and 

Unbalanced condition 

 

Fig.6 Comparison of ARE for Balanced and Unbalanced 

condition 

The Fig.5 shows the variation in average throughput (×10⁶ 

Kbps) with increasing node count (500 to 1000) for multiple RP 

under balanced and unbalanced scenarios. ATSA-CSBHC 

(balanced) maintains the highest throughput, slightly above 100 

×10⁶ Kbps, followed closely by BSO-HSA-HCA (balanced), 

demonstrating high DT efficiency and scalability. Conversely, 

HSA-PSO (unbalanced) shows the lowest throughput, dropping 

below 45 ×10⁶ Kbps as node density increases. Most algorithms 

exhibit a gradual decline in throughput with node growth, 

indicating congestion or overhead. Overall, ATSA-CSBHC 

proves to be the most robust in sustaining high throughput, 

especially in balanced conditions. 

The Fig.6 displays the average residual energy (in mJ) against 

the number of nodes (500 to 1000) for various RP under both 

balanced and unbalanced scenarios. ATSA-CSBHC (balanced) 

consistently achieves the highest RE, exceeding 110 mJ at 1000 

nodes, closely followed by BSO-HSA-HCA (balanced), 

indicating excellent energy efficiency and conservation. In 

contrast, HSA-PSO (unbalanced) records the lowest RE, below 

40 mJ, reflecting higher energy depletion. All algorithms show an 

upward trend in RE with increasing nodes, but ATSA-CSBHC 

and BSO-HSA-HCA clearly outperform others, demonstrating 

their effectiveness in preserving node energy in dense WSN. 

 

Fig.7. Comparison of EC for Balanced and Unbalanced 

condition 

 

Fig.8. Comparison of NL for Balanced and Unbalanced 

condition 

The Fig.7 depicts the EC (in joules) relative to the number of 

nodes (500 to 1000) for various algorithms under balanced and 

unbalanced conditions. GA-DE-PSO (unbalanced) exhibits the 

highest and steepest rise in EC, reaching around 800 J at 1000 

nodes, indicating inefficiency and poor energy management. In 

contrast, ATSA-CSBHC (balanced) and BSO-HSA-HCA 

(balanced) maintain the lowest EC throughout, reflecting superior 

energy-saving capabilities. Most algorithms show increased 

consumption with node growth, but ATSA-CSBHC remains the 

most efficient in both balanced and unbalanced modes. Overall, 
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ATSA-CSBHC proves to be the most EE and scalable solution 

among the compared models. 

The Fig.8 illustrates the NL (in seconds) versus the number of 

nodes (500 to 1000) for several RP under balanced and 

unbalanced conditions. ATSA-CSBHC (balanced) and BSO-

HSA-HCA (balanced) achieve the longest NL, consistently 

maintaining values near or above 1.9 million seconds, 

highlighting their superior EE and load distribution.  

Conversely, HSA-PSO (unbalanced) shows the shortest 

lifetime, dropping below 900,000 seconds as node density 

increases. Most algorithms exhibit a slight decline in lifetime with 

more nodes, indicating increased EC. Overall, ATSA-CSBHC 

and BSO-HSA-HCA in balanced configurations are the most 

effective in maximizing NL. 

6. CONCLUSION  

Thus, the paper proposes a hybrid metaheuristic framework 

combining ATSA and CSBHC for EE and balanced clustering in 

WSN. Through intelligent CHS and effective data aggregation, 

the method enhances energy conservation, scalability, and 

network performance. Simulation results across various node 

densities demonstrate that the ATSA-CSBHC algorithm 

significantly outperforms existing methods in terms of reduced 

E2ED, higher PDR, improved T, enhanced RE, minimized EC, 

and extended NL. The suggested model presents a robust and 

scalable solution for sustainable WSN operation in real-world 

applications. 
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