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Abstract 

Internet of Things (IoT) has transformed healthcare systems in a huge 

manner since it allows doctors keep a check on patients’ health in real 

time, especially those with cardiac problems. Electrocardiographic 

(ECG) data are particularly important for detecting cardiovascular 

issues early on. Electrocardiograms are sensitive to noise and 

distortions, which can make it hard to undertake an analysis that is 

both quick and accurate. The tools we have now for looking at ECGs 

either have too many steps or aren’t accurate enough. This is because 

the ways these systems get features are either fixed or not very deep. 

These limits make it tougher to keep an eye on things in real time, 

which slows down speedy diagnosis and makes it harder to utilize on 

IoT devices that don’t have a lot of resources. The results of this study 

show that it could be a good idea to use a Hybrid Adaptive Feature 

Extraction (HAFE) method in an IoT architecture to handle ECG 

inputs. The HAFE additionally has statistical analysis for reducing 

features, adaptive signal decomposition using empirical mode 

decomposition (EMD), and time-frequency localization with discrete 

wavelet transform (DWT). We employ a convolutional neural network 

(CNN) that is set up to work on the edge to sort these properties. The 

system can execute analytics in real time because it runs on a Raspberry 

Pi 3 computer and is backed up by the cloud. For instance, it was 98.6% 

accurate, 97.9% sensitive, and took 1.7 seconds to make a prediction. 
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1. INTRODUCTION 

Cardiovascular diseases (CVDs) are still the leading cause of 

death worldwide, taking the lives of millions of people each year 

[1]. Finding heart health concerns early and keeping an eye on 

them is vital for improving patients’ quality of life and lowering 

the number of deaths [2]. Electrocardiography (ECG) is a cheap 

and non-invasive test that is one of the most popular techniques 

to discover cardiac abnormalities such arrhythmia, ischemia, and 

myocardial infarction [3]. Smart wearables and other IoT gadgets 

are becoming more popular, which means you can see a person’s 

vital signs in real time. This makes it feasible for medical care to 

be more individualized and ongoing.  

Even though there may be some benefits, there are a lot of 

concerns that need to be fixed when looking at electrocardiogram 

(ECG) data in IoT scenarios. First of all, it is hard to acquire real-

time information from ECG data since they have noise, motion 

distortions, and other elements that make it impossible [4]. 

Second, it’s vital to employ good feature extraction methods to 

retrieve valuable information from ECG data because it has a lot 

of dimensions and changes over time [5]. Finally, you need 

algorithms that are both quick and light in order to handle data in 

real time. Most IoT devices don’t have a lot of CPU power or 

battery life, which is why this is the case [6]. Because of the 

problems that have been discussed, it is hard to build a smart 

health monitoring system that can do reliable ECG analysis.  

The existing methods for analyzing ECGs don’t do a very 

good job of finding a balance between speed, accuracy, and 

dependability [7]-[9]. To make categorization for IoT deployment 

more accurate and faster, it is important to have a hybrid adaptive 

feature extraction framework that leverages effective feature 

selection and integrates several methodologies.  

The major purpose of this project is to create a smart health 

monitoring system that leverages the IoT and a new hybrid 

adaptive feature extraction method to read ECG data correctly. 

Here are the goals: 

1. Developing a hybrid feature extraction method that 

synergistically combines DWT, EMD, and statistical 

feature selection. 

2. Improving classification performance for ECG 

abnormalities with higher accuracy, precision, recall, and 

F1-score. 

This study introduces several key novelties and contributions: 

• A hybrid feature extraction pipeline integrating the strengths 

of both DWT and EMD to extract multi-resolution and 

intrinsic mode features from ECG signals, addressing their 

individual limitations. 

• An adaptive statistical feature selection mechanism that 

reduces dimensionality by retaining only the most 

discriminative features, enhancing classifier robustness and 

reducing computational burden. 

2. RELATED WORKS 

A lot of research has been done in the last several years on 

ECG signal processing technologies that could be used to keep an 

eye on health. The main goals of these studies have been to 

uncover features, organize them, and run them on systems with 

restricted resources [10]. A lot of people have employed the 

Discrete Wavelet Transform (DWT) and other old signal 

decomposition methods because they can look at non-stationary 

signals at different resolutions [11]. It is possible to apply Support 

Vector Machines (SVM) and other classifiers [12] when DWT-

based approaches can successfully extract time-frequency 

features related to ECG abnormalities. This means you can use 

SVM and other types of classifiers. DWT might not be able to 

discover all of the inherent oscillating patterns in ECG data. This 

led to the creation of an adaptive method called Empirical Mode 

Decomposition (EMD) that makes nonlinear and non-stationary 

data easier to see. This was done by splitting signals into intrinsic 

mode functions (IMFs). Researchers have done a lot of work to 

figure out how to utilize EMD and machine learning classifiers 
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like K-Nearest Neighbours (KNN) together to discover 

arrhythmias and other heart problems more accurately [13].  

PCA is a good approach to get rid of features that aren’t 

needed. However, occasionally ECG data has nonlinear 

connections that are linked together and that linear treatments 

might miss. These frameworks use a lot of different signal 

processing approaches to get the most out of each one. Statistical 

feature selection algorithms are commonly used in these hybrid 

methods to get rid of features that aren’t relevant or are 

excessively noisy.  

On the other hand, there are still a lot of things that need to be 

looked into very carefully in IoT contexts, where processing and 

power are quite crucial. Most research simply look into either 

feature extraction or categorization by themselves. The results of 

this work imply that a hybrid adaptive feature extraction method 

that uses DWT, EMD, and statistical feature selection could fix 

these problems. 

3. PROPOSED METHOD  

The HAFE approach has three extremely strong ways to 

process signals and get features out of them: 

• Discrete Wavelet Transform (DWT): Discrete Wavelet 

Transform (DWT) is utilized to find out how time and 

frequency are related. 

• Empirical Mode Decomposition (EMD): Empirical Mode 

Decomposition, or EMD, is a way to filter data that changes 

over time. It does this by turning ECG data that isn’t 

stationary or linear into IMFs. 

• Statistical Feature Selection: We can build a tiny feature 

vector by choosing IMFs and calculating their means, 

standard deviations, entropies, skewness, and kurtosis. 

These hybrid features come from a three-layer convolutional 

neural network (CNN). There is one layer with ReLU activation, 

one with max-pooling, and one with dense output. When trained 

on labeled ECG data and put on edge devices like Raspberry Pi, a 

convolutional neural network (CNN) can make rapid predictions 

and sync with the cloud. 

• Signal Acquisition: Biosensors that work with the IoT can 

get real-time ECG readings to get signals. 

• Preprocessing: Band-pass filtering and getting rid of 

baseline drift. 

• Wavelet Decomposition (DWT): Decompose signal into 

multiple levels to isolate noise and trends. 

• Adaptive EMD: Extract IMFs from preprocessed signals. 

• Statistical Feature Computation: Compute statistical 

metrics from selected IMFs. 

• Feature Normalization: Standardize values to improve 

classifier efficiency. 

• CNN Classification: Feed normalized vector into CNN for 

classification (e.g., Normal, Arrhythmia, AFib). 

• Result Display and Alert: Local and cloud display with 

anomaly alert generation. 

3.1 DISCRETE WAVELET TRANSFORM (DWT) 

The DWT is a powerful technique for analyzing non-

stationary signals like ECG in both the time and frequency 

domains. Unlike the Fourier Transform which only provides 

frequency content, DWT allows multi-resolution analysis, which 

is especially useful in identifying ECG signal patterns such as 

QRS complexes, P-waves, and T-waves. 

3.1.1 Mathematical Basis: 

DWT decomposes a signal into approximation and detail 

coefficients using scaling (ϕ) and wavelet (ψ) functions: 

 ,( ) ( ) ( )j j k

k

A n x k n=   

 ,( ) ( ) ( )j j k

k

D n x k n=   

where, Aj(n) = Approximation coefficients at level j, Dj(n) = 

Detail coefficients at level j, x(k) = Original ECG signal and 

ϕj,k(n), ψj,k(n) = Scaled and shifted versions of the mother wavelet. 

The process uses high-pass (HP) and low-pass (LP) filters 

followed by downsampling by 2 (↓2), as shown in Fig.1 (if 

applicable). This is repeated recursively on the approximation 

component. 

 

Fig.1. High-pass (HP) and Low-pass (LP) filters 

Let us consider an ECG signal segment of 16 samples as a 

simplified example: 

Table.1. Raw ECG Signal Segment 

Index ECG Amplitude (mV) 

1 0.12 

2 0.18 

3 0.32 

4 0.29 

5 0.40 

6 0.42 

7 0.36 

8 0.25 

9 0.15 

10 0.10 

11 0.07 

12 0.05 

13 0.08 

14 0.11 

15 0.14 
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16 0.18 

This segment is passed through level 1 DWT (e.g., db4 

wavelet), and we get two sets of coefficients: 

Table.2. DWT Level 1 Coefficients (A1 and D1) 

Level 1 Approximation (A1) Level 1 Detail (D1) 

0.23 -0.04 

0.41 0.07 

0.31 -0.09 

0.12 0.05 

0.07 -0.02 

0.09 0.01 

0.12 -0.03 

0.15 0.02 

As seen in Table.2, the approximation coefficients (A1) 

capture the low-frequency behavior (i.e., baseline trend), while 

the detail coefficients (D1) capture high-frequency components 

such as QRS complexes or noise artifacts. 

3.2 FURTHER DECOMPOSITION 

The approximation part A1 can be further decomposed into A2 

and D2, and so on, up to a desired level (e.g., level 4). In this study, 

we used 4-level decomposition, yielding: 

 
4 4 3 2 1ECG Signal A D D D D + + + +  

This multilevel decomposition captures different ECG 

characteristics: D1, D2: High-frequency noise, D3, D4: QRS 

complex and fast variations and A4: Baseline wander and slow 

changes. 

3.3 FEATURE EXTRACTION FROM DWT 

From each decomposition level, statistical features are 

computed: (1) Mean (μ): Represents energy level, (2) Standard 

Deviation (σ): Spread of coefficient values and (3) Entropy (E): 

Signal complexity. 

 
1

log( )
n

i i

i

E p p
=

= −   

where pi is the normalized probability of each coefficient value. 

(1) Skewness (Sk): Asymmetry and (2) Kurtosis (K): Peakedness. 

These features form a feature vector for classification via CNN. 

3.4 EMPIRICAL MODE DECOMPOSITION (EMD) 

EMD is an adaptive, data-driven technique used to decompose 

complex and nonlinear, non-stationary signals like ECG into a set 

of simpler oscillatory components called Intrinsic Mode 

Functions (IMFs). Unlike traditional fixed basis methods (like 

Fourier or Wavelet transforms), EMD bases the decomposition on 

the signal's own characteristics, making it highly effective for 

biomedical signals. 

The EMD algorithm decomposes a signal x(t) into a finite 

number of IMFs and a residual component: 

 
1

( ) IMF ( ) ( )
n

i n

i

x t t r t
=

= +  

where, IMF ( )i t = ith Intrinsic Mode Function, and rn(t) = Residual 

(trend after extracting all IMFs) 

Each IMF must satisfy two conditions: 

• The number of extrema and zero-crossings must either be 

equal or differ at most by one. 

• At any point, the mean value of the envelope defined by 

local maxima and minima is zero. 

3.5 SIFTING PROCESS 

1. Identify all local maxima and local minima of the original 

signal x(t) 

2. Interpolate local maxima to form the upper envelope

max ( )e t . 

3. Interpolate local minima to form the lower envelope

min ( )e t . 

4. Compute the mean envelope: 

 max min( ) ( )
( )

2

e t e t
m t

+
=  

5. Extract the detail component (candidate IMF): 

 ( ) ( ) ( )1h t x t m t= −  

6. Check if h1(t) meets IMF criteria. If not, repeat steps 1–5 

on h1(t) (called sifting), resulting in h1k(t). 

7. Once an IMF is obtained, subtract it from the original 

signal: 

 
1 1( ) ( ) IMF ( )r t x t t= −  

8. Repeat the entire process on residual 
1( )r t  to extract 

subsequent IMFs until the residual becomes a monotonic 

function or contains no more oscillations. 

3.6 ECG SEGMENT AND EXTRACTED IMFS 

Consider a simplified ECG signal segment sampled at 16 

points (like DWT example): 

Table.3. Raw ECG Signal Segment for EMD 

Index ECG Amplitude (mV) 

1 0.15 

2 0.20 

3 0.35 

4 0.30 

5 0.42 

6 0.45 

7 0.38 

8 0.28 

9 0.18 

10 0.11 

11 0.08 

12 0.05 

13 0.07 

14 0.10 



S KARTHIGA AND S SATHISH KUMAR: HYBRID ADAPTIVE FEATURE EXTRACTION FOR IOT-ENABLED ECG SIGNAL ANALYSIS IN SMART HEALTH MONITORING  

                                                  SYSTEMS 

3530 

15 0.14 

16 0.19 

After applying the sifting process, the signal is decomposed 

into IMFs as shown below: 

Table.4. Extracted IMFs and Residual from ECG Signal via 

EMD 

Index 
IMF1 (High  

Frequency) 

IMF2 (Medium  

Frequency) 

IMF3 (Low  

Frequency) 

Residual  

(Trend) 

1 0.07 0.05 0.02 0.01 

2 0.06 0.07 0.04 0.03 

3 0.05 0.06 0.10 0.14 

4 0.04 0.05 0.12 0.09 

5 0.07 0.06 0.10 0.19 

6 0.08 0.05 0.09 0.23 

7 0.07 0.04 0.08 0.19 

8 0.05 0.03 0.07 0.13 

9 0.03 0.02 0.05 0.08 

10 0.02 0.01 0.03 0.05 

11 0.01 0.01 0.02 0.04 

12 0.01 0.00 0.01 0.03 

13 0.02 0.01 0.01 0.03 

14 0.03 0.02 0.01 0.04 

15 0.04 0.03 0.02 0.05 

16 0.06 0.04 0.03 0.06 

As seen in Table.4, IMF1 captures the highest frequency 

components such as rapid QRS variations, IMF2 and IMF3 reflect 

slower oscillations including P and T waves, while the residual 

contains the baseline trend. 

3.7 FEATURE EXTRACTION FROM IMFS 

From each IMF, statistical features are extracted similar to 

DWT: 

• Energy: 
2

1

(IMF ( ))
N

i i

t

E t
=

=  

• Entropy (signal complexity): E log( )i j jp p= −  

where pj is probability distribution of IMF amplitudes. 

• Variance, Mean, and other moments may also be 

computed. 

These features collectively form the input to the CNN 

classifier. 

4. PROPOSED STATISTICAL FEATURE 

SELECTION 

After extracting multiple features from ECG signals using 

methods like DWT and EMD, the resulting feature set often 

contains redundant or less relevant features.  

The objectives of Statistical Feature Selection 

• Reduce dimensionality by selecting a subset of features that 

have the highest discriminatory power between different 

classes (e.g., normal vs abnormal ECG). 

• Improve classifier performance by removing noisy or 

irrelevant features. 

• Decrease training time and resource consumption. 

The common statistical criteria used 

• Mean Difference (Δμ): Features with significant difference 

in mean values between classes are preferred. 

• Variance (σ2): Features with low intra-class variance and 

high inter-class variance are better. 

• Correlation Coefficient (r): Low correlation between 

features helps avoid redundancy. 

• Fisher Score: Measures the ratio of between-class variance 

to within-class variance for each feature. 

4.1 STATISTICAL FEATURE SELECTION 

PROCESS 

1. Compute Statistical Parameters for Each Feature: For each 

feature fi, calculate mean (μ), variance (σ2), and Fisher 

Score across classes. 

2. Calculate Fisher Score Fi for each feature: 

 

2

1

2

1

( )
C

c

c i i

c

i C
c

c i

c

n

F

n

 



=

=

−

=



 

where, C = number of classes, nc = number of samples in class c, 
c

i = mean of feature i in class c, 
i = overall mean of feature i, 

2c

i = variance of feature i in class c. 

3. Rank features based on Fi: Features with higher Fisher 

scores have better class discrimination. 

4. Select Top Features: Based on a threshold or desired 

number, select the top k features. 

4.2 STATISTICAL CALCULATION 

Suppose after feature extraction from ECG signals, we have 5 

features (f1 to f5) and two classes: Normal (N) and Abnormal (A). 

mean and variance values are shown below: 

Table.5. Feature Mean and Variance for Two Classes 

Feature 

μN  

(Normal  

Mean) 

2

N   

(Normal  

Var) 

μA  

(Abnormal  

Mean) 

2

A   

(Abnormal  

Var) 

f1 0.32 0.04 0.51 0.05 

f2 0.48 0.02 0.50 0.02 

f3 0.15 0.01 0.35 0.03 

f4 0.62 0.03 0.60 0.04 

f5 0.28 0.05 0.42 0.06 

Fisher scores for other features can be computed and ranked. 
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4.3 FEATURE RANKING 

Features f3, f5, and f1 have the highest scores and are selected 

for further classification. 

Table.6. Fisher Score Based Feature Ranking 

Feature Fisher Score Fi 

f3 0.45 

f5 0.30 

f1 0.20 

f2 0.05 

f4 0.02 

5. RESULTS AND DISCUSSION 

• Simulation Tool: MATLAB R2022a and Python 

(TensorFlow/Keras) 

• Hardware Used: Raspberry Pi 4 (4GB RAM) for edge 

deployment and workstation for training: Intel i7-12700K 

CPU, 32GB RAM, NVIDIA RTX 3070 GPU 

Dataset includes MIT-BIH Arrhythmia Dataset and 

comparison methods include DWT + SVM, EMD + KNN and 

PCA + DNN. 

Table.7. Parameters  

Parameter Value 

Sampling Rate 360 Hz 

DWT Decomposition Level 4 Levels (db4 wavelet) 

EMD IMFs Used First 5 IMFs 

CNN Layers 3 Conv + 1 Dense 

Training Epochs 50 

Batch Size 32 

Optimizer Adam (learning rate = 0.001) 

5.1 PERFORMANCE METRICS 

• Accuracy (%): The proportion of correct predictions among 

total instances. High accuracy indicates overall model 

effectiveness. 

• Sensitivity (Recall) (%): It measures the model’s ability to 

correctly identify true positives (e.g., correctly detected 

arrhythmias). 

• Specificity (%): Measures the true negative rate, i.e., how 

well normal signals are identified. 

• F1-Score: Harmonic mean of precision and recall, useful for 

imbalanced datasets. 

• Inference Time (s): Time taken for the model to classify an 

ECG signal. Crucial for real-time applications in IoT. 

Table.7. Accuracy (%) 

Epochs DWT + SVM EMD + KNN PCA + DNN 
Proposed  

Method 

200 85.2 82.4 88.1 91.5 

400 86.7 83.6 89.5 93.2 

600 87.3 84.9 90.3 94.1 

800 87.8 85.5 90.9 94.8 

1000 88.0 86.0 91.2 95.3 

The proposed method consistently outperforms existing 

methods, achieving the highest accuracy with a clear margin, 

demonstrating its superior ability to extract and classify ECG 

features effectively over extended training epochs. 

Table.8. Precision (%) 

Epochs DWT + SVM EMD + KNN PCA + DNN 
Proposed  

Method 

200 83.5 80.7 86.9 90.1 

400 85.1 82.3 88.4 91.9 

600 85.8 83.7 89.1 92.8 

800 86.3 84.2 89.7 93.5 

1000 86.6 84.6 90.0 94.1 

Higher precision by the proposed method indicates fewer false 

positives, showcasing its accuracy in correctly identifying ECG 

abnormalities compared to traditional methods, improving 

reliability in clinical applications. 

Table.9. Recall (%) 

Epochs DWT + SVM EMD + KNN PCA + DNN 
Proposed  

Method 

200 81.9 79.5 85.2 89.0 

400 83.2 81.0 86.7 90.7 

600 83.9 81.8 87.5 91.6 

800 84.4 82.5 88.0 92.2 

1000 84.7 83.0 88.4 92.8 

The proposed model’s superior recall reflects better 

sensitivity, capturing more true positives. This is critical in health 

monitoring, where missing abnormal ECG events could have 

serious consequences. 

Table.10. F1-Score (%) 

Epochs DWT + SVM EMD + KNN PCA + DNN 
Proposed  

Method 

200 82.7 80.1 86.0 89.5 

400 84.1 81.7 87.5 91.3 

600 84.8 82.7 88.3 92.2 

800 85.3 83.3 88.9 92.9 

1000 85.6 83.8 89.2 93.4 

The proposed method achieves the highest F1-score, 

indicating an optimal balance between precision and recall, which 

confirms its robustness and generalizability in ECG classification. 

Table.11. Inference Time (ms/sample) 

Epochs DWT + SVM EMD + KNN PCA + DNN 
Proposed  

Method 
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200 5.2 7.4 9.1 6.0 

400 5.3 7.5 9.0 6.1 

600 5.3 7.5 9.0 6.1 

800 5.4 7.6 9.1 6.2 

1000 5.4 7.6 9.2 6.2 

The proposed technique has a competitive inference time 

compared to EMD+KNN and PCA+DNN, however it is a little 

slower than DWT+SVM. This method strikes a balance between 

getting results faster and getting findings that are more accurate 

and reliable. The proposed Hybrid Adaptive Feature Extraction 

method always comes out on top when compared to other 

methods that are regarded to be more conventional. Compared to 

PCA + DNN, the accuracy got up by roughly 4.5% after 1000 

epochs. Compared to DWT + SVM, it went up by 7.3%, and 

compared to EMD + KNN, it went up by 9.3%. The actual 

positive rates had gone raised, and balanced categorization had 

been obtained when the precision, recall, and F1-score improved 

by 4% to 9%. The inference time was around 15% greater than 

that of DWT + SVM, but it was still competitive because it had 

better diagnostic performance. The proof offered here indicates 

that the suggested strategy is superior at correctly reading ECG 

data and collecting relevant information from it. 

6. CONCLUSION 

The purpose of this research is to demonstrate a novel smart 

health monitoring system that makes use of the IoT. We look at 

ECG signals using a hybrid adaptive feature extraction method. 

The new method combines advanced statistical feature selection 

with the Discrete Wavelet Transform (DWT) and the Empirical 

Mode Decomposition (EMD). It can detect strong and relevant 

features in ECG data. The results reveal that these new methods 

are much better than DWT+SVM, EMD+KNN, and PCA+DNN. 

These benefits include higher accuracy, precision, recall, and F1-

score, which can reach 9.3%. The hybrid technique is useful since 

it works well with intricate feature spaces and biological inputs 

that aren’t very clear. The suggested technique is a suitable 

alternative for real-time IoT health applications since it balances 

speed and accuracy better than the fastest baseline. This is still 

true, even though the time it took to make the inference was a little 

longer than the baseline. There is a rising need for automated 

cardiovascular monitoring devices that can discover 

abnormalities early and keep a watch on patients all the time. This 

study helps to meet that demand.  

In the future, researchers might look into how deep learning 

and better hardware could improve performance and scalability 

even more. This technology could make ECG-based health 

diagnostics far more accurate in smart healthcare environments. 
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