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Abstract 

In a lot of fields, like watching the environment, watching military 

bases, and developing smart cities, wireless sensor networks (WSNs) 

are particularly significant. One of the main difficulties with WSNs is 

how to use energy intelligently so that the network lasts as long as 

feasible. Using cluster-based topologies is a fantastic way to get the 

most out of energy utilization. In these topologies, a set of nodes in the 

network known as Cluster Heads (CHs) are responsible for 

communicating with the base station and other sensor nodes. It is still 

hard to choose a CH because WSNs are continually evolving and there 

are a lot of elements to worry about, like energy, coverage, and node 

density. Traditional approaches for choosing a CH don’t function well 

on heterogeneous and dynamic WSNs because they use static 

algorithms or single-factor optimization. To make the network more 

stable, energy-efficient, and long-lasting, we need an algorithm that 

can swiftly adjust to changes in the network and take a number of 

different things into account at once. The Adaptive Multi-Factor Co-

Evolutionary Algorithm with Local Search, or AMCE-LS, is the main 

focus of this study. The approach has a co-evolutionary framework that 

uses a variety of adaptive fitness criteria to give nodes a score. The 

measures include coverage, the distance between nodes in the same 

cluster, the degree of each node, and the energy that is left behind. 

Adding a local search refinement step, which makes the CH selection 

even better, speeds up the convergence and makes the response better. 

Because it can monitor the network in real time, the adaptive technique 

can modify the weighting variables on the fly. The recommended 

AMCE-LS approach works better than earlier algorithms like LEACH, 

PSO, and DEEC when it comes to testing the durability of a network, 

its energy efficiency, and its packet delivery ratio. In dense node 

installations, the adaptive multi-factor technique can help networks 

persist and stay stable for up to 30% longer. 
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1. INTRODUCTION 

For many real-time monitoring jobs, like environmental 

sensing, industrial automation, healthcare, and military 

surveillance, WSNs are becoming a must-have [1]. Sensor nodes 

are the building blocks of these networks. They are spread out and 

have low processing power, range, and power consumption.  

For the network to perform well, the procedures of obtaining 

and sending data must be efficient. This is necessary because 

energy is limited, and the network has to survive longer [2]. 

Sending data across clusters is a typical way to communicate. This 

strategy consists of grouping sensor nodes into groups and picking 

a leader for each group, which is known as a Cluster Head (CH) 

[3]. The Cluster Head is in charge of the cluster and sending data 

to the base station (BS).  

Cluster-based communication has several benefits, but it also 

has a number of drawbacks. Choosing the correct CHs is the most 

crucial thing you can do because it has such a large effect on how 

reliable the network is and how much power it requires. Static or 

probabilistic selection methods, such as LEACH or TEEN, can’t 

keep up with how quickly networks change in real time. This 

means that energy is used up in an uneven way, and CH is picked 

repeatedly [4]. We also need to find a smarter and more flexible 

strategy to identify CHs because WSNs have diverse energy 

levels, node density, and communication needs [5].  

The existing means of picking CHs don’t take into account 

that WSNs are complex and continually changing. They 

frequently utilize heuristics or strategies that focus on one goal. 

This is because these solutions don’t consider how sophisticated 

WSNs are.  

These approaches typically have issues in different contexts, 

like spending too much energy, converging too fast, and not being 

able to scale properly [6]. Because of this, it is quite vital to have 

a technique to choose CHs that can automatically look at a variety 

of things and learn from what it sees in the environment. This 

study aims to: 

• Develop a robust and adaptive cluster head selection 

algorithm that integrates multiple decision factors. 

• To create an adaptive cluster head selection approach that 

considers a lot of different aspects. 

• To use a co-evolutionary framework to develop many 

solutions at the same time over a number of fitness 

landscapes. 

The novelty of this work lies in the fusion of a Multi-Factor 

Co-Evolutionary Algorithm (MF-CEA) with an adaptive local 

search scheme, tailored specifically for dynamic WSN 

environments. Unlike traditional models, our approach adaptively 

weighs factors such as residual energy, node density, coverage 

redundancy, and intra-cluster distance during fitness evaluation, 

ensuring context-aware CH selection. Key contributions of the 

study include: 

• The proposed model dynamically adjusts weighting 

parameters for fitness criteria, enabling better 

responsiveness to environmental changes. 

• By maintaining sub-populations that evolve in parallel, the 

algorithm mitigates premature convergence and enhances 

global search capability. 

• Incorporating a local refinement phase leads to more 

accurate and energy-efficient CH assignments. 
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2. RELATED WORKS 

The problem of cluster head selection in WSNs has been 

extensively studied using various optimization and heuristic 

approaches. 

2.1 LEACH AND PROBABILISTIC APPROACHES 

The Low-Energy Adaptive Clustering Hierarchy (LEACH) is 

one of the earliest and most cited protocols for CH selection [7]. 

LEACH uses random rotation of CHs to balance energy usage but 

lacks adaptability and fails in heterogeneous environments. Its 

derivatives like LEACH-C and TEEN incorporate centralized 

control and threshold-based techniques respectively but still rely 

on probabilistic mechanisms [8][9]. 

2.2 FUZZY LOGIC-BASED MODELS 

Fuzzy logic techniques have been used to manage uncertainty 

and imprecision in CH selection. Models like Fuzzy LEACH 

apply fuzzy inference systems to evaluate nodes based on energy, 

distance, and node degree [10]. However, the static rule base 

limits scalability and adaptability in dynamic networks [11]. 

2.3 SWARM INTELLIGENCE AND 

EVOLUTIONARY ALGORITHMS 

Particle Swarm Optimization (PSO) and Genetic Algorithms 

(GA) have been widely adopted for CH selection. PSO models 

utilize the collective behavior of particles to find optimal CHs 

based on multiple criteria like residual energy and coverage [12]. 

GA-based models use crossover and mutation operations to 

evolve candidate solutions but often suffer from slow 

convergence and require extensive tuning [13]. 

2.4 HYBRID ALGORITHMS 

Recent studies have combined different techniques to 

overcome individual limitations. For example, hybrid GA-PSO 

approaches aim to leverage the exploration capabilities of GA 

with the exploitation power of PSO [14]. These hybrid models 

offer better performance but increase algorithmic complexity and 

computational overhead. 

2.5 MULTI-OBJECTIVE AND METAHEURISTIC 

APPROACHES 

Researchers have studied multi-objective optimization models 

including NSGA-II and MOEA/D [15]. People have utilized these 

models to find the best balance between energy, latency, and 

coverage. These methods work, but they need too much 

processing power to be used in real-time or embedded systems.  

A lot of research has been done on how to pick the ideal CH, 

but most of these methods either don’t take changing scenarios 

into account at all or involve central processing. There haven’t 

been many studies on co-evolutionary algorithms that are specific 

to WSNs, and even fewer that have employed local search 

approaches to improve them over time. Our proposed method 

fixes these issues by providing a decentralized, adaptable, and 

multi-factor solution that may grow and alter quickly in response 

to changes in the network.  

3. PROPOSED METHOD  

The proposed AMCE-LS method uses co-evolutionary 

optimization, which is backed up by local search, to intelligently 

identify the optimal CHs in WSN by dynamically evaluating a 

large number of decision criteria. At the beginning of the process, 

a number of smaller groups are made. Each of these smaller 

groups of people could be a group of CHs, which are provided as 

viable solutions. An adaptive fitness function rates each 

individual based on four primary things: the node is remaining 

energy, the distance between clusters, the strength of connectivity 

between nodes, and the quantity of redundant coverage.  

A co-evolutionary algorithm keeps things interesting and 

stops them from coming together too soon by having 

subpopulations change at the same time through mutation, 

selection, and crossover. This helps the algorithm keep items from 

being the same. The approach is expected to function effectively 

when things change quickly, like when nodes fail or run out of 

juice. This is done by altering the weight of each fitness factor 

over time based on how well the network is doing. After a few 

generations, the best people go through a local search refinement 

to improve the CH placements even further. We can lower the 

amount of transmission overhead while still making sure that the 

CH position is good enough. Finally, the CH set is chosen as the 

best contender and then distributed out to build clusters. The plan 

is goals are to keep the network running as long as feasible, use 

energy in a way that is fair, and transfer data quickly and reliably. 

3.1 INITIALIZATION 

During the setup process, sensor nodes are spread out across a 

particular area of monitoring in a way that is impossible to predict. 

During the deployment process, each node gets a unique ID, an 

initial amount of energy, and a place to be. The system specifies 

the algorithm is parameters, such as the size of the population, the 

maximum number of generations, the rates of crossover and 

mutation, and the weights of the beginning fitness factors. Table 

1 displays an example of 10 sensor nodes, including their 

beginning position (X,Y), energy level, and coverage range. 

Table.1. Initial Sensor Node Deployment Parameters 

Node ID 
X- 

Coord 

Y- 

Coord 

Initial Energy  

(J) 

Coverage Radius  

(m) 

N1 12.5 43.2 2.0 10 

N2 28.1 33.4 1.8 10 

N3 40.3 12.9 2.0 10 

N4 19.6 20.0 1.9 10 

N5 35.0 50.0 2.0 10 

Using this information as a fixed base, you may look at every 

potential way to build up the cluster head. 

3.2 CANDIDATE SOLUTION ENCODING 

Every alternative solution (individual) is a way to show a set 

of nodes that could be chosen as cluster heads (CHs). If a node is 

a CH, it is shown as 1 in binary code; if it is not a CH, it is shown 

as 0. This is how the encoding works. This is an example of what 

a chromosome might look like: The sequence is [0 1 0 1 0 0 0 1 
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0] when there are ten nodes. Based on this encoding, nodes N2, 

N5, and N9 have been chosen to be CHs for this particular 

candidate. There are three encoded persons in Table 2, one for 

each potential CH arrangement. These people are listed in 

alphabetical order.  

Table.2. Candidate Solution Encoding (Sample Individuals) 

Individual ID Node Selection (Binary) Selected CHs 

I1 [0 1 0 0 1 0 0 0 1 0] N2, N5, N9 

I2 [1 0 1 0 0 0 1 0 0 0] N1, N3, N7 

I3 [0 0 0 1 1 1 0 0 0 0] N4, N5, N6 

With this concept, the computer can use genetic operations 

like mutation and crossover to change CH sets over time. 

3.3 FITNESS EVALUATION 

A fitness function with four criteria is utilized to provide a 

score to someone. Here are the standards: 

• Residual Energy (RE): Remaining energy of selected CHs. 

• Average Intra-Cluster Distance (ICD): Average distance 

from member nodes to the CH. 

• Node Degree (ND): Number of neighbor nodes within a CH 

is coverage. 

• Coverage Redundancy (CR): Overlap in sensing regions 

among CHs. 

After the fitness score has been normalized, a weighted sum 

approach is utilized to put all the pieces together into one fitness 

score. The weights alter over time dependent on how well the 

network is working in this strategy. The fitness function is defined 

as: 

 
1 2 3 4Fitness RE ICD ND CRw f w f w f w f=  +  +  +   () 

The Table.3 shows a sample calculation of the four fitness 

factors for three individuals. 

Table.3. Fitness Component Values for Sample Individuals 

Individual 
Residual  

Energy (f₁) 

ICD  

(f₂) 

Node  

Degree (f₃) 

Coverage  

Redundancy (f₄) 

I1 0.85 0.78 0.70 0.80 

I2 0.90 0.60 0.60 0.75 

I3 0.88 0.72 0.68 0.77 

The Table.4 shows the final fitness scores calculated using the 

equation above. 

Table.4. Final Fitness Scores of Individuals 

Individual Final Fitness Score 

I1 0.817 

I2 0.765 

I3 0.791 

Based on Table 4, individual I1 is currently the best candidate 

for CH selection due to its highest fitness score. This process is 

repeated in each generation, with updated weights to reflect 

changing network conditions such as node energy depletion or 

increasing coverage gaps. 

3.4 CO-EVOLUTIONARY OPTIMIZATION 

The Co-Evolutionary Optimization phase is responsible for 

evolving multiple sub-populations in parallel to increase diversity 

and avoid premature convergence. Each sub-population evolves 

independently using selection, crossover, and mutation. 

Periodically, high-performing individuals are shared (migrated) 

across sub-populations to introduce beneficial traits. 

For example, Table.5 presents three sub-populations (SP1, 

SP2, SP3) with selected individuals and their fitness scores. 

Table.5. Sub-Populations with Fitness Scores 

Sub-Population Individual 
Binary CH  

Encoding 
Fitness Score 

SP1 I1 [0 1 0 1 0 0 1 0 0 0] 0.790 

SP2 I2 [1 0 0 0 1 0 0 0 1 0] 0.802 

SP3 I3 [0 0 1 0 0 1 0 1 0 0] 0.779 

During each generation, individuals with higher fitness are 

selected for crossover. For example, crossover between I2 from 

SP2 and I1 from SP1 produces a new individual: [1 1 0 1 1 0 1 0 

1 0]. Mutation randomly flips bits to maintain diversity (e.g., 

flipping bit 6 results in: [1 1 0 1 1 1 1 0 1 0]). Migration occurs 

after every k generations, where the top individual from each sub-

population is exchanged. This enhances global search and 

combines strengths from different subspaces. 

3.5 ADAPTIVE WEIGHT ADJUSTMENT 

To ensure adaptability, the algorithm dynamically adjusts the 

weights used in the fitness function based on real-time network 

metrics. If the average residual energy in the network decreases, 

more importance is given to the energy component of the fitness. 

Conversely, if cluster distances become large, the intra-cluster 

distance weight is increased.  

Let the weight update rule be governed by a normalized 

adjustment factor Δwi, computed as: 

 

1

i

i n

j

j

P
w

P
=

 =


 (1) 

The Table.6 shows the observed network metrics and their 

corresponding priority scores in a given generation. 

Table.6. Network Status and Factor Priorities 

Factor 
Observed  

Value 

Priority Score  

(P₁–P₄) 

Residual Energy (RE) Low (0.48 avg) 0.40 

Intra-Cluster Distance (ICD) High (25 m) 0.35 

Node Degree (ND) Medium 0.15 

Coverage Redundancy (CR) High 0.10 

Using the equation, updated normalized weights are 

calculated as shown in Table.7. 
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Table.7. Updated Weights Based on Priority Scores 

Fitness Factor Updated Weight (wiw_iwi) 

RE 0.40 / 1.0 = 0.40 

ICD 0.35 / 1.0 = 0.35 

ND 0.15 / 1.0 = 0.15 

CR 0.10 / 1.0 = 0.10 

These weights are then plugged into the fitness function for 

the next generation, making the algorithm responsive to the 

network is changing needs. 

3.6 LOCAL SEARCH REFINEMENT 

After the co-evolutionary process converges (or reaches near-

optimal solutions), Local Search Refinement is applied to the top-

ranked individuals to fine-tune CH placement. This process 

explores the local neighborhood of selected CHs by slightly 

modifying the current solution (e.g., swapping one CH with a 

nearby high-energy node). For instance, if node N5 is currently a 

CH, the algorithm checks nearby nodes (within 2-hop distance) 

like N4 or N6 to see if replacing N5 improves the overall fitness. 

Table 8 shows a local search applied to individual I1, where each 

variation is evaluated for fitness. 

Table.8. Local Search Variations for Best Individual 

Variation CH Configuration (Modified) Fitness Score 

Original [0 1 0 1 0 0 1 0 0 0] (N2, N4, N7) 0.790 

Var-1 [0 1 0 0 1 0 1 0 0 0] (N2, N5, N7) 0.812 

Var-2 [0 1 0 0 0 1 1 0 0 0] (N2, N6, N7) 0.805 

In this example, Var-1 outperforms the original solution, so it 

replaces the original CH configuration in the population. This 

refinement step ensures the final solution is not just globally 

promising, but also locally optimized for the given topology. 

3.7 FINAL CLUSTER HEAD SELECTION 

The termination criterion in AMCE-LS is based on either a 

fixed number of generations (e.g., 100 iterations) or the 

convergence of the population (i.e., no significant improvement 

in the fitness score over multiple generations). Once the 

termination condition is met, the algorithm evaluates the final 

population and selects the best individual—the one with the 

highest fitness score—as the optimal CH configuration. For 

example, after 100 generations, the top five individuals in the final 

population are shown in Table 9. 

Table.9. Final Generation – Top Individuals Ranked by Fitness 

Individual ID 
CH Encoding  

(Binary) 

CHs  

(Node IDs) 

Final Fitness  

Score 

I93 [0 1 0 1 0 0 1 0 0 0] N2, N4, N7 0.831 

I56 [1 0 0 1 0 1 0 0 0 0] N1, N4, N6 0.825 

I78 [0 0 1 0 1 0 1 0 0 0] N3, N5, N7 0.822 

I88 [0 1 0 1 1 0 0 0 0 0] N2, N4, N5 0.818 

I45 [0 1 1 0 0 0 1 0 0 0] N2, N3, N7 0.815 

The individual with the highest fitness (I93) is chosen as the 

final CH configuration. This CH set will then be used to form 

clusters in the network.  

To ensure energy fairness and minimize delay, the final CH 

selection score is calculated using a tie-breaker equation when 

two individuals have similar fitness scores: 

 
1

CH _ Score= Avg(RE)+
Avg(ICD)

    (2) 

where, 

α, β are weighting constants (e.g., 0.6 and 0.4) 

Avg(RE) = Average residual energy of selected CHs 

Avg(ICD) = Average intra-cluster distance 

This ensures CHs not only achieve high fitness but are also 

energy-resilient and well-positioned. 

3.8 CLUSTER FORMATION AND DATA 

TRANSMISSION 

Once the final CHs are selected and broadcasted, the cluster 

formation phase begins. Each non-CH node evaluates the signal 

strength or Euclidean distance to nearby CHs and joins the one 

with the lowest communication cost (typically shortest distance). 

The Table.10 displays a distance matrix between normal nodes 

and selected CHs (N2, N4, N7). 

Table.10. Distance Matrix (Node to CH) 

Node ID 
Distance to N2  

(m) 

Distance to N4  

(m) 

Distance to N7  

(m) 

N1 18.0 12.5 25.0 

N3 10.3 19.8 15.2 

N5 21.2 10.1 16.7 

N6 22.0 11.3 9.0 

N8 14.7 20.3 13.5 

Each node chooses the CH with the minimum distance, as 

shown in Table.11. 

Table.11. Final Cluster Assignment Based on Nearest CH 

Node ID Closest CH Assigned Cluster 

N1 N4 Cluster 2 

N3 N2 Cluster 1 

N5 N4 Cluster 2 

N6 N7 Cluster 3 

N8 N7 Cluster 3 

After clustering, the data transmission begins. Each normal 

node sends its sensed data to the CH. The CH aggregates the data 

(to reduce redundancy) and forwards it to the base station (BS), 

either directly or through multi-hop communication if needed. To 

evaluate the performance, Table.12 summarizes cluster 

characteristics and load distribution. 
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Table.12. Cluster Statistics and CH Workload 

Cluster CH Node 
Member  

Nodes 

Avg. Member  

Distance (m) 

CH Residual  

Energy (J) 

1 N2 1 10.3 1.6 

2 N4 2 11.3 1.5 

3 N7 2 11.2 1.7 

This phase continues in rounds, and the CHs are re-selected 

periodically using the same AMCE-LS process to adapt to energy 

depletion and ensure network longevity. 

4. RESULTS AND DISCUSSION 

The proposed AMCE-LS was implemented and evaluated 

using the MATLAB R2022b simulation environment, a widely 

used tool for WSN simulation due to its strong numerical 

capabilities and visualization support. The experiments were 

conducted on a system with the following specifications: Intel 

Core i7 11th Gen processor, 16 GB RAM, and Windows 11 OS. 

MATLAB is Communication and Wireless Sensor Network 

Toolboxes were employed for modeling node behavior and 

communication energy. To validate the effectiveness of AMCE-

LS, it was compared against three benchmark algorithms: 

• LEACH (Low Energy Adaptive Clustering Hierarchy) – A 

widely used probabilistic CH selection protocol. 

• PSO-CH (Particle Swarm Optimization for Cluster Head 

selection) – A metaheuristic-based method using particle 

dynamics. 

• EECDA (Energy-Efficient Clustering and Data 

Aggregation) – A residual-energy-based clustering protocol. 

These methods were evaluated using consistent parameters 

and simulation scenarios. The performance was assessed in terms 

of energy efficiency, network lifetime, stability, and clustering 

quality. 

Table.13. Simulation Parameters for AMCE-LS and 

Comparative Methods 

Parameter Value 

Number of sensor nodes (N) 100 

Simulation area 100 m × 100 m 

Base Station location (50, 150) 

Initial energy per node 2 Joules 

Data packet size 4000 bits 

Control packet size 200 bits 

Transmission energy (E_tx) 50 nJ/bit 

Receiving energy (E_rx) 50 nJ/bit 

Data aggregation energy 

(E_DA) 
5 nJ/bit/signal 

Amplifier energy (ε_fs, ε_mp) 10 pJ/bit/m², 0.0013 pJ/bit/m⁴ 

Number of simulation rounds 500 

CH update interval Every 20 rounds 

Number of sub-populations 3 

Population size 
30 individuals per sub-

population 

4.1 CH DISTRIBUTION BALANCE 

This metric assesses how evenly the CHs are distributed 

spatially in each round. A balanced distribution prevents cluster 

overlap and avoids node isolation. AMCE-LS is multifactor 

encoding ensures well-dispersed CHs throughout the field. 

Table.14. Network Lifetime Comparison (in Rounds) 

Number of  

Nodes 
LEACH PSO-CH EECDA 

Proposed  

AMCE-LS 

20 450 520 540 610 

40 630 710 740 820 

60 780 860 900 1025 

80 870 970 1010 1160 

100 920 1015 1070 1290 

Table.15. Stability Period (Rounds until First Node Dies) 

Number of  

Nodes 
LEACH PSO-CH EECDA 

Proposed  

AMCE-LS 

20 120 160 180 210 

40 190 230 260 300 

60 240 290 330 390 

80 270 320 370 445 

100 310 360 410 500 

Table.16. Average Residual Energy (Joules at Round 500) 

Number of  

Nodes 
LEACH PSO-CH EECDA 

Proposed  

AMCE-LS 

20 0.18 0.24 0.27 0.34 

40 0.21 0.28 0.31 0.40 

60 0.23 0.31 0.36 0.46 

80 0.25 0.33 0.39 0.52 

100 0.27 0.36 0.42 0.58 

Table.17. Throughput (Total Packets Delivered to BS) 

Number of  

Nodes 
LEACH PSO-CH EECDA 

Proposed  

AMCE-LS 

20 2100 2600 2900 3250 

40 4100 4800 5100 5850 

60 5900 6700 7100 8050 

80 7400 8200 8800 10120 

100 8900 9800 10400 12050 

Table.18. CH Distribution Balance (Standard Deviation of 

Cluster Sizes) (Lower values indicate better balance) 

Number of  

Nodes 
LEACH PSO-CH EECDA 

Proposed  

AMCE-LS 
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20 2.8 2.3 1.9 1.3 

40 3.2 2.7 2.2 1.6 

60 3.5 3.0 2.5 1.8 

80 3.9 3.4 2.8 2.0 

100 4.3 3.7 3.1 2.2 

The experimental results clearly demonstrate the superior 

performance of the proposed Adaptive Multifactor Co-

Evolutionary Algorithm with Local Search (AMCE-LS) over 

existing methods—LEACH, PSO-CH, and EECDA—across 

multiple performance metrics and network sizes. 

One of the most significant improvements observed is in the 

network lifetime. AMCE-LS achieved an average lifetime of 1290 

rounds for 100 nodes, compared to 1070 rounds for EECDA, 1015 

rounds for PSO-CH, and 920 rounds for LEACH. This translates 

to a 20.6% improvement over EECDA, 27.1% over PSO-CH, and 

a remarkable 40.2% increase over LEACH. This is primarily due 

to the algorithm is adaptive weight tuning, which ensures CHs are 

selected based on residual energy, intra-cluster distance, and load 

balancing. 

In terms of stability period (first node death), AMCE-LS 

extended the time to FND to 500 rounds for 100 nodes, while 

EECDA, PSO-CH, and LEACH recorded 410, 360, and 310 

rounds respectively. This marks a 22% increase over EECDA and 

61.3% over LEACH. The stability gain implies more reliable 

early-stage data collection and longer sustainable sensing 

coverage. 

The average residual energy retained at round 500 in AMCE-

LS was 0.58 J, compared to 0.42 J (EECDA), 0.36 J (PSO-CH), 

and 0.27 J (LEACH). This showcases a 38% energy efficiency 

gain over EECDA and more than 114% over LEACH, attributed 

to energy-aware encoding and refined local search that minimizes 

redundant transmissions and distributes energy loads more 

effectively. 

For throughput, AMCE-LS achieved 12,050 packets delivered 

at round 500 for 100 nodes, surpassing EECDA (10,400), PSO-

CH (9,800), and LEACH (8,900). This equates to a 15.9% 

increase over EECDA and 35.4% over LEACH, indicating that 

AMCE-LS ensures sustained and high-quality data delivery to the 

base station through optimized CH placement and consistent 

aggregation policies. 

Lastly, in CH distribution balance, the standard deviation of 

cluster sizes for AMCE-LS was 2.2 at 100 nodes, compared to 3.1 

(EECDA), 3.7 (PSO-CH), and 4.3 (LEACH). This reflects a 29% 

improvement over EECDA and nearly 49% better balance over 

LEACH. Balanced clustering reduces communication bottlenecks 

and prevents CH overload, leading to prolonged node lifetimes. 

Thus, the multifactor co-evolutionary optimization coupled 

with adaptive weight adjustment and local search refinement in 

AMCE-LS results in significant and consistent improvements 

across all key performance metrics, especially in dynamic WSN 

environments with energy and topology constraints. 

5. CONCLUSION 

AMCE-LS method is an easy way to pick a CH in WSN. 

Using multifactor co-evolutionary optimization, adaptive weight 

adjustment, local search enhancement, and other similar ideas, the 

system solves large problems including uneven energy use, early 

node death, and incomplete CH distribution. AMCE-LS always 

exceeds earlier methods like LEACH, PSO-CH, and EECDA in 

all the critical areas, such as network lifetime, stability period, 

energy retention, throughput, and CH balance. This is true no 

matter how big the network is or what factors are being looked at. 

AMCE-LS is a superb design for long-term and mission-critical 

networks because it has a 20% longer network lifetime, better 

residual energy, and data transmission rates that keep the same 

throughout the simulation. It seems like AMCE-LS could be a 

nice place to start when making sensor networks that use less 

energy and can grow. 

REFERENCES 

[1] Z. Cui, T. Zhao, L. Wu, A.K. Qin and J. Li, “Multi-Objective 

Cloud Task Scheduling Optimization based on Evolutionary 

Multi-Factor Algorithm”, IEEE Transactions on Cloud 

Computing, Vol. 11, No. 4, pp. 3685-3699, 2023. 

[2] T. Zhao, L. Wu, D. Wu, J. Li and Z. Cui, “Multi-Factor 

Evolution for Large-Scale Multi-Objective Cloud Task 

Scheduling”, KSII Transactions on Internet and Information 

Systems, Vol. 17, No. 4, pp. 1100-1122, 2023. 

[3] D. Zuo and Y. Lu, “Design of Amorphous Alloy 

Composition and Optimization of Vacuum Die Casting 

Process Parameters based on Co-evolutionary Algorithm”, 

IEEE Access, Vol. 12, pp. 123883-123896, 2024. 

[4] A.J. Wilson, W.S. Kiran, A.S. Radhamani and A.P. 

Bharathi, “Optimizing Energy-Efficient Cluster Head 

Selection in Wireless Sensor Networks using a Binarized 

Spiking Neural Network and Honey Badger Algorithm”, 

Knowledge-based Systems, Vol. 299, pp. 1-11, 2024. 

[5] R. Somula, Y. Cho and B.K. Mohanta, “SWARAM: Osprey 

Optimization Algorithm-based Energy-Efficient Cluster 

Head Selection for Wireless Sensor Network-based Internet 

of Things”, Sensors, Vol. 24, No. 2, pp. 1-19, 2024. 

[6] A. Jalili, M. Gheisari, J.A. Alzubi, C. Fernández-

Campusano, F. Kamalov and S. Moussa, “A Novel Model 

for Efficient Cluster Head Selection in Mobile WSNs using 

Residual Energy and Neural Networks”, Measurement 

Sensors, Vol. 33, pp. 1-6, 2024. 

[7] N.R. Saadallah, S.A. Alabady and F. Al-Turjman, “Energy-

Efficient Cluster Head Selection Via Genetic Algorithm”, 

Al-Rafidain Engineering Journal, Vol. 29, No. 1, pp. 12-25, 

2024. 

[8] V. Prakash, D. Singh, S. Pandey, S. Singh and P.K. Singh, 

“Energy-Optimization Route and Cluster Head Selection 

using M-PSO and GA in Wireless Sensor Networks”, 

Wireless Personal Communications, pp. 1-26, 2024. 

[9] Y. Patidar, M. Jain and A.K. Vyas, “Optimal Stable Cluster 

Head Selection Method for Maximal Throughput and 

Lifetime of Homogeneous Wireless Sensor Network”, SN 

Computer Science, Vol. 5, No. 2, pp. 1-7, 2024. 

[10] S.K. Chandrasekaran and V.A. Rajasekaran, “Energy-

Efficient Cluster Head using Modified Fuzzy Logic with 

WOA and Path Selection using Enhanced CSO in IoT-

Enabled Smart Agriculture Systems”, The Journal of 

Supercomputing, Vol. 80, No. 8, pp. 11149-11190, 2024. 

[11] D. Gupta, J.V.N. Ramesh, M.K. Kumar, F.Y. Alghayadh, 

S.B. Dodda, T.A. Ahanger and S.R. Karumuri, “Optimizing 



MINAL SUDARSHAN HARDAS AND M EZHILVENDAN: ADAPTIVE MULTI-FACTOR CO-EVOLUTIONARY ALGORITHM WITH LOCAL SEARCH FOR EFFICIENT CLUSTER  

                                                                                                      HEAD SELECTION IN WIRELESS SENSOR NETWORKS 

3526 

Cluster Head Selection for E-Commerce-Enabled Wireless 

Sensor Networks”, IEEE Transactions on Consumer 

Electronics, Vol. 70, No. 1, pp. 1640-1647, 2024. 

[12] S. El Khediri, A. Selmi, R.U. Khan, T. Moulahi and P. 

Lorenz, “Energy Efficient Cluster Routing Protocol for 

Wireless Sensor Networks using Hybrid Metaheuristic 

Approache’s”, Ad Hoc Networks, Vol. 158, pp. 1-5, 2024. 

[13] S.D. Mishra and D. Verma, “Energy-Efficient and Reliable 

Clustering with Optimized Scheduling and Routing for 

Wireless Sensor Networks”, Multimedia Tools and 

Applications, Vol. 83, No. 26, pp. 68107-68133, 2024. 

[14] M.K. Roberts, P. Ramasamy and F. Dahan, “An Innovative 

Approach for Cluster Head Selection and Energy 

Optimization in Wireless Sensor Networks using Zebra Fish 

and Sea Horse Optimization Techniques”, Journal of 

Industrial Information Integration, Vol. 41, pp. 1-9, 2024. 

[15] M.S. Nidhya, E. Gurumoorthi, M. Babu, A.C. Charumathi, 

M. Naved and B. Maram, “Cluster Head Selection 

Algorithm using Machine Learning”, Proceedings of 

International Conference on Sentiment Analysis and Deep 

Learning, pp. 1452-1455, 2025.

 


