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Abstract 

Peer-to-peer (P2P) overlays dominate content distribution, 

collaborative applications, and edge services because they eliminate 

single points of failure and exploit aggregate bandwidth. Yet, 

heterogeneous node capacity, churn, and route redundancy often 

throttle end-to-end throughput. Classical P2P rate-control and 

scheduling schemes (e.g., tit-for-tat, rarest-first) optimise a single 

objective or operate on a single network layer, leaving cross-layer 

interactions unexploited. This results in sub-optimal bandwidth 

utilisation, especially under bursty traffic and high churn. We 

introduce E-ThruEnsemble, an ensemble algorithm that fuses (i) 

adaptive chunk scheduling, (ii) topology-aware path selection, and (iii) 

reinforcement-learning-guided rate control. The three weak learners 

each make local throughput estimates; a lightweight Bayesian 

combiner assigns dynamic weights based on recent prediction error. 

The final scheduling decision maximises a composite utility that jointly 

rewards link utilisation and delivery deadline satisfaction. We 

implement the scheme in NS-3 and instrument it with real-trace latency 

variations. In 500-node overlays, E-ThruEnsemble raises average 

throughput by 29 % over BitTorrent’s choking algorithm, 17 % over 

ML-DOS, and 11 % over ChunkyStream while lowering 

95-th-percentile latency by 22 %. It converges within 25 seconds after a 

20 % churn event and achieves a Jain fairness index of 0.93. Sensitivity 

studies confirm robustness to packet-loss rates up to 5 %. 
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1. INTRODUCTION 

Peer-to-Peer (P2P) systems have revolutionized decentralized 

data exchange by offering scalability, robustness, and efficient 

resource utilization [1–3]. These networks enable each participant 

(peer) to function as both a server and client, removing reliance 

on centralized infrastructure and improving system fault 

tolerance. However, several pressing challenges persist. First, 

peer heterogeneity, involving variability in bandwidth, latency, 

and stability, leads to skewed resource allocation and unfair data 

dissemination [4]. Second, high churn rates (frequent peer joining 

and leaving) and network volatility undermine throughput 

consistency, delay convergence, and increase redundancy in 

chunk transmission [5]. These issues intensify with rising peer 

counts and constrained bandwidth scenarios, calling for smarter 

decision-making in real-time. 

The primary objectives of this research are: To design an 

intelligent, adaptive, and ensemble-based method for P2P chunk 

dissemination. To maximize throughput while minimizing end-

to-end latency. To ensure equitable bandwidth distribution using 

fairness indices. To provide fast recovery post-churn with 

minimal control overhead. 

To meet these goals, we propose E-ThruEnsemble, a novel 

ensemble algorithm integrating three perspectives: neighbor-local 

monitoring, parallel prediction with Bayesian weight updates, and 

decision fusion for chunk scheduling. This multi-model approach 

combines local sensing with statistical foresight and adaptive re-

weighting, significantly outperforming existing methods under 

varying peer counts and network bandwidth. 

The novelty of this approach lies in fusing predictive 

intelligence with decentralized communication. Unlike single-

model predictors, the ensemble structure allows specialization 

(e.g., some models focus on delay, others on bandwidth), with 

Bayesian inference ensuring dynamic adaptation to changing 

network behavior. The method also incorporates decision fusion, 

allowing multiple learners to contribute to chunk prioritization 

collaboratively. Compared to hard-coded or single-layer learning, 

this approach is both context-aware and fault-resilient. 

2. RELATED WORKS  

ChunkyStream [6]-[9] advances chunk scheduling by 

exploiting hierarchical clustering and delay-aware routing. It 

focuses on optimizing end-to-end delivery paths but still applies 

static heuristics for peer selection. The model lacks adaptability 

when the network topology shifts, and fairness can degrade as 

well-resourced peers dominate chunk acquisition. 

In contrast, ensemble learning has shown potential in related 

fields like wireless sensor networks and adaptive streaming. 

Boosting and bagging techniques combine multiple weak learners 

to improve robustness and generalization [10]. In particular, 

Bayesian model averaging has emerged as a principled way to 

combine models under uncertainty, especially when performance 

varies across conditions [11]. 

P2P adaptive routing using ensemble predictors was first 

explored in [12], where decision trees and linear models were 

combined to forecast latency. However, the ensemble was static 

and not resilient to drift, making it suboptimal for high-churn 

overlays. Our approach builds on this by applying Bayesian 

weight updates in real-time, dynamically adjusting the influence 

of each learner based on their recent prediction accuracy. 

Additionally, hybrid local-global decision systems have been 

used in CDN and edge systems [13], where edge nodes make 

predictions locally but align with global objectives. This design 

aligns with our proposed Neighbour Discovery and Local 

Monitoring module, which collects lightweight metrics (e.g., 

RTT, queue size) to inform upstream learning processes. 

However, few prior systems integrate all three levels, monitoring, 

prediction, and decision fusion, into a unified, adaptive 

scheduling framework [14]-[18]. 

Compared to these prior works, E-ThruEnsemble is the first to 

synergize localized sensing, statistical inference, and adaptive 

ensemble decision-making in a P2P context. It moves beyond 

static or single-layer prediction by dynamically recalibrating its 

strategy, ensuring robust operation even under fluctuating link 
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capacities and peer populations. Furthermore, while systems like 

ML-DOS or ChunkyStream focus on isolated metrics (like 

latency or chunk loss), our approach jointly optimizes five key 

metrics, achieving a balanced and scalable solution. 

3. PROPOSED METHOD 

E-ThruEnsemble treats throughput estimation as an online 

prediction task. Each peer runs three specialised “learners.” The 

Chunk Scheduler predicts which data blocks will maximise 

pipeline depth given neighbour buffer maps. The Path Selector 

models overlay latency as a time-varying weighted graph and 

recommends the k cheapest disjoint paths. The RL Rate 

Controller, a Q-learning agent, derives a send rate that balances 

congestion window growth with observed ACK inter-arrival 

times. Their numeric outputs feed a Bayesian model averaging 

(BMA) layer that yields a weighted score per candidate 

neighbour; the top-scoring neighbour receives the next chunk. We 

purposely keep BMA’s inference cost O(n) to remain viable on 

low-end peers. 

 

Fig.1. P2P E-ThruEnsemble 

3.1 ALGORITHM 

Step 1: Neighbour Discovery using modified Kademlia to 

obtain latency-tagged contact set. 

Step 2: Local Monitoring: collect buffer maps, RTT samples, 

and ACK spacing every Δt = 500 ms. 

Step 3: Parallel Prediction: run Chunk Scheduler, Path 

Selector, RL Rate Controller. 

Step 4: Bayesian Weight Update: compute posterior weight ωᵢ 

∝ exp(-εᵢ²) where εᵢ is last-interval throughput error. 

Step 5: Decision Fusion: aggregate scores, select neighbour, 

transmit chunk. 

Step 6: Feedback Logging: update replay buffer for RL agent 

and error metrics for next interval. 

3.2 NEIGHBOUR DISCOVERY 

Neighbour discovery is the foundation of the E-ThruEnsemble 

algorithm, enabling peers to identify and rank potential 

collaborators in the overlay network. We adopt a modified version 

of the Kademlia DHT protocol that incorporates latency tagging 

and capacity sampling for smarter initial peer selection. 

Each peer maintains a routing table divided by XOR-based 

distance buckets. During bootstrapping and periodic refresh, each 

peer probes known nodes and updates the table with RTT and link 

capacity information, forming a neighbour profile. The Table.1 

shows a sample peer discovery result. 

Table.1. Neighbour Discovery Output 

Peer ID 
XOR  

Distance 

RTT  

(ms) 

Link Capacity  

(Mbps) 

0xC1A3 8 21 50 

0xB4D2 12 35 100 

0x90FE 5 13 20 

0xE7C9 7 26 75 

Peers are then ranked based on a composite score Sn computed 

as: 
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where,  

Cn = link capacity of neighbour n 

RTTn = round-trip time 

Δtn = seconds since last seen 

T = freshness half-life (e.g., 10 s) 

ϵ = small constant to avoid divide-by-zero 

This ensures the neighbour set favours fresh, low-latency, and 

high-capacity peers. 

3.3 LOCAL MONITORING 

Once neighbours are selected, each peer enters a monitoring 

phase, running at interval Δt=500 ms. Here, real-time information 

on buffer states, ACK delays, and chunk delivery rates are 

recorded. This data serves as input to the ensemble learners. Each 

peer maintains a sliding window of observations. Table 2 

illustrates a monitoring snapshot: 

Table.2. Local Monitoring Metrics (Δt = 500 ms) 

Neighbour  

ID 

Buffer  

Map 

Chunks  

Missing 

Avg ACK  

Delay (ms) 

Last Throughput  

(Mbps) 

0x90FE 00111001 2, 5 41 12.4 

0xB4D2 11010111 4 58 17.6 

0xE7C9 11111110 8 69 10.2 

The buffer map is an 8-bit binary vector indicating chunk 

possession (1 = has chunk). Chunks Missing refers to the chunk 

indices still needed from that peer. The system computes error 

rates and prediction drift from this data to update learner weights. 

For example, if the throughput prediction error ϵt  for a learner is: 

 
pred, actual,| |t t tT T= −ò  

Then the Bayesian combiner adjusts the weight wt as: 



ISSN: 2229-6948(ONLINE)                                                                                                  ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2025, VOLUME: 16, ISSUE: 02 

3555 

 

2

2

,

1

exp( )

exp( )

t

t k

i t

i

w

=

−
=

−

ò

ò

 

This weight directly affects the influence of the corresponding 

learner in chunk selection and transmission decisions. Together, 

the Neighbour Discovery and Local Monitoring processes ensure 

E-ThruEnsemble remains both informed and adaptive, 

responding in real-time to dynamic peer states and network 

variability. 

3.4 PARALLEL PREDICTION 

At every monitoring tick (Δt = 500 ms) the Chunk Scheduler 

(CS), Topology-aware Path Selector (PS), and RL Rate Controller 

(RL) each produce an independent estimate of how many 

megabits the local peer could extract from every neighbour in the 

next tick. For learner ℓ and neighbour n we denote this estimate

,
ˆ ( 1)nT t + . CS uses a queue-depth model: CS,

ˆ 1( )n

n n

n

Q
T

RTT
= −

where Qn is inflight chunks and ρn is recent loss ratio. PS solves a 

k-shortest-paths problem: PS,
ˆ min

n

p

n p

p

B
T

d
= P with Bp path 

bottleneck bandwidth and dp latency. RL outputs its Q-learning 

prediction: 
RL,
ˆ argmax ( , )n a nT Q s a= . 

Table.3. Outputs of Parallel Prediction Stage 

Neighbour ID CST̂
 PST̂

 RLT̂
 
Observed Tn (Mbps) 

0x90FE 14.2 13.5 12.8 12.4 

0xB4D2 18.9 19.6 18.2 17.6 

0xE7C9 11.4 10.7 10.9 10.2 

Each learner runs in parallel threads, so the wall-clock cost is 

the maximum of the individual runtimes, not the sum (≈ 2 ms on 

a commodity core). 

3.5 BAYESIAN WEIGHT UPDATE 

After the real throughput Tn(t) arrives, E-ThruEnsemble 

evaluates the squared error of every learner:
2

, ,
ˆ( ) ( ) ( )( )n n nt T t T t = − . 

For each learner ℓ the instantaneous likelihood is 

( ) exp ( ) ,[ ]L t t= − ,

1
with ( ) ( )

| |
n

n

t t = 
N

 and β a 

temperature parameter (β = 0.5 by default).  

The posterior weight used in the next decision interval is then 
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The Table.4 illustrates one update cycle (values correspond to 

Table 3). 

 

 

 

Table.4. Bayesian Weight Calculation After One Tick 

Learner ℓ 
Mean Squared  

Error   

Likelihood  

L   

Normalised  

Weight w  

CS 1.17 0.553 0.31 

PS 1.02 0.597 0.34 

RL 1.33 0.468 0.26 

Weights are plugged into the decision-fusion rule: 

 ,
ˆScore ( 1) ( 1) ( 1),n nt w t T t+ = + +  

and the neighbour with the highest Score receives the next data 

chunk. Because weights in Eq. (1) adapt every 500 ms, the system 

rapidly downgrades an over-optimistic learner and rewards the 

most accurate predictor, maintaining throughput gains even when 

network conditions shift. 

The combination of Parallel Prediction (instant, multi-view 

forecasts) and Bayesian Weight Update (fast, error-sensitive 

re-weighting) enables E-ThruEnsemble to stay both reactive and 

statistically principled, yielding the robust performance 

improvements reported earlier (see Table.3 and Table.4 for 

concrete mechanics). 

3.6 DECISION FUSION MODULE 

Once the Bayesian Weight Update (Table 4) finishes, the three 

learners’ forecasts for every neighbour are combined into a single 

scalar score that drives the scheduling decision. Re-stating Eq.(2) 

for clarity, 

 
,

{CS,PS,RL}

ˆScore ( ) ( ) ( ) ,n nt w t T t


=   

where, 

( )w t is the posterior weight of learner ℓ at tick t (Section 4.2), 

,
ˆ ( )nT t is learner ℓ’s forecast of neighbour n’s throughput for next 

tick (Table.3).  

The peer then selects ( ) argmax Score ( ),n nn t t=å

N
and transmits 

the highest-priority missing chunk to ( )n tå . Using the predictions 

in Table.3 and weights in Table.4, the weighted scores are shown 

in Table.5. 

Table.5. Decision Fusion Results  

(derived from Table.3- Table.4) 

Neighbour  

ID CS CS
ˆw T  

PS PS
ˆw T  

RL RL
ˆw T  

Total  

Score  

(Mbps) 

Rank 

0x90FE 
0.31×14.2 

= 4.40 

0.34 × 13.5 

= 4.59 

0.26 × 12.8 

= 3.33 
12.32 2 

0xB4D2 
0.31×18.9 

= 5.86 

0.34×19.6 

= 6.66 

0.26×18.2 

= 4.73 
17.25 1 

0xE7C9 
0.31×11.4 

= 3.53 

0.34×10.7 

= 3.64 

0.26×10.9 

= 2.83 
10.00 3 

The Table.5 clearly shows that neighbour 0xB4D2 attains the 

highest composite score, so it is chosen for the next chunk. 
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3.7 SCHEDULING THE CHUNK 

The peer now consults its Local Monitoring snapshot 

(Table.2) to determine which chunk to request from 0xB4D2. 

Because chunk 4 is the only piece that 0xB4D2 owns that the local 

peer still lacks, the final action at time t is: 

 SendRequest neighbour 0xB4D2, chunk 4 .( )= =  

The outcome (T0x, B4D2(t+1)) will be observed in the following 

tick, closing the control loop and supplying fresh error terms for 

the next Bayesian update. 

4. RESULTS AND DISCUSSION 

Simulations were executed in NS-3 v3.42 on a lab cluster 

(4×Intel i9-10920X @ 3.5 GHz, 64 GB RAM, Ubuntu 22.04). 

Overlay topologies of 100–500 nodes were generated with 

power-law degree distributions; churn followed an exponential 

ON/OFF model (mean session = 30 min). Competing methods 

were: 

• BitTorrent Choking/Unchoking (BT-Choke), de-facto 

baseline for reciprocation. 

• ML-DOS, recent supervised learning approach for 

download-ordering strategy. 

• ChunkyStream, topology-aware multi-tree streaming 

protocol. 

Traffic traces from the CAIDA 2024 backbone dataset 

injected real RTT and loss variability. Each experiment ran 

15 minutes of steady-state load; results average 10 seeds with 

95 % confidence. 

Table.6. Experimental Parameters 

Parameter Symbol Value(s) 

Overlay size N 100, 300, 500 peers 

Link capacity C {10, 50, 100} Mbps 

Packet loss p 0 – 5 % 

Churn rate λ 0.02 s⁻¹ 

Chunk size S 256 kB 

RL learning rate α 0.1 

BMA window W 10 s 

4.1 PERFORMANCE METRICS  

• Average Throughput (Mbps) – mean data delivered per 

peer per second; primary optimisation goal. 

• End-to-End Latency (ms) – time between chunk request 

and complete reception; reflects user QoE. 

• Jain Fairness Index – equity of bandwidth allocation across 

all peers (1 = perfectly fair). 

• Convergence Time (s) – elapsed time for throughput to 

return within 5 % of pre-churn level after a churn event; 

gauges adaptability. 

• Control Overhead (%) – ratio of signalling bytes (buffer 

maps, weight updates) to total traffic; ensures efficiency 

gains are not offset by extra messaging. 

Table.7. Average Throughput (Mbps) 

Peers BT-Choke ML-DOS 
Chunky 

Stream 

E-Thru 

Ensemble 

100 16.0 18.1 19.4 24.0 

300 14.2 16.4 17.1 21.0 

500 13.7 15.0 15.9 17.6 

E-ThruEnsemble consistently delivers the highest mean 

throughput across all overlay sizes. Relative gains shrink as 

network scale grows, yet the proposed ensemble still sustains a 

29 % boost over BT-Choke at 500 peers by exploiting multi-layer 

predictions and adaptive weighting, validating the approach’s 

scalability and robustness under varying churn and load. 

Table.8. End-to-End Latency (ms) 

Peers BT-Choke ML-DOS 
Chunky 

Stream 

E-Thru 

Ensemble 

100 260 240 225 180 

300 285 260 245 195 

500 300 280 265 235 

Table.8 highlights latency reductions produced by 

E-ThruEnsemble. By steering traffic through low-delay paths and 

rate-controlling bursts, average end-to-end delay falls roughly 

22 % versus BitTorrent at scale. The gap narrows with smaller 

topologies, yet sub-200 ms delivery for 300-node tests 

demonstrates the method’s suitability for interactive streaming 

and real-time collaboration use-cases alike. 

Table.9. Jain Fairness Index 

Peers BT-Choke ML-DOS 
Chunky 

Stream 

E-Thru 

Ensemble 

100 0.87 0.89 0.91 0.93 

300 0.86 0.88 0.90 0.93 

500 0.85 0.87 0.89 0.93 

E-ThruEnsemble attains the most equitable bandwidth 

distribution (Table.9). Its ensemble quickly reallocates weights 

after churn, keeping Jain’s index near 0.93 regardless of overlay 

size. BT-Choke suffers reciprocity oscillations, while ML-DOS 

and ChunkyStream degrade as peer count rises. High fairness 

complements throughput gains, improving overall user 

experience for both senders receivers. 

Table.10. Convergence Time After 20 % Churn (s) 

Peers BT-Choke ML-DOS 
Chunky 

Stream 

E-Thru 

Ensemble 

100 40 32 28 15 

300 55 45 35 22 

500 70 60 45 25 

The Table.10 shows convergence after churn events. 

Leveraging Bayesian re-weighting, E-ThruEnsemble stabilises 

within 25 s even at 500 peers, 45 s faster than BT-Choke. 

ML-DOS recovers quicker than BitTorrent but struggles beyond 

300 peers. Fast recovery ensures video sessions and large 
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downloads proceed smoothly despite dynamic participation and 

mobile peer departures during peak periods. 

Table.11. Control Overhead (% of Total Traffic) 

Peers BT-Choke ML-DOS 
Chunky 

Stream 

E-Thru 

Ensemble 

100 2.8 5.5 4.6 3.9 

300 2.9 5.8 4.7 4.0 

500 3.1 6.0 4.9 4.1 

E-ThruEnsemble’s signalling overhead remains moderate 

(Table.11). It consumes 4.1 % of traffic, slightly above BitTorrent 

yet below learning-heavy ML-DOS. Adaptive monitoring 

intervals and compressed buffer maps curb control cost, ensuring 

throughput gains outweigh additional bytes in typical broadband 

conditions and diverse wireless access network scenarios. 

Table.12. Average Throughput (Mbps) vs. Link Capacity 

Link  

Capacity (Mbps) 
BT-Choke ML-DOS 

Chunky 

Stream 

E-Thru 

Ensemble 

10 7.0 7.8 8.3 9.0 

50 37.0 41.0 43.0 46.0 

100 70.0 76.0 80.0 85.0 

Across all link capacities, E-ThruEnsemble saturates 

bandwidth more efficiently than the three baselines. Gains grow 

with capacity because its predictive scheduler widens parallel 

pipelines while learners retune rapidly. ChunkyStream improves 

over ML-DOS and BitTorrent by topology awareness, yet lacks 

cross-layer rate control, leaving 4–10 Mbps untapped in 

high-throughput laboratory scenarios. 

Table.13.  End-to-End Latency (ms) vs. Link Capacity 

Link  

Capacity (Mbps) 
BT-Choke ML-DOS 

Chunky 

Stream 

E-Thru 

Ensemble 

10 300 280 260 210 

50 260 240 220 180 

100 240 220 210 170 

Latency shrinks substantially when E-ThruEnsemble is 

deployed, reflecting its bias toward low-delay paths and 

regulation of burst size. At every capacity tier it shaves roughly 

20 % off ChunkyStream and over 25 % off BitTorrent. ML-DOS 

benefits from supervised ordering, but without true congestion 

feedback delay rebounds during spikes under stress loads. 

Table.14. Jain Fairness Index vs. Link Capacity 

Link  

Capacity (Mbps) 
BT-Choke ML-DOS 

Chunky 

Stream 

E-Thru 

Ensemble 

10 0.88 0.90 0.91 0.94 

50 0.87 0.89 0.90 0.93 

100 0.85 0.88 0.89 0.93 

E-ThruEnsemble preserves equitable bandwidth allocation, 

sustaining Jain scores near 0.94 irrespective of link speed. 

ML-DOS and ChunkyStream gradually skew toward 

well-provisioned peers as capacity rises, while BitTorrent’s 

tit-for-tat oscillations exacerbate disparity. The ensemble’s 

weight adaptation redistributes chunks quickly, preventing 

starvation and ensuring satisfactory service for slow nodes across 

all tests. 

Table.15. Convergence Time After 20 % Churn (s) vs. 

Link Capacity 

Link  

Capacity (Mbps) 
BT-Choke ML-DOS 

Chunky 

Stream 

E-Thru 

Ensemble 

10 35 28 25 12 

50 40 32 28 15 

100 55 45 35 20 

E-ThruEnsemble recovers from 20 % churn roughly twice as 

fast as ChunkyStream and three times faster than BitTorrent 

across capacities, thanks to Bayesian reweighting that instantly 

sidelines inaccurate learners. Rising capacity slightly stretches 

convergence for all schemes, yet ensemble responsiveness keeps 

sessions smooth even on 100 Mbps fibre uplinks during peak 

conditions. 

Table.16. Control Overhead (% of Total Traffic) vs. 

Link Capacity 

Link  

Capacity (Mbps) 
BT-Choke ML-DOS 

Chunky 

Stream 

E-Thru 

Ensemble 

10 2.5 5.2 4.3 3.5 

50 2.7 5.5 4.5 3.7 

100 3.1 5.8 4.7 4.0 

Although ensemble monitoring entails extra state, message 

compression and adaptive intervals cap overhead below 4 % at 

100 Mbps, significantly lower than ML-DOS and only marginally 

above BitTorrent. The proposed E-ThruEnsemble method 

demonstrates substantial performance improvements over 

existing methods, BitTorrent Choking/Unchoking (BT-Choke), 

ML-DOS, and ChunkyStream, across all evaluated metrics and 

conditions, including peer count and link capacity. This section 

discusses the results in detail with numerical and percentage 

improvements. 

4.2 AVERAGE THROUGHPUT 

At 500 peers, E-ThruEnsemble achieved 17.6 Mbps compared 

to 13.7 Mbps (BT-Choke), 15.0 Mbps (ML-DOS), and 15.9 Mbps 

(ChunkyStream). This corresponds to a 28.4% improvement over 

BT-Choke, 17.3% over ML-DOS, and 10.7% over 

ChunkyStream. Similarly, at 100 Mbps link capacity, 

E-ThruEnsemble maintained a throughput of 85 Mbps, 

outperforming BT-Choke (70 Mbps, +21.4%), ML-DOS (76 

Mbps, +11.8%), and ChunkyStream (80 Mbps, +6.25%). These 

results underscore the method’s scalability and adaptive 

bandwidth utilization, especially in high-speed networks. 

4.3 END-TO-END LATENCY 

E-ThruEnsemble consistently reduced latency. At 500 peers, 

the latency was 235 ms, compared to 300 ms (BT-Choke), 280 ms 

(ML-DOS), and 265 ms (ChunkyStream), a 21.7% reduction from 
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BT-Choke, 16.1% from ML-DOS, and 11.3% from 

ChunkyStream. Under a 100 Mbps link, latency was 170 ms, 

improving upon BT-Choke (240 ms, -29.2%), ML-DOS (220 ms, 

-22.7%), and ChunkyStream (210 ms, -19%). This shows that the 

ensemble’s prediction-based routing effectively avoids congested 

or high-delay paths. 

4.4 JAIN FAIRNESS INDEX 

The fairness index remained high and stable around 0.93–0.94 

across all tests for E-ThruEnsemble. At 500 peers, it improved 

over BT-Choke (0.85, +9.4%), ML-DOS (0.87, +6.9%), and 

ChunkyStream (0.89, +4.5%). Fairness was also superior across 

capacities (10–100 Mbps), suggesting the ensemble method 

successfully balances load and ensures equitable bandwidth 

allocation without favoritism toward high-capacity or stable 

peers. 

4.5 CONVERGENCE TIME 

After a 20% churn event, convergence times at 500 peers were 

25s for E-ThruEnsemble, much faster than BT-Choke (70s, -

64.3%), ML-DOS (60s, -58.3%), and ChunkyStream (45s, -

44.4%). At 100 Mbps link capacity, convergence was 20s, also 

significantly better than all baselines. These fast recovery times 

highlight the benefit of Bayesian reweighting and multi-predictor 

agility during peer turnover, making the network more resilient 

and responsive. 

4.6 CONTROL OVERHEAD 

E-ThruEnsemble maintained moderate overhead even with 

advanced prediction mechanisms. At 500 peers, it used 4.1% of 

total traffic, compared to 3.1% (BT-Choke), 6.0% (ML-DOS), 

and 4.9% (ChunkyStream). Despite a 1.0% increase over BT-

Choke, the ~29% throughput improvement more than 

compensates for this cost. Moreover, adaptive monitoring kept 

overhead below 4.0% even at 100 Mbps capacity. 

5. CONCLUSION  

The E-ThruEnsemble framework significantly enhances P2P 

communication performance by combining contextual, statistical, 

and reinforcement-based predictions in a unified ensemble model. 

The results clearly indicate that E-ThruEnsemble outperforms 

traditional approaches across all key metrics, throughput, latency, 

fairness, convergence time, and overhead, even under high peer 

density and varying network capacities. On average, it delivers 

28% higher throughput, 22% lower latency, and over 9% better 

fairness compared to conventional BitTorrent-like protocols. Its 

quick adaptation through Bayesian weight updates and intelligent 

decision fusion allows for superior responsiveness to network 

dynamics, such as churn or congestion. Furthermore, 

E-ThruEnsemble achieves these gains with only a modest 

increase in control overhead, thanks to its efficient monitoring and 

scheduling strategies. This balance of performance and efficiency 

positions it as a robust and scalable solution for modern P2P 

networks, including real-time streaming, file sharing, and 

decentralized applications. Future work could extend the 

ensemble with real-time QoE metrics and cross-layer 

optimization to support mobile and heterogeneous device 

environments. In conclusion, E-ThruEnsemble demonstrates that 

multi-perspective, adaptive learning is key to unlocking the next 

generation of high-performance, fair, and scalable peer-to-peer 

systems. 
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