
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2025, VOLUME: 16, ISSUE: 02
DOI: 10.21917/ijct.2025.0529

3553

AN ENSEMBLE ALGORITHM ON P2P COMMUNICATION AND NETWORKING

P. Prabaharan1 and M. Reshma2
1Department of Computer Science and Engineering, Vivekanandha College of Engineering for Women, India

2Department of Electronics and Communication Engineering, University B.D.T. College of Engineering, India

Abstract

Peer-to-peer (P2P) overlays dominate content distribution,

collaborative applications, and edge services because they eliminate

single points of failure and exploit aggregate bandwidth. Yet,

heterogeneous node capacity, churn, and route redundancy often

throttle end-to-end throughput. Classical P2P rate-control and

scheduling schemes (e.g., tit-for-tat, rarest-first) optimise a single

objective or operate on a single network layer, leaving cross-layer

interactions unexploited. This results in sub-optimal bandwidth

utilisation, especially under bursty traffic and high churn. We

introduce E-ThruEnsemble, an ensemble algorithm that fuses (i)

adaptive chunk scheduling, (ii) topology-aware path selection, and (iii)

reinforcement-learning-guided rate control. The three weak learners

each make local throughput estimates; a lightweight Bayesian

combiner assigns dynamic weights based on recent prediction error.

The final scheduling decision maximises a composite utility that jointly

rewards link utilisation and delivery deadline satisfaction. We

implement the scheme in NS-3 and instrument it with real-trace latency

variations. In 500-node overlays, E-ThruEnsemble raises average

throughput by 29 % over BitTorrent’s choking algorithm, 17 % over

ML-DOS, and 11 % over ChunkyStream while lowering

95-th-percentile latency by 22 %. It converges within 25 seconds after a

20 % churn event and achieves a Jain fairness index of 0.93. Sensitivity

studies confirm robustness to packet-loss rates up to 5 %.

Keywords:

Peer-to-Peer Networking, Ensemble Learning, Throughput

Optimisation, Adaptive Scheduling, Ns-3 Simulation

1. INTRODUCTION

Peer-to-Peer (P2P) systems have revolutionized decentralized

data exchange by offering scalability, robustness, and efficient

resource utilization [1–3]. These networks enable each participant

(peer) to function as both a server and client, removing reliance

on centralized infrastructure and improving system fault

tolerance. However, several pressing challenges persist. First,

peer heterogeneity, involving variability in bandwidth, latency,

and stability, leads to skewed resource allocation and unfair data

dissemination [4]. Second, high churn rates (frequent peer joining

and leaving) and network volatility undermine throughput

consistency, delay convergence, and increase redundancy in

chunk transmission [5]. These issues intensify with rising peer

counts and constrained bandwidth scenarios, calling for smarter

decision-making in real-time.

The primary objectives of this research are: To design an

intelligent, adaptive, and ensemble-based method for P2P chunk

dissemination. To maximize throughput while minimizing end-

to-end latency. To ensure equitable bandwidth distribution using

fairness indices. To provide fast recovery post-churn with

minimal control overhead.

To meet these goals, we propose E-ThruEnsemble, a novel

ensemble algorithm integrating three perspectives: neighbor-local

monitoring, parallel prediction with Bayesian weight updates, and

decision fusion for chunk scheduling. This multi-model approach

combines local sensing with statistical foresight and adaptive re-

weighting, significantly outperforming existing methods under

varying peer counts and network bandwidth.

The novelty of this approach lies in fusing predictive

intelligence with decentralized communication. Unlike single-

model predictors, the ensemble structure allows specialization

(e.g., some models focus on delay, others on bandwidth), with

Bayesian inference ensuring dynamic adaptation to changing

network behavior. The method also incorporates decision fusion,

allowing multiple learners to contribute to chunk prioritization

collaboratively. Compared to hard-coded or single-layer learning,

this approach is both context-aware and fault-resilient.

2. RELATED WORKS

ChunkyStream [6]-[9] advances chunk scheduling by

exploiting hierarchical clustering and delay-aware routing. It

focuses on optimizing end-to-end delivery paths but still applies

static heuristics for peer selection. The model lacks adaptability

when the network topology shifts, and fairness can degrade as

well-resourced peers dominate chunk acquisition.

In contrast, ensemble learning has shown potential in related

fields like wireless sensor networks and adaptive streaming.

Boosting and bagging techniques combine multiple weak learners

to improve robustness and generalization [10]. In particular,

Bayesian model averaging has emerged as a principled way to

combine models under uncertainty, especially when performance

varies across conditions [11].

P2P adaptive routing using ensemble predictors was first

explored in [12], where decision trees and linear models were

combined to forecast latency. However, the ensemble was static

and not resilient to drift, making it suboptimal for high-churn

overlays. Our approach builds on this by applying Bayesian

weight updates in real-time, dynamically adjusting the influence

of each learner based on their recent prediction accuracy.

Additionally, hybrid local-global decision systems have been

used in CDN and edge systems [13], where edge nodes make

predictions locally but align with global objectives. This design

aligns with our proposed Neighbour Discovery and Local

Monitoring module, which collects lightweight metrics (e.g.,

RTT, queue size) to inform upstream learning processes.

However, few prior systems integrate all three levels, monitoring,

prediction, and decision fusion, into a unified, adaptive

scheduling framework [14]-[18].

Compared to these prior works, E-ThruEnsemble is the first to

synergize localized sensing, statistical inference, and adaptive

ensemble decision-making in a P2P context. It moves beyond

static or single-layer prediction by dynamically recalibrating its

strategy, ensuring robust operation even under fluctuating link

P PRABAHARAN AND M RESHMA: AN ENSEMBLE ALGORITHM ON P2P COMMUNICATION AND NETWORKING

3554

capacities and peer populations. Furthermore, while systems like

ML-DOS or ChunkyStream focus on isolated metrics (like

latency or chunk loss), our approach jointly optimizes five key

metrics, achieving a balanced and scalable solution.

3. PROPOSED METHOD

E-ThruEnsemble treats throughput estimation as an online

prediction task. Each peer runs three specialised “learners.” The

Chunk Scheduler predicts which data blocks will maximise

pipeline depth given neighbour buffer maps. The Path Selector

models overlay latency as a time-varying weighted graph and

recommends the k cheapest disjoint paths. The RL Rate

Controller, a Q-learning agent, derives a send rate that balances

congestion window growth with observed ACK inter-arrival

times. Their numeric outputs feed a Bayesian model averaging

(BMA) layer that yields a weighted score per candidate

neighbour; the top-scoring neighbour receives the next chunk. We

purposely keep BMA’s inference cost O(n) to remain viable on

low-end peers.

Fig.1. P2P E-ThruEnsemble

3.1 ALGORITHM

Step 1: Neighbour Discovery using modified Kademlia to

obtain latency-tagged contact set.

Step 2: Local Monitoring: collect buffer maps, RTT samples,

and ACK spacing every Δt = 500 ms.

Step 3: Parallel Prediction: run Chunk Scheduler, Path

Selector, RL Rate Controller.

Step 4: Bayesian Weight Update: compute posterior weight ωᵢ

∝ exp(-εᵢ²) where εᵢ is last-interval throughput error.

Step 5: Decision Fusion: aggregate scores, select neighbour,

transmit chunk.

Step 6: Feedback Logging: update replay buffer for RL agent

and error metrics for next interval.

3.2 NEIGHBOUR DISCOVERY

Neighbour discovery is the foundation of the E-ThruEnsemble

algorithm, enabling peers to identify and rank potential

collaborators in the overlay network. We adopt a modified version

of the Kademlia DHT protocol that incorporates latency tagging

and capacity sampling for smarter initial peer selection.

Each peer maintains a routing table divided by XOR-based

distance buckets. During bootstrapping and periodic refresh, each

peer probes known nodes and updates the table with RTT and link

capacity information, forming a neighbour profile. The Table.1

shows a sample peer discovery result.

Table.1. Neighbour Discovery Output

Peer ID
XOR

Distance

RTT

(ms)

Link Capacity

(Mbps)

0xC1A3 8 21 50

0xB4D2 12 35 100

0x90FE 5 13 20

0xE7C9 7 26 75

Peers are then ranked based on a composite score Sn computed

as:

/

RTT
nt Tn

n

n

C
S e

−
=

+ò

where,

Cn = link capacity of neighbour n

RTTn = round-trip time

Δtn = seconds since last seen

T = freshness half-life (e.g., 10 s)

ϵ = small constant to avoid divide-by-zero

This ensures the neighbour set favours fresh, low-latency, and

high-capacity peers.

3.3 LOCAL MONITORING

Once neighbours are selected, each peer enters a monitoring

phase, running at interval Δt=500 ms. Here, real-time information

on buffer states, ACK delays, and chunk delivery rates are

recorded. This data serves as input to the ensemble learners. Each

peer maintains a sliding window of observations. Table 2

illustrates a monitoring snapshot:

Table.2. Local Monitoring Metrics (Δt = 500 ms)

Neighbour

ID

Buffer

Map

Chunks

Missing

Avg ACK

Delay (ms)

Last Throughput

(Mbps)

0x90FE 00111001 2, 5 41 12.4

0xB4D2 11010111 4 58 17.6

0xE7C9 11111110 8 69 10.2

The buffer map is an 8-bit binary vector indicating chunk

possession (1 = has chunk). Chunks Missing refers to the chunk

indices still needed from that peer. The system computes error

rates and prediction drift from this data to update learner weights.

For example, if the throughput prediction error ϵt for a learner is:

pred, actual,| |t t tT T= −ò

Then the Bayesian combiner adjusts the weight wt as:

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2025, VOLUME: 16, ISSUE: 02

3555

2

2

,

1

exp()

exp()

t

t k

i t

i

w

=

−
=

−

ò

ò

This weight directly affects the influence of the corresponding

learner in chunk selection and transmission decisions. Together,

the Neighbour Discovery and Local Monitoring processes ensure

E-ThruEnsemble remains both informed and adaptive,

responding in real-time to dynamic peer states and network

variability.

3.4 PARALLEL PREDICTION

At every monitoring tick (Δt = 500 ms) the Chunk Scheduler

(CS), Topology-aware Path Selector (PS), and RL Rate Controller

(RL) each produce an independent estimate of how many

megabits the local peer could extract from every neighbour in the

next tick. For learner ℓ and neighbour n we denote this estimate

,
ˆ (1)nT t + . CS uses a queue-depth model: CS,

ˆ 1()n

n n

n

Q
T

RTT
= −

where Qn is inflight chunks and ρn is recent loss ratio. PS solves a

k-shortest-paths problem: PS,
ˆ min

n

p

n p

p

B
T

d
= P with Bp path

bottleneck bandwidth and dp latency. RL outputs its Q-learning

prediction:
RL,
ˆ argmax (,)n a nT Q s a= .

Table.3. Outputs of Parallel Prediction Stage

Neighbour ID CST̂
 PST̂

 RLT̂

Observed Tn (Mbps)

0x90FE 14.2 13.5 12.8 12.4

0xB4D2 18.9 19.6 18.2 17.6

0xE7C9 11.4 10.7 10.9 10.2

Each learner runs in parallel threads, so the wall-clock cost is

the maximum of the individual runtimes, not the sum (≈ 2 ms on

a commodity core).

3.5 BAYESIAN WEIGHT UPDATE

After the real throughput Tn(t) arrives, E-ThruEnsemble

evaluates the squared error of every learner:
2

, ,
ˆ() () ()()n n nt T t T t = − .

For each learner ℓ the instantaneous likelihood is

() exp () ,[]L t t= − ,

1
with () ()

| |
n

n

t t =
N

 and β a

temperature parameter (β = 0.5 by default).

The posterior weight used in the next decision interval is then

{CS,PS,RL}

()
 (1) .

()j

j

L t
w t

L t

+ =

The Table.4 illustrates one update cycle (values correspond to

Table 3).

Table.4. Bayesian Weight Calculation After One Tick

Learner ℓ
Mean Squared

Error

Likelihood

L

Normalised

Weight w

CS 1.17 0.553 0.31

PS 1.02 0.597 0.34

RL 1.33 0.468 0.26

Weights are plugged into the decision-fusion rule:

 ,
ˆScore (1) (1) (1),n nt w t T t+ = + +

and the neighbour with the highest Score receives the next data

chunk. Because weights in Eq. (1) adapt every 500 ms, the system

rapidly downgrades an over-optimistic learner and rewards the

most accurate predictor, maintaining throughput gains even when

network conditions shift.

The combination of Parallel Prediction (instant, multi-view

forecasts) and Bayesian Weight Update (fast, error-sensitive

re-weighting) enables E-ThruEnsemble to stay both reactive and

statistically principled, yielding the robust performance

improvements reported earlier (see Table.3 and Table.4 for

concrete mechanics).

3.6 DECISION FUSION MODULE

Once the Bayesian Weight Update (Table 4) finishes, the three

learners’ forecasts for every neighbour are combined into a single

scalar score that drives the scheduling decision. Re-stating Eq.(2)

for clarity,

,

{CS,PS,RL}

ˆScore () () () ,n nt w t T t

=

where,

()w t is the posterior weight of learner ℓ at tick t (Section 4.2),

,
ˆ ()nT t is learner ℓ’s forecast of neighbour n’s throughput for next

tick (Table.3).

The peer then selects () argmax Score (),n nn t t=å

N
and transmits

the highest-priority missing chunk to ()n tå . Using the predictions

in Table.3 and weights in Table.4, the weighted scores are shown

in Table.5.

Table.5. Decision Fusion Results

(derived from Table.3- Table.4)

Neighbour

ID CS CS
ˆw T

PS PS
ˆw T

RL RL
ˆw T

Total

Score

(Mbps)

Rank

0x90FE
0.31×14.2

= 4.40

0.34 × 13.5

= 4.59

0.26 × 12.8

= 3.33
12.32 2

0xB4D2
0.31×18.9

= 5.86

0.34×19.6

= 6.66

0.26×18.2

= 4.73
17.25 1

0xE7C9
0.31×11.4

= 3.53

0.34×10.7

= 3.64

0.26×10.9

= 2.83
10.00 3

The Table.5 clearly shows that neighbour 0xB4D2 attains the

highest composite score, so it is chosen for the next chunk.

P PRABAHARAN AND M RESHMA: AN ENSEMBLE ALGORITHM ON P2P COMMUNICATION AND NETWORKING

3556

3.7 SCHEDULING THE CHUNK

The peer now consults its Local Monitoring snapshot

(Table.2) to determine which chunk to request from 0xB4D2.

Because chunk 4 is the only piece that 0xB4D2 owns that the local

peer still lacks, the final action at time t is:

 SendRequest neighbour 0xB4D2, chunk 4 .()= =

The outcome (T0x, B4D2(t+1)) will be observed in the following

tick, closing the control loop and supplying fresh error terms for

the next Bayesian update.

4. RESULTS AND DISCUSSION

Simulations were executed in NS-3 v3.42 on a lab cluster

(4×Intel i9-10920X @ 3.5 GHz, 64 GB RAM, Ubuntu 22.04).

Overlay topologies of 100–500 nodes were generated with

power-law degree distributions; churn followed an exponential

ON/OFF model (mean session = 30 min). Competing methods

were:

• BitTorrent Choking/Unchoking (BT-Choke), de-facto

baseline for reciprocation.

• ML-DOS, recent supervised learning approach for

download-ordering strategy.

• ChunkyStream, topology-aware multi-tree streaming

protocol.

Traffic traces from the CAIDA 2024 backbone dataset

injected real RTT and loss variability. Each experiment ran

15 minutes of steady-state load; results average 10 seeds with

95 % confidence.

Table.6. Experimental Parameters

Parameter Symbol Value(s)

Overlay size N 100, 300, 500 peers

Link capacity C {10, 50, 100} Mbps

Packet loss p 0 – 5 %

Churn rate λ 0.02 s⁻¹

Chunk size S 256 kB

RL learning rate α 0.1

BMA window W 10 s

4.1 PERFORMANCE METRICS

• Average Throughput (Mbps) – mean data delivered per

peer per second; primary optimisation goal.

• End-to-End Latency (ms) – time between chunk request

and complete reception; reflects user QoE.

• Jain Fairness Index – equity of bandwidth allocation across

all peers (1 = perfectly fair).

• Convergence Time (s) – elapsed time for throughput to

return within 5 % of pre-churn level after a churn event;

gauges adaptability.

• Control Overhead (%) – ratio of signalling bytes (buffer

maps, weight updates) to total traffic; ensures efficiency

gains are not offset by extra messaging.

Table.7. Average Throughput (Mbps)

Peers BT-Choke ML-DOS
Chunky

Stream

E-Thru

Ensemble

100 16.0 18.1 19.4 24.0

300 14.2 16.4 17.1 21.0

500 13.7 15.0 15.9 17.6

E-ThruEnsemble consistently delivers the highest mean

throughput across all overlay sizes. Relative gains shrink as

network scale grows, yet the proposed ensemble still sustains a

29 % boost over BT-Choke at 500 peers by exploiting multi-layer

predictions and adaptive weighting, validating the approach’s

scalability and robustness under varying churn and load.

Table.8. End-to-End Latency (ms)

Peers BT-Choke ML-DOS
Chunky

Stream

E-Thru

Ensemble

100 260 240 225 180

300 285 260 245 195

500 300 280 265 235

Table.8 highlights latency reductions produced by

E-ThruEnsemble. By steering traffic through low-delay paths and

rate-controlling bursts, average end-to-end delay falls roughly

22 % versus BitTorrent at scale. The gap narrows with smaller

topologies, yet sub-200 ms delivery for 300-node tests

demonstrates the method’s suitability for interactive streaming

and real-time collaboration use-cases alike.

Table.9. Jain Fairness Index

Peers BT-Choke ML-DOS
Chunky

Stream

E-Thru

Ensemble

100 0.87 0.89 0.91 0.93

300 0.86 0.88 0.90 0.93

500 0.85 0.87 0.89 0.93

E-ThruEnsemble attains the most equitable bandwidth

distribution (Table.9). Its ensemble quickly reallocates weights

after churn, keeping Jain’s index near 0.93 regardless of overlay

size. BT-Choke suffers reciprocity oscillations, while ML-DOS

and ChunkyStream degrade as peer count rises. High fairness

complements throughput gains, improving overall user

experience for both senders receivers.

Table.10. Convergence Time After 20 % Churn (s)

Peers BT-Choke ML-DOS
Chunky

Stream

E-Thru

Ensemble

100 40 32 28 15

300 55 45 35 22

500 70 60 45 25

The Table.10 shows convergence after churn events.

Leveraging Bayesian re-weighting, E-ThruEnsemble stabilises

within 25 s even at 500 peers, 45 s faster than BT-Choke.

ML-DOS recovers quicker than BitTorrent but struggles beyond

300 peers. Fast recovery ensures video sessions and large

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2025, VOLUME: 16, ISSUE: 02

3557

downloads proceed smoothly despite dynamic participation and

mobile peer departures during peak periods.

Table.11. Control Overhead (% of Total Traffic)

Peers BT-Choke ML-DOS
Chunky

Stream

E-Thru

Ensemble

100 2.8 5.5 4.6 3.9

300 2.9 5.8 4.7 4.0

500 3.1 6.0 4.9 4.1

E-ThruEnsemble’s signalling overhead remains moderate

(Table.11). It consumes 4.1 % of traffic, slightly above BitTorrent

yet below learning-heavy ML-DOS. Adaptive monitoring

intervals and compressed buffer maps curb control cost, ensuring

throughput gains outweigh additional bytes in typical broadband

conditions and diverse wireless access network scenarios.

Table.12. Average Throughput (Mbps) vs. Link Capacity

Link 

Capacity (Mbps)
BT-Choke ML-DOS

Chunky

Stream

E-Thru

Ensemble

10 7.0 7.8 8.3 9.0

50 37.0 41.0 43.0 46.0

100 70.0 76.0 80.0 85.0

Across all link capacities, E-ThruEnsemble saturates

bandwidth more efficiently than the three baselines. Gains grow

with capacity because its predictive scheduler widens parallel

pipelines while learners retune rapidly. ChunkyStream improves

over ML-DOS and BitTorrent by topology awareness, yet lacks

cross-layer rate control, leaving 4–10 Mbps untapped in

high-throughput laboratory scenarios.

Table.13.  End-to-End Latency (ms) vs. Link Capacity

Link 

Capacity (Mbps)
BT-Choke ML-DOS

Chunky

Stream

E-Thru

Ensemble

10 300 280 260 210

50 260 240 220 180

100 240 220 210 170

Latency shrinks substantially when E-ThruEnsemble is

deployed, reflecting its bias toward low-delay paths and

regulation of burst size. At every capacity tier it shaves roughly

20 % off ChunkyStream and over 25 % off BitTorrent. ML-DOS

benefits from supervised ordering, but without true congestion

feedback delay rebounds during spikes under stress loads.

Table.14. Jain Fairness Index vs. Link Capacity

Link 

Capacity (Mbps)
BT-Choke ML-DOS

Chunky

Stream

E-Thru

Ensemble

10 0.88 0.90 0.91 0.94

50 0.87 0.89 0.90 0.93

100 0.85 0.88 0.89 0.93

E-ThruEnsemble preserves equitable bandwidth allocation,

sustaining Jain scores near 0.94 irrespective of link speed.

ML-DOS and ChunkyStream gradually skew toward

well-provisioned peers as capacity rises, while BitTorrent’s

tit-for-tat oscillations exacerbate disparity. The ensemble’s

weight adaptation redistributes chunks quickly, preventing

starvation and ensuring satisfactory service for slow nodes across

all tests.

Table.15. Convergence Time After 20 % Churn (s) vs.

Link Capacity

Link 

Capacity (Mbps)
BT-Choke ML-DOS

Chunky

Stream

E-Thru

Ensemble

10 35 28 25 12

50 40 32 28 15

100 55 45 35 20

E-ThruEnsemble recovers from 20 % churn roughly twice as

fast as ChunkyStream and three times faster than BitTorrent

across capacities, thanks to Bayesian reweighting that instantly

sidelines inaccurate learners. Rising capacity slightly stretches

convergence for all schemes, yet ensemble responsiveness keeps

sessions smooth even on 100 Mbps fibre uplinks during peak

conditions.

Table.16. Control Overhead (% of Total Traffic) vs.

Link Capacity

Link 

Capacity (Mbps)
BT-Choke ML-DOS

Chunky

Stream

E-Thru

Ensemble

10 2.5 5.2 4.3 3.5

50 2.7 5.5 4.5 3.7

100 3.1 5.8 4.7 4.0

Although ensemble monitoring entails extra state, message

compression and adaptive intervals cap overhead below 4 % at

100 Mbps, significantly lower than ML-DOS and only marginally

above BitTorrent. The proposed E-ThruEnsemble method

demonstrates substantial performance improvements over

existing methods, BitTorrent Choking/Unchoking (BT-Choke),

ML-DOS, and ChunkyStream, across all evaluated metrics and

conditions, including peer count and link capacity. This section

discusses the results in detail with numerical and percentage

improvements.

4.2 AVERAGE THROUGHPUT

At 500 peers, E-ThruEnsemble achieved 17.6 Mbps compared

to 13.7 Mbps (BT-Choke), 15.0 Mbps (ML-DOS), and 15.9 Mbps

(ChunkyStream). This corresponds to a 28.4% improvement over

BT-Choke, 17.3% over ML-DOS, and 10.7% over

ChunkyStream. Similarly, at 100 Mbps link capacity,

E-ThruEnsemble maintained a throughput of 85 Mbps,

outperforming BT-Choke (70 Mbps, +21.4%), ML-DOS (76

Mbps, +11.8%), and ChunkyStream (80 Mbps, +6.25%). These

results underscore the method’s scalability and adaptive

bandwidth utilization, especially in high-speed networks.

4.3 END-TO-END LATENCY

E-ThruEnsemble consistently reduced latency. At 500 peers,

the latency was 235 ms, compared to 300 ms (BT-Choke), 280 ms

(ML-DOS), and 265 ms (ChunkyStream), a 21.7% reduction from

P PRABAHARAN AND M RESHMA: AN ENSEMBLE ALGORITHM ON P2P COMMUNICATION AND NETWORKING

3558

BT-Choke, 16.1% from ML-DOS, and 11.3% from

ChunkyStream. Under a 100 Mbps link, latency was 170 ms,

improving upon BT-Choke (240 ms, -29.2%), ML-DOS (220 ms,

-22.7%), and ChunkyStream (210 ms, -19%). This shows that the

ensemble’s prediction-based routing effectively avoids congested

or high-delay paths.

4.4 JAIN FAIRNESS INDEX

The fairness index remained high and stable around 0.93–0.94

across all tests for E-ThruEnsemble. At 500 peers, it improved

over BT-Choke (0.85, +9.4%), ML-DOS (0.87, +6.9%), and

ChunkyStream (0.89, +4.5%). Fairness was also superior across

capacities (10–100 Mbps), suggesting the ensemble method

successfully balances load and ensures equitable bandwidth

allocation without favoritism toward high-capacity or stable

peers.

4.5 CONVERGENCE TIME

After a 20% churn event, convergence times at 500 peers were

25s for E-ThruEnsemble, much faster than BT-Choke (70s, -

64.3%), ML-DOS (60s, -58.3%), and ChunkyStream (45s, -

44.4%). At 100 Mbps link capacity, convergence was 20s, also

significantly better than all baselines. These fast recovery times

highlight the benefit of Bayesian reweighting and multi-predictor

agility during peer turnover, making the network more resilient

and responsive.

4.6 CONTROL OVERHEAD

E-ThruEnsemble maintained moderate overhead even with

advanced prediction mechanisms. At 500 peers, it used 4.1% of

total traffic, compared to 3.1% (BT-Choke), 6.0% (ML-DOS),

and 4.9% (ChunkyStream). Despite a 1.0% increase over BT-

Choke, the ~29% throughput improvement more than

compensates for this cost. Moreover, adaptive monitoring kept

overhead below 4.0% even at 100 Mbps capacity.

5. CONCLUSION

The E-ThruEnsemble framework significantly enhances P2P

communication performance by combining contextual, statistical,

and reinforcement-based predictions in a unified ensemble model.

The results clearly indicate that E-ThruEnsemble outperforms

traditional approaches across all key metrics, throughput, latency,

fairness, convergence time, and overhead, even under high peer

density and varying network capacities. On average, it delivers

28% higher throughput, 22% lower latency, and over 9% better

fairness compared to conventional BitTorrent-like protocols. Its

quick adaptation through Bayesian weight updates and intelligent

decision fusion allows for superior responsiveness to network

dynamics, such as churn or congestion. Furthermore,

E-ThruEnsemble achieves these gains with only a modest

increase in control overhead, thanks to its efficient monitoring and

scheduling strategies. This balance of performance and efficiency

positions it as a robust and scalable solution for modern P2P

networks, including real-time streaming, file sharing, and

decentralized applications. Future work could extend the

ensemble with real-time QoE metrics and cross-layer

optimization to support mobile and heterogeneous device

environments. In conclusion, E-ThruEnsemble demonstrates that

multi-perspective, adaptive learning is key to unlocking the next

generation of high-performance, fair, and scalable peer-to-peer

systems.

REFERENCES

[1] M.S.A. Ansari, K. Pal, M.C. Govil, P. Govil and A.

Srivastava, “Ensemble Machine Learning for P2P Traffic

Identification”, International Journal of Computing and

Digital Systems, Vol. 10, No. 1, pp. 1306-1323, 2021.

[2] O. Aouedi, K. Piamrat and B. Parrein, “Ensemble-based

Deep Learning Model for Network Traffic Classification”,

IEEE Transactions on Network and Service Management,

Vol. 19, No. 4, pp. 4124-4135, 2022.

[3] H. Sunaga, T. Hoshiai, S. Kamei and S. Kimura, “Technical

Trends in P2P-based Communications”, IEICE

Transactions on Communications, Vol. 87, No. 10, pp.

2831-2846, 2004.

[4] A. Dzik-Walczak and M. Heba, “An Implementation of

Ensemble Methods, Logistic Regression and Neural

Network for Default Prediction in Peer-to-Peer Lending”,

Proceedings of the Faculty of Economics in Rijeka: Journal

of Economic Theory and Practice, Vol. 39, No. 1, pp. 163-

197, 2021.

[5] M.A. Muslim, T.L. Nikmah, D.A.A. Pertiwi and Y. Dasril,

“New Model Combination Meta-Learner to Improve

Accuracy Prediction P2P Lending with Stacking Ensemble

Learning”, Intelligent Systems with Applications, Vol. 18,

No. 2, pp. 1-9, 2023.

[6] S. Baruah, D.J. Borah and V. Deka, “Detection of Peer-to-

Peer Botnet using Machine Learning Techniques and

Ensemble Learning Algorithm”, International Journal of

Information Security and Privacy, Vol. 17, No. 1, pp. 1-16,

2023.

[7] R. Sanjeetha, M.R. Mundada and G.S. Vaibhavi, “Botnet

Forensic Analysis in Software Defined Networks using

Ensemble based Classifier”, Proceedings of the

International Conference on Circuits, Control,

Communication and Computing, pp. 462-467, 2022.

[8] T. Obasi and M.O. Shafiq, “CARD-B: A Stacked Ensemble

Learning Technique for Classification of Encrypted

Network Traffic”, Computer Communications, Vol. 190, pp.

110-125, 2022.

[9] R.R. Devi, R. Riadhusin and R. Revathi, “Decentralized

Intrusion Detection in Peer-to-Peer Networks using Stacking

Ensemble Model”, Proceedings of the International

Conference on Intelligent Systems and Computational

Networks, pp. 1-5, 2025.

[10] A. Rezaei, “Using Ensemble Learning Technique for

Detecting Botnet on IoT”, SN Computer Science, Vol. 2, No.

3, pp. 1-7, 2021.

[11] F.O. Idepefo, B.I. Akhigbe, O.S. Aderibigbe and B.S.

Afolabi, “Towards an Architecture-based Ensemble

Methods for Online Social Network Sensitive Data Privacy

Protection”, International Journal of Recent Contributions

Engineering, Science and IT, Vol. 9, No. 1, pp. 33-49, 2021.

[12] M. Dasgupta, D. Sarma, V. Deka, D. Das and M.D.G.

Rashed, “Study and Experimental Analysis of Metaheuristic

based Optimizers with Respect to P2P Botnet Detection”,

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2025, VOLUME: 16, ISSUE: 02

3559

Proceedings of the International Conference on Intelligent

Systems, Advanced Computing and Communication, pp.

1152-1156, 2025.

[13] A. Arshad, M. Jabeen, S. Ubaid, A. Raza, L. Abualigah, K.

Aldiabat and H. Jia, “A Novel Ensemble Method for

Enhancing Internet of Things Device Security Against

Botnet Attacks”, Decision Analytics Journal, Vol. 8, pp. 1-

14, 2023.

[14] W.J. Eom, Y.J. Song, C.H. Park, J.K. Kim, G.H. Kim and

Y.Z. Cho, “Network Traffic Classification using Ensemble

Learning in Software-Defined Networks”, Proceedings of

the International Conference on Artificial Intelligence in

Information and Communication, pp. 89-92, 2021.

[15] J. Buford, H. Yu and E.K. Lua, “P2P Networking and

Applications”, Morgan Kaufmann, 2009.

[16] H. Xie, A. Krishnamurthy, A. Silberschatz and Y.R. Yang,

“P4P: Explicit Communications for Cooperative Control

between P2P and Network Providers”, P4PWG Whitepaper,

Vol. 5, pp. 1-7, 2007.

[17] S. Buchegger and A. Datta, “A Case for P2P Infrastructure

for Social Networks-Opportunities and Challenges”,

Proceedings of the International Conference on Wireless

on-Demand Network Systems and Services, pp. 161-168,

2009.

[18] J. Yuan, J. Peng, Q. Yan, G. He, H. Xiang and Z. Liu, “Deep

Reinforcement Learning-based Energy Consumption

Optimization for Peer-to-Peer (P2P) Communication in

Wireless Sensor Networks”, Sensors, Vol. 24, No. 5, pp. 1-

15, 2024.

