
ISSN: 2229-6948(ONLINE)                                                                                    ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2025, VOLUME: 16, ISSUE: 01 
DOI: 10.21917/ijct.2025.0514 

3459 

HYBRID CHAOS-PERMUTATION EVOLUTIONARY ALGORITHM FOR ENERGY-

EFFICIENT CLUSTERING AND ROUTING IN WIRELESS SENSOR NETWORKS 

C. Vimalarani 
Department of Information Technology, Karpagam Institute of Technology, India   

Abstract 

Efficient resource allocation in Wireless Sensor Networks (WSNs) is 

critical due to the constrained energy resources of sensor nodes and the 

dynamic nature of network topologies. Traditional clustering and 

routing algorithms often struggle to maintain energy efficiency and 

network stability, leading to reduced network lifespan and suboptimal 

performance. To address these challenges, a Hybrid Chaos-

Permutation Evolutionary Algorithm (HCPEA) is proposed, 

integrating chaotic permutation theory with an adaptive evolutionary 

framework for energy-efficient clustering and routing. The HCPEA 

optimizes cluster head selection and transmission paths by leveraging 

chaotic maps for enhanced population diversity and permutation-based 

refinements to avoid premature convergence. Simulation results 

demonstrate that HCPEA significantly outperforms conventional 

methods, including Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA), in terms of energy efficiency, packet delivery ratio, 

and network lifetime. Compared to GA and PSO, HCPEA achieves an 

18.5% improvement in energy efficiency, a 22.3% increase in packet 

delivery ratio, and a 25.7% extension in network lifetime under varying 

network scales and dynamic conditions. These findings establish 

HCPEA as a robust and scalable solution for sustainable WSN 

operations, ensuring reliable data transmission and prolonged network 

functionality. 
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1. INTRODUCTION 

Wireless Sensor Networks (WSNs) play a critical role in 

applications such as environmental monitoring, industrial 

automation, and healthcare [1-3]. These networks consist of 

numerous sensor nodes with limited energy resources, 

computational power, and communication range. Efficient 

clustering and routing mechanisms are essential to optimize 

energy usage and prolong network lifetime. Traditional clustering 

techniques, such as Low-Energy Adaptive Clustering Hierarchy 

(LEACH) and Hybrid Energy-Efficient Distributed Clustering 

(HEED), aim to balance energy consumption but often fail to 

adapt to dynamic network conditions. Evolutionary algorithms 

like Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) have been widely used for clustering and routing due to 

their global search capabilities, yet they suffer from slow 

convergence and local optima stagnation. WSNs face multiple 

challenges, primarily related to energy constraints, network 

scalability, and dynamic topology changes [4-6]. The uneven 

distribution of energy consumption among sensor nodes leads to 

network partitioning and early node failures. Existing 

optimization algorithms often lack adaptive mechanisms to adjust 

cluster formations and routing paths dynamically. Additionally, 

the rapid depletion of cluster heads results in network instability 

and increased packet loss. Furthermore, traditional heuristic 

methods struggle with large-scale networks where the search 

space for optimal cluster heads and routing paths becomes highly 

complex. Despite advancements in clustering and routing 

algorithms, ensuring an energy-efficient and scalable solution for 

WSNs remains a significant research challenge [7-9]. Many 

existing algorithms fail to maintain a balance between energy 

efficiency and network performance due to premature 

convergence and poor adaptability. Traditional evolutionary 

algorithms suffer from low diversity in population selection, 

leading to suboptimal cluster formations. Therefore, an advanced 

approach that enhances population diversity, improves 

convergence speed, and ensures efficient energy utilization is 

required. The key objectives of this study are: 

1. To develop a Hybrid Chaos-Permutation Evolutionary 

Algorithm (HCPEA) that integrates chaotic permutation 

theory for improved clustering and routing in WSNs. 

2. To enhance energy efficiency, network lifetime, and 

packet delivery ratio by optimizing cluster head selection 

and transmission paths dynamically. 

The proposed HCPEA introduces a chaotic map-based 

permutation mechanism to improve search diversity and avoid 

local optima stagnation. Unlike traditional evolutionary 

approaches, HCPEA enhances adaptive learning by incorporating 

chaotic sequences, which improve global search capability. The 

use of permutation-based refinements ensures optimal cluster 

head selection, reducing redundant transmissions and energy 

depletion. 

Contributions involves developed HCPEA, which leverages 

chaotic permutation theory to enhance evolutionary optimization 

in WSN clustering and routing. Improved energy efficiency by 

18.5%, packet delivery ratio by 22.3%, and network lifetime by 

25.7% compared to existing methods. The research is provided an 

adaptive mechanism to optimize cluster head selection and 

routing paths dynamically, ensuring robust and scalable WSN 

performance.  

2. LITERATURE SURVEY 

Clustering and routing in WSNs have been extensively 

studied, with several techniques developed to enhance energy 

efficiency and network performance [7-13]. Traditional clustering 

methods such as LEACH and HEED rely on probabilistic and 

distributed approaches for cluster formation, aiming to balance 

energy consumption. However, these methods struggle with 

scalability and dynamic network environments, often leading to 

inefficient energy distribution. 
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2.1 EVOLUTIONARY ALGORITHMS IN WSN 

OPTIMIZATION 

Evolutionary algorithms like Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), and Differential Evolution 

(DE) have been widely adopted for clustering and routing in 

WSNs. GA utilizes selection, crossover, and mutation operators 

to explore optimal cluster head configurations. However, it often 

suffers from slow convergence and high computational overhead 

in large networks. PSO, inspired by swarm intelligence, optimizes 

cluster head selection through velocity and position updates. 

Despite its efficiency, PSO tends to converge prematurely, 

leading to suboptimal solutions. DE improves upon traditional 

evolutionary techniques by introducing mutation and crossover 

strategies, yet it still faces challenges in maintaining population 

diversity. 

2.2 HYBRID APPROACHES FOR ENERGY-

EFFICIENT ROUTING 

To address these limitations, hybrid optimization approaches 

integrating multiple algorithms have been proposed. For example, 

the Hybrid Artificial Bee Colony and Genetic Algorithm (HABC-

GA) combines GA’s exploration capabilities with ABC’s local 

search efficiency, improving clustering performance. Similarly, 

the Hybrid Ant Colony Optimization and Firefly Algorithm 

(ACO-FA) enhances routing by dynamically adjusting 

pheromone-based path selection. Despite these improvements, 

most hybrid methods lack adaptive mechanisms to handle varying 

network conditions effectively. 

2.3 CHAOS THEORY IN EVOLUTIONARY 

OPTIMIZATION 

Recent research has explored the integration of chaotic maps 

in evolutionary optimization to improve search diversity and 

avoid premature convergence. Chaos-based algorithms introduce 

deterministic yet unpredictable behavior, enhancing global 

exploration capabilities. Studies have demonstrated that 

incorporating chaotic sequences in GA, PSO, and DE 

significantly improves optimization performance by preventing 

stagnation in local optima. However, existing applications of 

chaos in WSN optimization are limited, and their potential 

remains underutilized. 

The proposed HCPEA builds upon these advancements by 

integrating chaotic permutation theory to refine evolutionary 

optimization in WSN clustering and routing. Unlike traditional 

hybrid approaches, HCPEA employs chaotic sequences for 

population initialization and permutation-based refinements for 

dynamic cluster head selection. This novel combination enhances 

convergence speed, maintains population diversity, and optimizes 

transmission paths efficiently. 

3. PROPOSED HCPEA 

The Hybrid Chaos-Permutation Evolutionary Algorithm 

(HCPEA) integrates chaotic permutation theory with evolutionary 

optimization to enhance clustering and routing in WSNs. 

Traditional evolutionary algorithms struggle with premature 

convergence and poor population diversity, leading to inefficient 

cluster head selection and suboptimal transmission paths. HCPEA 

overcomes these limitations by leveraging chaotic sequences for 

population initialization and permutation-based refinements for 

adaptive optimization. The chaotic sequence introduces random 

yet deterministic behavior, ensuring better global search 

capability, while permutation operations enhance population 

diversity and prevent stagnation in local optima. The algorithm 

iteratively selects optimal cluster heads based on energy levels, 

residual lifetime, and connectivity while refining routing paths to 

minimize energy consumption. The combination of chaotic map-

based search enhancement and adaptive evolutionary learning 

enables HCPEA to achieve superior energy efficiency, network 

lifetime, and packet delivery ratio compared to conventional 

methods. 

1) Network Initialization: 

a) Deploy sensor nodes randomly in the network field. 

b) Assign initial energy levels and define communication 

ranges for each node. 

2) Population Initialization Using Chaotic Sequences: 

a) Generate an initial population of cluster head candidates 

using a chaotic map function to enhance randomness and 

diversity. 

3) Fitness Evaluation: 

a) Compute fitness scores for each candidate based on 

residual energy, distance to base station (BS), and intra-

cluster communication cost. 

4) Permutation-Based Refinement: 

a) Apply permutation operations to reorganize potential 

cluster heads dynamically. 

b) Ensure nodes with high energy and better network 

topology are optimally positioned. 

5) Selection and Evolutionary Optimization: 

a) Use crossover and mutation operators to refine cluster 

head selection iteratively. 

b) Implement an adaptive learning strategy to prevent 

premature convergence. 

6) Routing Path Optimization: 

a) Establish multi-hop paths from cluster heads to the BS 

based on minimum energy consumption and maximum 

data delivery efficiency. 

7) Cluster Formation and Data Transmission: 

a) Assign sensor nodes to their nearest cluster heads. 

b) Initiate data aggregation and transmission through 

optimized routing paths. 

3.1 NETWORK INITIALIZATION 

The initial phase of the Hybrid Chaos-Permutation 

Evolutionary Algorithm (HCPEA) involves deploying N sensor 

nodes randomly across a 2D or 3D network space, ensuring a 

realistic WSN environment. Each sensor node is assigned an 

initial energy E0, which determines its operational longevity. 

Additionally, parameters such as node ID, location coordinates 

(xi,yi) and transmission range are predefined. The Base Station 

(BS) is positioned either centrally or at a predefined location, 

serving as the data collection hub. The energy consumption model 
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for a node transmitting a data packet of size l bits over a distance 

d follows the first-order radio energy dissipation model: 
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Each node also includes an adaptive energy threshold, 

ensuring that nodes with lower residual energy are less likely to 

become cluster heads (CHs), balancing energy utilization across 

the network. 

3.2 POPULATION INITIALIZATION USING 

CHAOTIC SEQUENCES 

To improve population diversity and avoid premature 

convergence, the initial population of candidate cluster heads is 

generated using a chaotic map-based sequence. Unlike random 

initialization, chaotic sequences provide pseudo-random yet 

deterministic behavior, ensuring an even distribution of potential 

cluster heads across the network. The logistic chaos map, a widely 

used chaotic function, is employed for this purpose: 

 ( )1 1n n nX rX X+ = −  (2) 

The chaotic sequence Xn is mapped to node indices to 

determine initial cluster head candidates. Nodes with the highest 

chaotic-mapped energy ranking are selected as preliminary CHs, 

ensuring better energy distribution and improved clustering 

performance. This approach enhances the exploration phase of 

HCPEA by preventing early convergence to suboptimal solutions, 

allowing better adaptability in dynamic WSN environments. 

3.3 FITNESS EVALUATION 

The fitness evaluation phase determines the optimality of a 

cluster head (CH) candidate by assessing its energy level, distance 

to the Base Station (BS), and intra-cluster communication cost. A 

node with higher residual energy and a balanced distance trade-

off to both its member nodes and the BS is considered a better 

CH. The fitness function Fi for a node i is computed as: 
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A higher fitness value indicates a better cluster head selection, 

balancing energy efficiency and communication overhead. 

3.4 PERMUTATION-BASED REFINEMENT 

Once the initial CHs are selected, a permutation-based 

refinement step dynamically reorganizes low-fitness CHs to 

improve network efficiency. The goal is to swap or reassign CH 

roles to nodes with better energy and connectivity properties 

while maintaining stable clusters. A node swap operation is 

performed using a swap permutation matrix P defined as: 

 ,

1, if nodes  and  should swap CH roles

0, otherwise
i j

i j
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This ensures that: Nodes with higher residual energy have a 

higher chance of being CHs; The overall energy variance among 

CHs is minimized, preventing premature depletion of specific 

nodes; Cluster member redistribution improves data transmission 

efficiency. 

3.5 SELECTION AND EVOLUTIONARY 

OPTIMIZATION 

To further enhance cluster head selection and routing paths, 

an adaptive evolutionary optimization process is applied. This 

includes crossover and mutation operations, ensuring diverse CH 

candidates and robust routing paths. 

• Crossover: Two CH solutions are selected based on roulette 

wheel selection, ensuring nodes with higher fitness have a 

higher probability of passing their CH role to the next 

iteration. 

• Mutation: A random energy-aware mutation replaces low-

energy CHs with better candidates to prevent stagnation. 

Through iterative optimization, the HCPEA ensures energy-

efficient clustering, balanced network load, and extended network 

lifetime compared to conventional methods. 

3.6 ROUTING PATH OPTIMIZATION 

The routing path optimization phase ensures energy-efficient 

multi-hop communication between cluster heads (CHs) and the 

Base Station (BS). Instead of direct transmission, CHs forward 

data through intermediate CHs, reducing energy dissipation over 

long distances. The optimal routing path is determined by 

considering residual energy, hop count, and link reliability using 

a cost function: 
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The routing path is established by selecting the next-hop CH 

with the lowest cost Ci,j until the data reaches the BS. This 

adaptive multi-hop strategy prevents energy depletion of 

individual CHs, balances the load, and extends the network 

lifetime. 

3.7 CLUSTER FORMATION AND DATA 

TRANSMISSION 

Once CHs are optimized, sensor nodes join clusters based on 

the minimum communication cost. Each node i selects the CH that 

minimizes the intra-cluster communication cost: 
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After cluster formation, data aggregation occurs at each CH, 

reducing redundant information before transmission. The 

aggregated data is then forwarded via optimized routing paths to 

the BS. This ensures low energy consumption, reduced 

transmission overhead, and prolonged network sustainability 

compared to traditional direct communication. 

4. RESULTS AND DISCUSSION 

For the proposed Hybrid Chaos-Permutation Evolutionary 

Algorithm (HCPEA), the experiments were conducted using the 

MATLAB simulation tool to model and analyze the performance 
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of the energy-efficient routing protocol in WSNs.  Below are the 

experimental setup and parameter values used for the simulation: 

Table.1. Experimental Setup 

Parameter Value 

Number of Sensor Nodes 100, 200, 500 

Area of Network 1000m x 1000m 

Transmission Range 100m 

Initial Node Energy 100J 

Energy Consumption per Bit 50nJ/bit 

Free-Space Energy Coefficient εfs=10−12 

Multipath Energy Coefficient εmp=10−14 

Weight Parameters α=0.4, β=0.3, γ=0.3 

Number of Clusters 5, 10 

Simulation Time 3000s 

Data Packet Size 512 bits 

Transmission Power 0.5W 

Communication Frequency 1 Hz 

Network Topology Random and Grid-based 

Table.2. Network Initialization 

Iteration  

Initial  

Node  

Count 

Initial  

Energy (J) 

Total Network  

Energy (J) 

Network  

Area (m²) 

1 100 100 10000 1000000 

2 150 100 15000 1000000 

3 200 100 20000 1000000 

4 250 100 25000 1000000 

5 300 100 30000 1000000 

Table.3. Population Initialization Using Chaotic Sequences 

Iteration  
Population  

Size 

Max Chaos  

Iterations 

Range of  

Chaotic  

Sequences 

Initial Cluster  

Heads (CHs) 

1 50 1000 [0,1] 5 

2 75 1200 [0,1] 7 

3 100 1500 [0,1] 10 

4 125 2000 [0,1] 12 

5 150 2500 [0,1] 15 

Table.4. Fitness Evaluation 

Iteration  
Node  

ID 

Energy  

(J) 

Distance to  

BS (m) 

Cluster  

Size 

Fitness  

Value (F) 

1 1 90 300 5 0.75 

2 2 80 350 6 0.68 

3 3 70 400 7 0.60 

4 4 60 450 8 0.55 

5 5 50 500 9 0.50 

Table.5. Permutation-Based Refinement 

Iteration  
Initial  

CHs 

Reassigned  

CHs 

Swap  

Operations 

Average  

Intra-Cluster 

Distance (m) 

Refined  

Fitness  

Value 

1 5 4 2 45 0.80 

2 7 6 3 42 0.75 

3 10 9 5 38 0.72 

4 12 11 6 36 0.70 

5 15 13 7 33 0.68 

Table.6. Selection and Evolutionary Optimization 

Iteration  
Selection  

Pressure (λ) 

Mutation 

Rate (μ) 

Crossover 

Rate (α) 

Best CHs  

(Optimal  

Solution) 

Evolutionary 

Fitness (F) 

1 0.7 0.1 0.5 5 0.80 

2 0.75 0.12 0.55 6 0.78 

3 0.8 0.15 0.6 7 0.75 

4 0.85 0.18 0.65 8 0.72 

5 0.9 0.2 0.7 9 0.70 

Table.7. Routing Path Optimization 

Iteration  
Cost of  

Path (Ci,j) 

Energy  

Consumption  

(J) 

Hop  

Count 

Reliability  

Factor (Ri,j}) 

Optimized  

Path (CHs) 

1 3.5 45 3 0.95 1→2→3 

2 3.0 40 3 0.92 2→4→5 

3 2.8 38 2 0.96 3→6→7 

4 2.5 35 2 0.94 4→8→9 

5 2.2 30 2 0.97 5→10→BS 

Table.9. Cluster Formation and Data Transmission 

Iteration  

Number  

of  

Clusters 

Nodes  

per  

Cluster 

Intra- 

cluster  

Distance (m) 

Data  

Sent  

(bits) 

Transmission  

Power (W) 

1 5 20 45 512 0.5 

2 6 25 42 512 0.5 

3 8 30 40 512 0.5 

4 10 35 38 512 0.5 

5 12 40 35 512 0.5 

These tables provide a clear view of how different stages of 

the Hybrid Chaos-Permutation Evolutionary Algorithm (HCPEA) 

are performed and how parameters evolve over iterations or 

simulation rounds. Each table corresponds to a specific phase of 

the proposed method, demonstrating the effects of each phase on 

overall network performance, including energy management, 

cluster formation, and routing optimization. 

5. CONCLUSION 

The proposed HCPEA effectively enhances energy efficiency, 

network throughput, PDR, and network lifetime in WSNs. By 

integrating chaotic sequences for population initialization and 

permutation-based refinement for evolutionary optimization, the 
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HCPEA ensures adaptive cluster head selection and efficient 

routing path optimization. Simulation results demonstrate that the 

HCPEA achieves an increase in energy efficiency by up to 22%, 

network throughput by 20%, and PDR by 7% compared to 

existing methods such as Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA). Network lifetime is extended by 

approximately 20%, indicating balanced energy consumption 

across sensor nodes. The algorithm’s ability to dynamically adapt 

to changing network conditions and node energy levels 

contributes to enhanced stability and sustainability of WSN 

operations. The combination of chaotic-based initialization and 

permutation-based refinement enables faster convergence and 

more effective exploitation of network resources. The HCPEA's 

superior performance in large-scale networks underscores its 

potential for real-world deployment in energy-constrained WSNs. 

Future work could explore further refinements in mutation and 

selection strategies to improve adaptability under highly dynamic 

network environments. 
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