
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2024, VOLUME: 15, ISSUE: 03
DOI: 10.21917/ijct.2024.0485

3261

SCHEDULING AND OPTIMIZATION OF RESOURCES IN EDGE COMPUTING

USING RANDOM ALLOCATION AND MAX FIT ALLOCATION

P. Priya Ponnuswamy and C.P. Shabariram
Department of Computer Science and Engineering, PSG Institute of Technology and Applied Research, India

Abstract

The cloud computing is the new technique used most today for

computation and storage. Edge computing is also a new computing

domain that gives computation of tasks and storage of data nearer to

the data sources. Various applications of edge computing are IOT,

healthcare, retail, manufacturing etc. Virtualization technologies have

enabled cloud platforms to provide various services such as virtual

machines to the users. Task scheduling is the major issues faced in both

cloud and edge domains. Since the usage of machines is high, it is

difficult to assign tasks manually. So, an efficient and optimized

algorithm is required in the cloud as well as the edge environment.

Here, a task scheduling is implemented based on Heuristic

Optimization Technique to examine the performance measures using

cloudsim. Task scheduling and optimization techniques dynamically

allocate resources in the cloud environment. Similarly, in edge

computing, scheduling the task is performed with different optimization

techniques such as random fit, and max fit algorithms. These task

scheduling methods are allocated to the VM based on the resources that

are available at the VM. These algorithms are implemented, and it

increased the VM utilization by 4.82%. The processing time taken is

reduced by 2.67% and the percentage of failed tasks is reduced by

3.68%. The experiment result shows the importance of the scheduling

in the cloud and edge environment, in terms of processing time, failed

task and increase in VM utilization in edge devices.

Keywords:

IoT, Healthcare, Random Fit, Max Fit, Heuristic optimization

Technique, Task Scheduling

1. INTRODUCTION

Cloud computing and edge computing are categories of

parallel and distributed systems which have interconnected

computers. Cloud and edge platforms give consumers to access

the virtual machines. Due to the more usage in cloud technologies,

it is very challenging to assign jobs manually, and to compute

resources in cloud and edge. As a result, an effective task

scheduling algorithm is needed. An effective dynamic task

scheduling algorithm in the cloud is Heuristic Optimization

Technique(HOT), which is appropriate due to its adaptability.

This algorithm shows how natural ant colonies interact with one

another and search for food by leaving pheromones along travel

paths. Certain modifications in the Heuristic Optimization are

done to improve the probability of assigning tasks in the virtual

machines. In cloudsim, there is no limitation for the number of

tasks to be assigned, which ultimately takes more time. In edge

cloudsim, a CPU utilization model is implemented where the

number of tasks that run parallel in the virtual machine is limited.

Task scheduling in edge computing refers to the allocation

procedure of computational resources and scheduling tasks

efficiently across edge devices to optimize performance. It

involves determining which tasks should be executed on which

edge devices based on factors such as device capabilities, network

conditions, and task deadlines. Here to optimize scheduling tasks

in edge computing, random allocation and max fit algorithms are

being used.

The use of dynamic scheduling techniques in cloud and edge

devices, scheduling the tasks that are inbound to the virtual

machines. The VM’s are allocated based on the optimization

method and calculate the probability of the best suitable virtual

machines. The probability for assigning the cloudlet to the virtual

machine is found to find the best optimal solution. The existing

algorithm changes with the requirements of the cloud

environment but the impact of load balancing and task hierarchy

needs to be considered in the future work. The tasks in the edge

devices will be assigned to the nearest nodes for the computation

using the optimization algorithm.

In order to improve efficiency and performance, optimization

strategies that dynamically alter with respect to the changes in the

scheduling environment are required to allocate the enormous

number of tasks in an efficient and optimized way. The Heuristic

Optimization Technique uses the foraging behavior of the ants to

optimize the tasks. The optimization algorithm uses the

probability calculation method to give the optimal result in order

to assign a specific VM to a task. The optimization follows

dynamic scheduling. As the computation in cloud gets difficult

when there are few resources and huge number of tasks, the edge

environment can be considered as a better way to assign the tasks

to the optimal centers.

Fig.1. Cloud Task Scheduling Scenario

The Fig.1 explains the task scheduling scenario in the cloud,

with number of host machine present in the data center. Here the

specified optimization algorithm can be used in order to allocate

the tasks to the appropriate edge devices. Fig.2 describes the edge

task scheduling scenario where the tasks are given to the data

center brokers. The given tasks are then assigned to edge nodes

using the scheduling methods. For optimization in cloud

environments, a Heuristic Optimization Technique algorithm is

implemented.

1.1 OBJECTIVE

The goal of the work is to implement the scheduling and

optimization algorithms in cloud and edge environments.

User
Task Submitted by User to

Data Center Broker
Optimization Algorithm

Host 1 Host N

Data Center n

Host 1 Host N

Data Center n

P PRIYA PONNUSWAMY AND CP SHABARIRAM: SCHEDULING AND OPTIMIZATION OF RESOURCES IN EDGE COMPUTING USING RANDOM ALLOCATION AND MAX FIT

 ALLOCATION

3262

• Implementation of Probability based HOT in the cloud

Systems

• The performance of the Heuristic Optimization Technique

are analyzed with number of devices, number of VM’s and

average processing time

• Leveraging edge computing to schedule the resources to

nearer edge devices using Random allocation, Min fit,

Successor fit and Max fit.

• Assessing and analyzing the performance of recent

development in task scheduling algorithm in the edge

environment particularly concentrating on failed task, task

load, resource utilization of VMs and processing time.

Fig.2. Edge Task Scheduling Scenario

For better scheduling in edge environments Ant-Colony-

Optimization, Random allocation scheduling algorithm and Max

fit scheduling algorithm are used in the edge environment. The

scheduling of tasks is done using the optimization algorithm and

performance analysis is measured for the same. The tasks are

assigned in the edge environment based on the optimization

algorithm and reduce the process time in the edge systems.

1.2 CONTRIBUTION

• Implementation of Probability based HOT in the cloud

environment- Modified Heuristic Optimization Technique

(HOT) is implemented in cloud environment. The algorithm

follows the principle how natural ant colonies interact with

one another and search for food by leaving pheromones

along their travel pattern. Like pheromones in real life, here

probability is calculated for assigning virtual machine to a

cloudlet. The global best probability is stored in place of a

pheromone value and the tasks are given to the best suitable

VM.

• To analyze the performance of the Heuristic Optimization

Technique, different parameters such as number of VM

utilized in the cloud devices, number of tasks in the

cloudlets, Processing time, scheduling time and number of

cloudlets are considered. The size of the virtual ant colony

is controlled by several parameters, one of which is the

number of ants. Performance of the algorithm can be

enhanced by boosting the ant population, but computational

overhead rises as well.

• Implement the Random allocation and Max fit algorithm in

edge environment - Performance of edge computing

systems, which involve distributing computational tasks

across a network of edge devices, is greatly improved by

scheduling methods.

• The effectiveness of the scheduling techniques in the edge

devices are analyzed based on number of failed tasks, the

availability of devices, task load, and resource utilization in

random allocation and max fit algorithms.

2. LITERATURE REVIEW

Gupta et al. [1] have proposed a Scheduling based on Cloud

using HOT and Load Balancing. The proposed approach aims to

balance the load that is spread among the virtual machines. The

paper highlights the challenges faced for load balancing in cloud

computing and offers a comparative evaluation of various load

balancing algorithms. The outcomes indicate that the HOT-based

approach performs far better than other algorithms with respect to

task completion time and resource utilization. Thus, the paper

presents load balancing about cloud computing that could

improve the overall performance of project scheduling in cloud

environments. Shi and Shiet [2] have proposed that multi-

objective optimization is used for multi-node scheduling in the

edge devices. The nodes are dynamic in higher orders and the

resources are not balanced in edge computing. Because of this

factor, when a task is scheduled, the resources availability needs

to be calculated. The impact time with respect to completion, load

balancing on task scheduling is considered while developing this

optimization technique. Two different scenarios are considered

where the edge node shows sensitivity towards real time

performance and expects to reduce the overhead. The multi

objective optimization, makes sure that the tasks are scheduled in

an evenly manner. Reddy et al. [3] have proposed a Scheduling in

Cloud Environment. A local search based on the pheromone trail

and heuristic data is then used to improve the first solution that

the algorithm generated using a constructive heuristic. This paper

assumes that the resources are equal and that the resources have

no effect on how quickly tasks are performed. For some cloud

computing environments, this may not be a valid assumption. Sun

et al. [4] Based on the concept of load balancing, a scheduling

strategy is proposed. Business wait queue model and server

resource scheduling model are used. The scheduling of tasks is

done based on the standard deviation. Standard deviation of the

tasks to be computed is used for grouping up the tasks and to

determine the proportion of services. A secondary allocation

ideology is used where a heavy load task is assigned to a light load

resource for the scheduling to take place efficiently. The

algorithm has achieved the effect of decreasing the load balance

in the server and improving the resource optimization rate.

Parvesh Humane et al. [5] proposed the practical method for the

simulation of cloud systems via CloudSim simulator. The paper

provides a summary of the CloudSim simulator's key features,

including its capacity to simulate all components used in cloud.

The paper presents a case study where they use CloudSim to

simulate a cloud-based e-commerce application. The performance

of the application is analyzed under different scenarios, such as

varying workload, resource allocation, and scheduling policies.

The experimental results show how effective CloudSim is for

modeling and assessing cloud systems. The paper also depicts

some restrictions and difficulties associated with using CloudSim,

such as the need for accurate modeling of the underlying hardware

and software elements and the difficulty of accurately capturing

the dynamic nature of cloud environments. Zhang et al. [6]

proposed the paper about energy efficiency aspects of resource

Cloud

 Edge

Node

Edge

Node

Edge

Node

Datacenter

Edge

Node

Optimization
Algorithm

Edge

Node

User
Task Submitted to
Datacenter broker

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2024, VOLUME: 15, ISSUE: 03

3263

allocation in edge computing. The techniques such as dynamic

voltage scaling, sleep mode operation, and workload

consolidation to minimize energy consumption. The paper

reviews various resource allocation algorithms, including

dynamic programming, game theory, and machine learning

approaches. It investigates the trade-offs between latency, energy

consumption, and resource utilization in resource allocation

decisions. It presents energy-aware resource allocation algorithms

and optimization frameworks that consider both performance and

energy efficiency objectives, contributing to sustainable and

environmentally friendly mobile edge computing deployments.

Razaque et al. [7] proposed an algorithm in consideration with the

availability of the network bandwidth in addition to the resources

needed, execution time and cost, CPU memory, etc. This paper

discussed the algorithm used for the divisible task scheduling

model in order to maintain the accuracy in assigning the tasks to

every virtual machine. Lakra et al. [8] proposed a multi objective

algorithm in the cloud environment. The paper is based on the

QoS parameters where the tasks and VMs were assigned based on

the same. The algorithm demonstrates that the suggested method

performs FCFS and priority scheduling techniques. This paper

also proposes a method to improve this algorithm by taking in

consideration some other QoS parameters. Medhat A. Tawfeek et

al. [9] presented a system based on Ant-Colony-Optimisation for

the cloud environment. This paper explains the need for change

in adaptation of planning approach to the environment's shifting

needs. The algorithm has achieved the effect of decreasing the

load balance in the server and improving the resource

optimization rate. In the future, the impact of task hierarchy and

load balancing will be viewed as an improvisation. Hu et al. [10]

The proposed methodology enhances the conventional HOT

algorithm by considering the dynamic characteristics of cloud

computing. The algorithm is founded on the notion that

parameters can self-adjust to the dynamic changes in the cloud

environment. By cutting down on communication costs and time

delays between nodes, the proposed methodology improves work

scheduling. Hence enhancing the overall efficacy of job

scheduling in cloud computing. Satyanarayanan et al. [11]

proposed the paper and gives in- depth overview of mobile edge

computing architectures and computation offloading techniques.

The paper discusses the benefits, challenges, and practical

implications of offloading work from mobile devices to edge

servers. It covers various architectural models, including hybrid,

cloudlet-based, and fog-based architectures, and evaluates their

benefits and drawbacks. It examines several Task divisions,

workload prediction, and decision-making algorithms. The survey

also examines the impact of network latency, bandwidth, and

mobility on computation offloading decisions. The paper provides

case studies and actual mobile edge computing applications,

illustrating the potential for enhanced performance and decreased

energy use. Optimisation is suggested to address the DWRR

algorithm's latency issue with task execution. With regard to both

these algorithms a fuzzy logic was developed in the cloud

environment. It further aims at optimizing the make span and the

time taken to schedule the task. Gao et al. [13] Cloud computing

makes use of a dynamic work Ant-Colony-Optimisation-based

scheduling method. The suggested method aims to improve

system throughput while reducing response time and energy

usage. The proposed methodology makes use of a dynamic

pheromone update mechanism that takes into consideration how

the cloud environment changes. Zheng Shi et al. [14] have

suggested a technique for edge devices. The proposed

methodology considers more objectives, like accuracy, latency

etc. to determine the optimal configuration of an edge device.

Experimental methods shows that the given methodology

outperforms the baseline approach, particularly in terms of energy

efficiency. The authors also analyze the sensitivity of the

optimization results to different target weights and demonstrate

the applicability of the approach to different device types and

peak loads. Mao, Y., You, C al. [15] proposed the paper and

examines the difficulties and advantages of implementing edge

computing in mobile networks, including the reduction of latency,

increased energy efficiency, and improved user experience. To

provide secure and private edge computing operations, it

thoroughly investigates data encryption, access control, and

authentication methods. The paper provides insights into various

edge architectures, cloudlet, and mobile edge computing. It also

evaluates the strategies for managing resources like work

dumping, assigning resources, and load distribution on network

performance. The paper emphasizes numerous edge computing in

mobile networks applications and use cases, such as real-time

analytics, augmented reality, and Internet of Things (IoT)

deployments.

3. SYSTEM MODEL

A sizable user base, a wide range of application task types, and

a big scale of different resources are all features of the cloud

computing and edge computing systems. It becomes difficult to

manage these circumstances when there are many users and

minimal resources. It can be difficult to schedule non-dynamic

algorithms when there are lots of users and minimal resources

available. In order to distribute the vast number of jobs in an

effective and optimum manner, optimization algorithms that

dynamically adapt with respect to changes in the scheduling

environment are necessary. The Heuristic Optimization

Technique optimizes task scheduling by mimicking the foraging

behavior of ants. To provide the ideal solution in the optimization

techniques, the probability of allocating task is important.

Dynamic scheduling is followed by optimization. The edge

environment can be taken into consideration as a better method

for resource allocation or task scheduling because cloud

computation becomes challenging when there are few resources

and many jobs.

3.1 SYSTEM BLOCK DIAGRAM

The system flow comprises two blocks namely the

optimization algorithm used in the cloud scenario and the

scheduling methods in the edge environment. The user submits

the tasks where the different scheduling methods such as Random

allocation, Min fit, Successor fit and Max fit are present.

The Fig.3 explains the flow where a task assigned by the user

goes to the host via a datacenter broker. In the cloud environment,

the tasks are optimized by the optimization algorithm. The best

optimal VM is chosen for the cloudlet assignment based on the

global updated probability. Five different scheduling methods are

used in the edge to allocate the task to the edge devices. The task

is then processed based by the scheduling algorithm according to

the type.

P PRIYA PONNUSWAMY AND CP SHABARIRAM: SCHEDULING AND OPTIMIZATION OF RESOURCES IN EDGE COMPUTING USING RANDOM ALLOCATION AND MAX FIT

 ALLOCATION

3264

 Fig 3 System Block Diagram

The HOT is the use of positive feedback mechanisms,

represented by pheromone trails, to guide the search process. Ants

probabilistically select edges to traverse based on the combination

of pheromone levels and heuristic information, which encodes

problem-specific knowledge. The pheromone trails left by ants on

the edges serve as a form of indirect communication, allowing

them to exploit the experience of previous ants and bias their

decisions. By iteratively constructing solutions and adjusting the

pheromone levels based on the quality of solutions found, HOT

converges toward better solutions over time. This exploration-

exploitation balance allows HOT to effectively navigate complex

solution spaces and find near-optimal solutions for combinatorial

optimization problems. Max fit can be defined as assigning the

largest available resource to perform a simple task. This way, the

task can be processed within minimum time. The time taken to

schedule the smallest task in the maximum resource is less

compared to other algorithms. In Random allocation algorithm,

an edge device is selected at random, and it is checked based on

the resources it contains. If the device can process the incoming

task, the task is allocated to the VM to perform.

4. IMPLEMENTATION

4.1 OPTIMIZATION USING TASK PROBABILITY

All data Centers available in the cloud need to register

themselves with the cloud registry. The cloud datacenters are

created whenever the VM’s are required. Cloudlets have

computational capabilities, including CPUs (Central Processing

Units), memory, storage, and networking infrastructure. These

resources allow the cloudlet to process and execute applications

or services. In the proposed system, the mapping of VM’s to the

cloudlet is done by the probability calculation. An array called

“task probability “is initialized to hold the probability of each

cloudlet being assigned to a VM, and an array task to hold the VM

index that each cloudlet is assigned to. Then a boolean array is

initialized to track which VMs have already been considered for

each cloudlet assignment. The best optimal VM is chosen for the

cloudlet assignment based on the global updated probability.

4.2 HEURISTIC OPTIMIZATION TECHNIQUE

In HOT, a set of virtual ants iteratively constructs solutions to

the problem at hand. Each ant probabilistically selects the next

component or state based on pheromone trails deposited on the

edges of the problem graph. The amount of pheromone deposited

is influenced by the quality of the solution found by each ant. Over

time, the pheromone levels on the edges evolve through local

pheromone updating and global pheromone evaporation. Local

updating enhances the pheromone strength of the edges used in

constructing a solution, while evaporation reduces pheromone

levels on all edges. This process allows the algorithm to converge

towards better solutions by exploiting paths with higher

pheromone levels. HOT can be used on the cloud system to

overcome the issues of scheduling the user task. The objective is

to allocate resources in a way that maximizes system performance

while lowering costs and energy usage. In the Initialization phase,

the cloud resources as a group of ants are dispersed at random.

The ant movement is done when each ant travels from its present

node to a neighboring node in accordance with a probability

function dependent on the node's desirability and pheromone

level. In the Resource distribution phase, when an ant arrives at a

node, it distributes to its application with the resource connected

to that node. In the Pheromone update phase, depending on how

well the ant finds a decent allocation and the pheromone level of

each edge is updated. The final phase is termination, the algorithm

ends when a predetermined condition is satisfied, such as when

the allotted number is touched, or a workable solution is

discovered the resource allocation to the edge is terminated. Here

the probability of allocating resources in Heuristic Optimization

Techniques found by

 tempProb= T[vm][task][t]a (1)

It then calculates the value of ‘dij’ as

dij= (Size of cloudlet) / (Processing capacity) (Cloudlet* VM) (2)

Then the tempProb is calculated because of raising the value

of a specific element T matrix which is the pheromone matrix to

the power of a constant a which is the level at which the

pheromones have an effect on the probability value. It then

divides the result by dij and stores the result in ‘tempProb’ In order

to enhance the probability calculation, the following changes have

to be made.

 x = x+ T[vm][task][t]a (3)

 x= x+ Math.exp(a * T[vm][task][t]) (4)

 x= x+ log (1 + a * T[vm][task][t]) (5)

 x= x+ (a * T[vm][task][t]+1) (6)

 tempProb= x/ (4*dij) (7)

The probability to find the nearest VM is enhanced using the

modification. By raising the probability, ants are more likely to

choose less frequently visited or less favorable edges during

solution construction. This enables further exploration, leading to

the discovery of new paths and potential improvements. The

increased probability promotes the diversification of ant behavior,

ensuring that different paths and solutions are explored. This

diversification helps prevent getting stuck in the local optima

infinitely or choosing an optimal solution before even exploring

other paths. By allowing for increased exploration and

diversification, higher probability values in HOT contribute to a

more thorough search process, potentially leading to the discovery

of better and more optimal solutions.

4.3 MAX FIT AND RANDOM ALLOCATION IN

EDGE DEVICES

Edge computing provides a greater number of data request or

application request from different devices need to be scheduled

appropriately to the edge devices. Three scenarios ae used in the

edge computing which are 1-tier, 2-tier and 2-tier with Edge

Orchestrator. In a 1-tier edge computing model, the edge devices

Scheduling

Algorithm
Processed Task

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2024, VOLUME: 15, ISSUE: 03

3265

themselves perform both data processing and application

execution. This means that the edge devices directly handle the

computation tasks without offloading them to separate edge

servers or cloud resources. The devices act as units that process,

store, and respond to data locally. The 2-tier edge computing

model introduces a separation of responsibilities between edge

devices and edge servers. In this model, the edge devices at the

network edge capture and processes the data locally. Allocation

of task to a edge device is EDi, Workload of edge devices is WDi

,Storage capacity of edge devices is SCEDi, Computational

capacity of edge devices is CDEDi.

Allocation of task based on the availability is considered as

 XEDi = WDi ∈(SCEDi+CDEDi)) (8)

Task is allocated based on priority to the edge device is

 PEDi = WDi ∈ (SCEDi + CDEDi) & XEDi) (9)

The number of task received for a particular edge device at a

particular time is mentioned as

 δT = n(EDi) (10)

The task waiting to schedule in the queue in cloud and is given

wait

 (EDi) = XEDi>0 then WDi ∈ (SCEDi+CDEDi)→EDi (11)

 XEDi>0 then WDi ∈(SCEDi+CDEDi)→EDi = δT-1 (12)

The edge servers, which are typically more powerful than the

edge devices, handle the heavy computation and can also provide

additional services, such as caching, storage, and analytics. The

2-tier edge computing model can be enhanced by incorporating

an Edge Orchestrator (EO). The Edge Orchestrator is responsible

for managing and orchestrating the distribution of workloads

between the edge devices and the edge servers. It acts as an

intelligent intermediary that determines where each task or

workload should be executed based on factors such as device

capabilities, network conditions, application requirements, and

resource availability. The application performance and allocation

of task in Edge Orchestrator is better and it achieves the efficient

resource utilization and application performance. It also provides

on demand workload migration and balancing the work load

across all the edge devices and edge servers. The inclusion of an

EO adds an additional layer of intelligence and coordination to the

2-tier edge computing architecture. The Max fit algorithm plays a

vital role in allocating tasks to edge devices based on the

maximum available resources in the cloud system. The max fit

algorithm calculated the resource need of the submitted tasks. The

algorithm then checks the resources availability on the edge

devices and cloud devices. The Random allocation algorithm are

used to allocate tasks randomly to edge devices based on a random

selection process. The edge device is selected randomly from the

pool of available edge devices by the random allocation

algorithm. This approach guarantees an equal and impartial

distribution of tasks among the edge devices.

4.4 RANDOM ALLOCATION ALGORITHM IN

EDGE ENVIRONMENT

A heuristic approach in allocating resources to edge devices is

done with random allocation technique. It operates by choosing a

resource at random from the pool of resources available and

assigning it to a job that needs the resource. Until all jobs have

been assigned to resources, this process is repeated. The Random

Fit algorithm begins by collecting information about available

edge devices and their capacities. It considers factors such as CPU

capacity, memory, and other relevant resources.

• Task Arrival: When a cloudlet arrives in the system, the

scheduler needs to find a suitable edge device for its

execution. The random Fit algorithm selects an edge device

randomly based on the steps

Algorithm for Random Fit

Input: Capacity of Task

Output: Time taken for a task to run on a VM

If Random Fit then

 Int randIndex=simUtils.getRandomNumber(0,vmArray.size()-1)

Doublerequiredcapacity=((CpuUtilizationModecustom)task.ge

tUtilization

ModelCpu().predictUtilization(vmArray.get(randomIndex).get

VMType());

 doubletargetVMCapacity=(double)100-

 vmArray.get(randomIndex).

getCloudetScheduler().

getTotalUtlizationofCPU(CloudSim.clock());

if requiredCapacity<=targetVMCapacity then

 electVM=vmArray.get(randomIndex);

end if

end if

• Step 1: Resource Comparison: The algorithm compares the

capacity requirements of the cloudlet with the available

capacity of the selected edge device. It checks whether the

edge device has sufficient resources to accommodate the

cloudlet.

• Step 2: Allocation Decision: If the selected edge device has

enough capacity to handle the cloudlet, the scheduler assigns

the task to that edge device for execution. Otherwise, it

repeats the random selection process until a suitable edge

device is found. Task

• Step 3: Execution: Once the task is allocated to an edge

device, it starts executing on that device using the available

resources. It aims to distribute tasks randomly across

available resources without following a specific

optimization criterion.

4.5 MAX FIT ALGORITHM IN EDGE

ENVIRONMENT

The Max fit algorithm seeks to reduce resource fragmentation

in an edge computing environment. It operates by choosing the

resource with the biggest capacity that is available and assigning

the task to that resource.

Algorithm for Max Fit

Input: Capacity of a Task

Output : Time taken for a task to run a VM

doubleselectedVMCapacity=0;

for VM index=0 to vmArray.size() do

 doublerequiredCapacity=(CpuUtilizationModelCustom)

 task.getUtilizationModeCpu().PredictUtilization

 (vmArray.get(vmIndex).getVmType());

P PRIYA PONNUSWAMY AND CP SHABARIRAM: SCHEDULING AND OPTIMIZATION OF RESOURCES IN EDGE COMPUTING USING RANDOM ALLOCATION AND MAX FIT

 ALLOCATION

3266

 doubletargetVMcapacity=(double)100-vmArray.

 get(vmIndex).getCloudletScheduler().getTotalUtlizationof

 CPU(CloudSim.Clock());

if required Capacity <=target VMCapacity

 > slelectedVMCapacity then

 selectedVM=vmArray.get(vmIndex);

 selectedVMCapacity=targetVMCapapcity;

end if

end for

Task arrival in max fir algorithm happens like Task Arrival:

When a cloudlet arrives in the system, the scheduler needs to find

a suitable edge device for its execution. The Max Fit algorithm

aims to utilize the edge devices with the highest available capacity

for task allocation. By doing so, it helps to balance the workload

distribution and leaves smaller available capacities on edge

devices for future tasks. The Max fit method has the advantage of

reducing resource fragmentation, which can increase resource

utilization and lower resource management costs. However, it

might not always lead to the best resource distribution,

particularly when resources have a wide range in size or when

various jobs have varying resource needs.

4.6 LINEAR FIT, AND MIN FIT ALGORITHM IN

EDGE ENVIRONMENT

Task scheduling in edge computing is about assigning

different tasks or jobs to the right computers at the edge in an

efficient way. When there are multiple devices and servers at the

edge, the scheduler decides which tasks should be done by which

devices. It considers things like how complex the task is, how

much computing power each device has, how good the network

connection is, and how quickly the task needs to be done. The

scheduler tries to use the available resources wisely, make sure

tasks are done quickly, and balance the workload across the edge

devices. It uses smart algorithms and techniques to make the best

decisions on where to send tasks so that the edge computing

system works well, and applications perform smoothly. These

algorithms are used to schedule the tasks to the resources

accordingly. The Linear fit algorithm schedules the first highest

resource to the incoming task, where there are chances for the

other tasks to be resource deficit. The Min fit algorithm finds the

optimal resource to be allocated to the task whereas the Max fit

allocates the highest units of resource to the lowest needed task.

The above-mentioned algorithms were already present in the edge

simulator for assigning the tasks.

5. RESULTS AND ANALYSIS

The parameters used for analyzing the results are the number

of devices, the number of cloud tasks, the processing time

required in order for those devices to complete the task. The

number of processors also have an effect in decreasing the

processing time. The average processing time and average VM

utilization are used in the edge environment to calculate the

resource utilization with respect to the number of tasks.

Percentage of failed tasks give us the number of tasks that cannot

be successfully allocated to the resources.

The Table.1 shows the how the number of processors in a

cloudlet interacts with the cloud devices and the time taken for

scheduling tasks in a cloud environment. In a cloud computing

context, this graph shows the time needed to complete a task in a

virtual machine (VM) as a function of the task's processing

requirements. Processing times grow when more processors are

needed to complete a task because as the required number of

processes increases for a task to run on a VM, then it means that

it sometimes must wait for other tasks to free up the processors

that other tasks have been using to run on a VM when required

number of processes is not available. Thus more the number of

processors required by a task, the time taken is directly

proportional. This behavior is predictable given that the work

calls for more processors, which in turn calls for more computing

resources and longer processing times.

Table.1. Number of tasks(cloudlet) vs the time taken to schedule

these tasks in HOT algorithm

Time Taken by VMs to Run a Task

Number of

Task/

Time Taken

Time

taken

for 20 vm

Time

taken

for 30 vm

Time

taken

for 40 vm

Time

taken

for 50 vm

10 270 180 177 173

15 390 200 185 178

20 460 205 185 178

25 - 220 190 180

Table.2. Number of devices vs Percentage of failed task in Max

fit Algorithm

Percentage of Failed task in Max Fit

 Number of Devices/

Percentage of

Failed Task (%)

1-Tier 2-Tier 2-Tier with EO

50 0 0 0

75 0.5 0.3 0

100 1 0.5 0.1

125 3.8 2.2 0.3

150 7.5 4.5 0.3

175 10.2 7.2 0.3

200 13 9.5 0.5

The Table.2 shows the relationship between number of

devices and percentage of failed tasks in Max fit Algorithm. 1-

tier, 2-tier, and 2-tier with EO entities are depicted in the table.

The percentage of unsuccessful tasks rises for all three units as the

number of units rises. The resources required by the tasks to run

are tracked using “required capacity” and “target capacity”

mentions the amount of resources that the VM contains. The Max

fit algorithm is nothing but allocating the largest resource to the

smallest task, which means that the required capacity must be less

than target capacity and the largest resources should be chosen

and that is tracked using “selectedVmCapacity”. It is important to

remember that, while the 1-tier architecture has the highest task

error percentage, the 2-tier architecture with EO has the lowest

task error percent. The consequences of these findings for edge

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2024, VOLUME: 15, ISSUE: 03

3267

computing include the possibility that a 2-tier architecture

combined with EO may be more efficient in lowering the

percentage of failed tasks. This may be since edge orchestration

can aid in a better distribution of responsibilities among units,

lowering the likelihood of error. On the other hand, a 1-tier

architecture may result in more task failures, suggesting that a

more distributed architecture may be more efficient in edge

computing scenarios. Thus, the table highlights the importance of

considering architecture and orchestration when designing an

edge computing system to reduce the percentage of failed tasks

and optimize performance.

The Table.3 shows the how the number of devices allocated to

the edge devices and their processing time. Processing time is one

of the major parameters that is used for checking the efficiency of

a system or an architecture. The scenario here is that tasks are

assigned as per the Max fit algorithm which means that the

smallest task gets the largest available resource and then the

processing time are monitored.

Table.3. Number of devices vs Average processing time taken in

Max fit algorithm.

Average Processing Time in Max Fit

 Average Processing Time (s)/

Number of Devices
1-Tier 2-Tier 2-Tier with EO

50 0.3 0.2 0.1

75 0.5 0.3 0.1

100 1 0.5 0.1

125 1.7 1.2 0.1

150 2.1 1.6 0.1

175 2.5 2 0.1

200 2.8 2.3 0.1

The three entities plotted on the graph are 1-tier, 2-tier, and 2-

tier with EO. As the number of edge devices increases, the

average processing time of the tasks increases for all three entities

because more tasks are required to be processed so the average

time taken increases. The graph shows that using a 2-tier

architecture with EO can help reduce the average processing time

even when using a larger number of devices. This may be because

edge orchestration can help better distribute tasks across devices,

reducing processing time by balancing workloads. On the other

hand, using a 1-tier architecture can increase processing time,

suggesting that a more distributed architecture may be more

efficient in edge computing scenarios.

The Table.4 plots the average virtual machine (VM)

utilization percentage as a function of the number of devices used

in an edge computing scenario. Average VM utilization is used

here for the graph because it depicts how efficiently the resources

are being used. This gives an insight on how to optimize the usage

of the resources. The VM utilization rate must be improved in

order to obtain an optimal utilization of the available resources.

Here the resources required by the tasks to run are tracked using

“required capacity” and “target capacity” mentions the amount of

resources that the VM contains.

The three entities plotted on the graph are 1-tier, 2-tier, and 2-

tier with EO. As the number of devices used increases, the average

VM utilization percentage increases for all three entities. These

results have important implications for the design of edge

computing. The diagram shows that using a 2-tier architecture

with EO can help reduce average VM utilization even when using

a larger number of devices. This may be because edge

orchestration can help better distribute VMs across devices,

reducing VM usage by balancing workloads. On the other hand,

using a 1-tier architecture can increase VM utilization, suggesting

that a more distributed architecture can be more efficient in edge

computing scenarios.

Table.4. Number of devices vs Average VM utilization in Max

fit algorithm

Average VM Utilization in Max Fit

 Average VM Utilization(%)/

Number of Devices
1-Tier 2-Tier 2-Tier with EO

50 2.4 2.2 1.5

75 2.8 2.1 1.6

100 5.1 3.9 2.1

125 10.5 8.4 2.9

150 15.7 11.8 4.1

175 19 15 5.5

200 24.5 19 6.5

Table.5. Number of devices vs Percentage of failed task in

Random allocation Algorithm

Percentage of Failed task in Random Allocation

 Percentage of Failed Tasks/

Number of Devices
1-Tier 2-Tier

2-Tier

with EO

50 0.779065 0.763075 0.759986

75 1.289363 0.899609 0.656743

100 1.990336 1.717815 0.613497

125 4.28616 1.559764 0.501609

150 3.769856 1.210722 0.739169

175 4.528569 1.872832 0.502963

200 10.099068 4.986032 1.042699

The graph plots the percentage of failed tasks as a function of

the number of devices used in an edge computing scenario. The

resources required by the tasks to run is tracked using “required

capacity” and “target capacity” mentions the amount of resources

that the VM contains. Random allocation algorithm is allocating

resource random to a task, which means that the required capacity

must be less than target capacity and the largest resources should

be chosen and then resources are randomly allocated. As the

number of devices used and the Percentage of failed tasks is

directly proportional for all three entities. The Results of these

findings for the field of edge computing include the possibility

that a 2-tier architecture combined with EO may be more efficient

in lowering the percentage of failed tasks. This may be since

office orchestration can aid in a better distribution of

responsibilities among units, lowering the likelihood of error. On

the other hand, a 1-tier architecture may result in more task

failures, suggesting that a more distributed architecture may be

more efficient in edge computing scenarios. Thus, the table

highlights the importance of considering architecture and

P PRIYA PONNUSWAMY AND CP SHABARIRAM: SCHEDULING AND OPTIMIZATION OF RESOURCES IN EDGE COMPUTING USING RANDOM ALLOCATION AND MAX FIT

 ALLOCATION

3268

orchestration when designing an edge computing system to

reduce the percentage of failed tasks and optimize performance.

Fig.6. Number of devices vs Average Processing Time in

Random allocation Algorithm

Average VM Utilization in Random Allocation

Average VM

Utilization/

No. of Devices

50 75 100 125 150 175 200

1-Tier 3.99 6.99 6.90 11.21 11.58 14.69 18.71

2- Tier 3.31 5.16 6.70 8.56 9.03 11.72 14.86

2- Tier with EO 3.57 3.81 6.25 5.91 8.91 8.361 11.93

The Table.6 plots the processing time as a function of the

number of devices used in an edge computing scenario. The

resources required by the tasks to run is tracked using “required

capacity” and “target capacity” mentions the amount of resources

that the VM contains. Random allocation algorithm is allocating

resource random to a task, which means that the required capacity

must be less than target capacity and the largest resources should

be chosen and then resources are randomly allocated. The three

entities plotted on the graph are 1-tier, 2-tier, and 2-tier with EO.

When the number of devices increases randomly, the average

processing time increases gradually for all three entities. The

graph shows that using 2-tier architecture with EO can help

reduce the average processing time even when using a larger

number of devices. This may be because edge orchestration can

help better distribute tasks across devices, reducing processing

time by balancing workloads. On the other hand, using a 1-tier

architecture can increase processing time, suggesting that a more

distributed architecture may be more efficient in edge computing

scenarios. These highlights the importance of considering

architecture and orchestration in edge computing projects to

optimize performance and processing time.

Table.7 Number of devices vs Average VM Utilization Time in

Random allocation Algorithm.

Average Processing Time in Random Allocation

Average Processing Time/

No. of Devices
50 75 100 125 150 175 200

1-Tier 1.80 1.94 1.91 2.11 2.05 2.07 2.34

2- Tier 1.53 1.70 1.61 1.61 1.53 1.64 1.76

2- Tier with EO 1.51 1.38 1.48 1.37 1.47 1.39 1.49

The Table.7 plots the average virtual machine (VM)

utilization percentage as a function of the number of devices used

in an edge computing scenario. Average VM utilization is used

here for the graph because it depicts how efficiently the resources

are being used. This gives an insight on how to optimize the usage

of the resources. The VM utilization rate must be improved in

order to obtain an optimal utilization of the available resources.

As the number of devices used increases, the average VM

utilization percentage increases for all three entities.

These results have important implications for the design of

edge computing. These results shows that 2-tier architecture

combined with EO is more effective in lowering the average VM

Utilization rate. This may be because branch orchestration can

help better distribute VMs across devices, reducing VM usage by

balancing workloads. On the other hand, using 1-tier architecture

can increase VM utilization, suggesting that a more distributed

architecture can be more efficient in edge computing scenarios.

These findings highlight the importance of considering

architecture and orchestration in edge computing projects to

optimize resource utilization.

6. CONCLUSION AND FUTURE

ENHANCEMENT

Scheduling is very important in optimizing utilization of

resources in edge computing for efficient and effective use of

resources. It determines the allocation of computational tasks

among computing resources, which plays as factor in system

performance and energy consumption. The quality of service, in

edge devices can be employed by optimizing task allocation,

reduce latency, and optimize system response time, therefore,

optimizing task scheduling should be prioritized.

Significant potential lies in optimizing task scheduling for

edge computing in various applications, including healthcare,

industrial automation, and autonomous vehicles. An example

where task scheduling is significant in healthcare is real-time

medical monitoring systems' data processing tasks. In

autonomous vehicles, improving task scheduling can augment

decision-making algorithms, which could yield improved vehicle

safety. Also, optimizing task scheduling in industrial automation

can enhance production process efficiency, resulting in increased

productivity and lowered energy consumption.

Thus, optimizing task scheduling in edge computing gives a

beneficial approach for increasing the performance and efficiency

of an edge computing system. Edge computing can obtain an

increase in performance in a wide range of industries by

continuously modifying and adapting task scheduling methods.

6.1 FUTURE ENHANCEMENTS

There is a huge potential for improving scheduling methods

and optimization in edge devices in future. The integration of edge

computing with 5G networks is one potential topic of future

research since it might enable extremely low latency and high-

bandwidth connectivity and open up new applications that need

real-time processing. The development of edge-native algorithms,

specifically created for local processing, distributed computing,

and to increase the usage of mobile devices. It could be another

area of emphasis. Furthermore, there is a chance to research the

application of blockchain technology for safe and open task

scheduling in edge computing. Efficiency, dependability, and

performance of edge computing systems might be significantly

increased with continuous investment in task scheduling

optimization, enabling new applications and unlocking new

opportunities for both industries and clients.

REFERENCES

[1] Ashish Gupta and Ritu Garg, “Load Balancing based Task

Scheduling with HOT in Cloud Computing”, Proceedings of

International Conference on Computer and Application, pp.

1-5, 2017.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2024, VOLUME: 15, ISSUE: 03

3269

[2] Zheng Shi and Zhiguo Shi, “Multi-Node Task Scheduling

Algorithm for Edge Computing based on Multi-Objective

Optimization”, Proceedings of International Symposium on

Electronic Information Technology and Communication

Engineering, pp. 19-21, 2017.

[3] G. Narendra Babu Reddy, “Modified Heuristic Optimization

Algorithm for Task Scheduling in Cloud Computing

Systems”, Proceedings of International Conference on

Computer Communications, pp. 357-365, 2018.

[4] Lintan Sun and Zigan Li, “Edge Computing Task

Scheduling Strategy based on Load Balancing”,

Proceedings of International Conference on Computer

Science Communication and Network Security, pp. 309-316,

2019.

[5] Parvesh Humane, “Simulation of Cloud Infrastructure using

CloudSim Simulator: A Practical Approach for

Researchers”, Proceedings of International Conference on

Information Technology and Mechatronics Engineering, pp.

1615-1619, 2020.

[6] M. Peng, Zhang and Jal, “The Resource Allocation for Edge

Computing in Cellular Networks”, Proceedings of

International Conference on Computer and Applications,

pp. 29-41, 2019.

[7] Abdul Razzaque, “Task Scheduling in Cloud Computing”,

Proceedings of International Conference on Long Island

Systems, Applications and Technology, pp. 1-7, 2016.

[8] Atul Vikas Lakra, “Multi-Objective Tasks Scheduling

Algorithm for Cloud Computing Throughput Optimization”,

Proceedings of International Conference on Intelligent

Computing, Communication and Convergence, pp. 1-6,

2019.

[9] Medhat A. Tawfeek, “Cloud Task Scheduling based on

Heuristic Optimization”, Proceedings of International

Conference on Computer Engineering Systems, pp. 1-5,

2013.

[10] Y. Hu, “An Efficient Improved Heuristic Optimization

Algorithm for Dynamic Software Rejuvenation in Web

Services”, Proceedings of International Conference on Fog

Computing, pp. 1-6, 2021.

[11] M. Satyanarayana and P. Bahl, “Mobile Edge Computing: A

Survey on Architecture and Computation Offloading”,

Proceedings of International Conference on Systems and

Informatics, pp. 2431-2435, 2017.

[12] K. Rajakumari, “Fuzzy based Heuristic Optimization

Scheduling in Cloud Computing,” Proceedings of

International Conference on Computer Systems Science and

engineering, Vol. 40, No. 2, pp. 581-592, 2022.

[13] X. Gao and J. Wu, “Dynamic Load Balancing Strategy for

Cloud Computing with Heuristic Optimization”, Future

Internet, Vol. 7, No. 4, pp. 465-483, 2015.

[14] Y. Zheng Shi, M. Chen, Alam and J. Guo, “Multi-Task

Scheduling based on Classification in Mobile Edge

Computing”, Electronics, Vol. 8, No. 9, pp. 938-952, 2019.

[15] Y. Mao, You and Cal, “The Integration of Edge Computing

with Mobile Cellular Networks”, Proceedings of

International Conference on Computer and Applications,

pp. 1-5, 2017.

[16] X. Chen, L. Wu and M. Zhang, “An Improved Heuristic

Optimization Technique Algorithm for Task Scheduling in

Fog Computing”, Proceedings of International Conference

on Control and Automation, pp. 1584-1589, 2018.

[17] S. Li, H. Wang and Y. Zhang, “A Novel Heuristic

Optimization Technique Approach for Task Scheduling in

Cloud Computing”, Proceedings of International

Conference on Cloud Computing and Intelligence Systems,

pp.437-441, 2017.

[18] M. Shu, L. Wang and X. Chen, “A Heuristic Optimization

Technique Algorithm for Task Scheduling in Cloud

Computing”, Proceedings of International Conference on

Smart Internet of Things, pp. 58-62, 2018.

[19] G. Garg and S.K. Garg, “Efficient Task Scheduling using

Heuristic Optimization Technique in Cloud Computing”,

Proceedings of International Conference on Computational

Intelligence and Computing Research, pp. 1-5, 2019.

[20] J. Singh and V. Chauhan, “Enhanced Heuristic Optimization

Technique Algorithm for Task Scheduling in Cloud

Computing”, Proceedings of International Conference on

Electrical Electronics and Computer Engineering, pp. 1-6,

2020.

[21] M.B. Al-Kassab, H. Moharram and A. Fathy, “Enhanced

Ant-Colony-Optimization Algorithm for Task Scheduling in

Cloud Computing”, Proceedings of International

Conference on Computer Engineering, pp. 19-24, 2017.

[22] K. Gupta and M. Singh, “Hybrid Ant-Colony-Optimization

for Task Scheduling in Cloud Computing”, Proceedings of

International Conference on Trends in Electronics and

Informatics”, pp. 416-420, 2018.

[23] S. Bansal and A. Chhabra, “Multi-Objective Ant-Colony-

Optimization Algorithm for Task Scheduling in Cloud

Computing”, Proceedings of International Conference on

Computing Communication and Security, pp. 1-6, 2019.

[24] P.S. Rathore, S.K. Singh and D.P. Vidyarthi, “A New Ant-

Colony-Optimization Algorithm for Task Scheduling in

Cloud Computing”, Proceedings of International

Conference on Communication Systems, Networks and

Digital Signal Processing, pp. 1-5, 2020.

[25] S.R. Singh, S.K. Chaturvedi and K. Chandra, “Ant-Colony-

Optimization with Greedy Load Balancing for Task

Scheduling in Cloud Computing”, Proceedings of

International Conference on Electronics, Information and

Communication, pp. 1-4, 2021.

[26] K.R. Al-Salihi and F.A. Hadi, “An Improved Ant-Colony-

Optimization Algorithm for Task Scheduling in Fog

Computing”, Proceedings of International Multi-

Conference on Systems, Signals and Devices, pp. 656-660,

2018.

[27] Kumar and P. Rani, “Hybrid Ant-Colony-Optimization for

Task Scheduling in Fog Computing”, Proceedings of

International Conference on Cloud Computing and Big

Data Analysis, pp. 380-385, 2018.

[28] Y. Li, G. Zhu and J. Liu, “Task Scheduling Algorithm based

on Improved Ant-Colony-Optimization in Fog Computing”,

Proceedings of International Conference on Machinery

Materials and Information Technology Applications, pp. 1-

5, 2019.

[29] H. Zhang, X. Wang and J. Wang, “An Ant-Colony-

Optimization-based Task Scheduling Algorithm for Fog

Computing”, Proceedings of International Conference on

Cloud Computing and Big Data Analysis, pp.194-198, 2020.

P PRIYA PONNUSWAMY AND CP SHABARIRAM: SCHEDULING AND OPTIMIZATION OF RESOURCES IN EDGE COMPUTING USING RANDOM ALLOCATION AND MAX FIT

 ALLOCATION

3270

[30] Y. Luo and Q. Liu, “Ant-Colony-Optimization Algorithm

for Task Scheduling in Fog Computing Environment”,

Proceedings of International Conference on Cloud

Computing and Big Data Analytics, pp. 380-384, 2020.

[31] X. Li, Y. Zhao and Y. Guo, “Task Scheduling Optimization

based on Heuristic Algorithm in Fog Computing”,

Proceedings of International Conference on Advanced

Information Management, Communicates, Electronic and

Automation Control, pp. 1799-1803, 2018.

[32] H. Li, Q. Wang and H. Zhu, “Task Scheduling Optimization

in Fog Computing based on Improved Heuristic Algorithm”,

Proceedings of International Conference on Big Data and

Internet of Things, pp. 146-150, 2019.

[33] Y. Li, Y. Wu and Y. Qian, “An Efficient Task Scheduling

Algorithm for Fog Computing based on Ant-Colony-

Optimization”, Proceedings of International Conference on

Communication and Information Systems, pp. 1- 5, 2019.

[34] Z. Wang, Q. Zhang and Y. Chen, “A Task Scheduling

Algorithm for Fog Computing based on Improved Ant-

Colony-Optimization”, Proceedings of International

Conference on Wireless Communications and Signal

Processing, pp. 1-5, 2020.

[35] L. Zhang, J. Li and X. Xu, “Task Scheduling Algorithm

based on Improved Ant-Colony-Optimization in Fog

Computing”, Proceedings of International Conference on

Computing and Artificial Intelligence, pp. 1-5, 2021.

[36] S. Sahu, S. Dehuri and R. Mall, “A Novel Ant-Colony-

Optimization for Task Scheduling in Fog Computing

Environment”, Proceedings of International Conference on

Computing Methodologies and Communication, pp. 200-

204, 2018.

[37] Y. Wu, J. Chen and Y. Qian, “Task Scheduling Algorithm

based on Improved Ant-Colony-Optimization in Fog

Computing”, Proceedings of International Conference on

Computer and Communications, pp. 774-779, 2018.

[38] S. Yang, W. Tian and J. Li, “A Multi-Objective Ant-Colony-

Optimization Algorithm for Task Scheduling in Fog

Computing”, Proceedings of International Conference on

Systems and Informatics, pp. 1509-1514, 2019.

[39] L. Jiang, Q. Liu and Y. Luo, “Task Scheduling Algorithm

based on Ant-Colony-Optimization in Fog Computing

Environment”, Proceedings of International Conference on

Computer Science Communication and Information

Technology, pp. 201-205, 2020.

[40] H. Zhang, Z. Tang and L. Luo, “An Improved Ant-colony

Optimization Algorithm for Task Scheduling in Fog

Computing”, Proceedings of International Conference on

Computer Science and Information Technology, pp. 103-

108, 2021.

