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Abstract 

The cloud computing is the new technique used most today for 

computation and storage. Edge computing is also  a new computing 

domain that gives computation of tasks and storage of data nearer to 

the data sources. Various applications of edge computing are IOT, 

healthcare, retail, manufacturing etc. Virtualization technologies have 

enabled cloud platforms to provide various services such as virtual 

machines to the users. Task scheduling is the major issues faced in both 

cloud and edge domains. Since the usage of machines is high, it is 

difficult to assign tasks manually. So, an efficient and optimized 

algorithm is required in the cloud as well as the edge environment. 

Here, a task scheduling is implemented based on Heuristic 

Optimization Technique to examine the performance measures using 

cloudsim. Task scheduling and optimization techniques dynamically 

allocate resources in the cloud environment.  Similarly, in edge 

computing, scheduling the task is performed with different optimization 

techniques such as random fit, and max fit algorithms. These task 

scheduling methods are allocated to the VM based on the resources that 

are available at the VM. These algorithms are implemented, and it 

increased the VM utilization by 4.82%. The processing time taken is 

reduced by 2.67% and the percentage of failed tasks is reduced by 

3.68%. The experiment result shows the importance of the scheduling 

in the cloud and edge environment, in terms of processing time, failed 

task and increase in VM utilization in edge devices. 
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1. INTRODUCTION 

Cloud computing and edge computing are categories of 

parallel and distributed systems which have interconnected 

computers. Cloud and edge platforms give consumers to access 

the virtual machines. Due to the more usage in cloud technologies, 

it is very challenging to assign jobs manually, and to compute 

resources in cloud and edge. As a result, an effective task 

scheduling algorithm is needed. An effective dynamic task 

scheduling algorithm in the cloud is Heuristic Optimization 

Technique(HOT), which is appropriate due to its adaptability. 

This algorithm shows how natural ant colonies interact with one 

another and search for food by leaving pheromones along travel 

paths. Certain modifications in the Heuristic Optimization are 

done to improve the probability of assigning tasks in the virtual 

machines. In cloudsim, there is no limitation for the number of 

tasks to be assigned, which ultimately takes more time. In edge 

cloudsim, a CPU utilization model is implemented where the 

number of tasks that run parallel in the virtual machine is limited. 

Task scheduling in edge computing refers to the allocation 

procedure of computational resources and scheduling tasks 

efficiently across edge devices to optimize performance. It 

involves determining which tasks should be executed on which 

edge devices based on factors such as device capabilities, network 

conditions, and task deadlines. Here to optimize scheduling tasks 

in edge computing, random allocation and max fit algorithms are 

being used. 

The use of dynamic scheduling techniques in cloud and edge 

devices, scheduling the tasks that are inbound to the virtual 

machines. The VM’s are allocated based on the optimization 

method and calculate the probability of the best suitable virtual 

machines. The probability for assigning the cloudlet to the virtual 

machine is found to find the best optimal solution. The existing 

algorithm changes with the requirements of the cloud 

environment but the impact of load balancing and task hierarchy 

needs to be considered in the future work. The tasks in the edge 

devices will be assigned to the nearest nodes for the computation 

using the optimization algorithm. 

In order to improve efficiency and performance, optimization 

strategies that dynamically alter with respect to the changes in the 

scheduling environment are required to allocate the enormous 

number of tasks in an efficient and optimized way. The Heuristic 

Optimization Technique uses the foraging behavior of the ants to 

optimize the tasks. The optimization algorithm uses the 

probability calculation method to give the optimal result in order 

to assign a specific VM to a task. The optimization follows 

dynamic scheduling. As the computation in cloud gets difficult 

when there are few resources and huge number of tasks, the edge 

environment can be considered as a better way to assign the tasks 

to the optimal centers. 

 

Fig.1. Cloud Task Scheduling Scenario 

The Fig.1 explains the task scheduling scenario in the cloud, 

with number of host machine present in the data center. Here the 

specified optimization algorithm can be used in order to allocate 

the tasks to the appropriate edge devices. Fig.2 describes the edge 

task scheduling scenario where the tasks are given to the data 

center brokers. The given tasks are then assigned to edge nodes 

using the scheduling methods. For optimization in cloud 

environments, a Heuristic Optimization Technique algorithm is 

implemented. 

1.1 OBJECTIVE 

The goal of the work is to implement the scheduling and 

optimization algorithms in cloud and edge environments.  
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• Implementation of Probability based HOT in the cloud 

Systems 

• The performance of the Heuristic Optimization Technique 

are analyzed with number of devices, number of VM’s  and 

average processing time 

• Leveraging edge computing to schedule the resources to 

nearer edge devices using Random allocation, Min fit, 

Successor fit and Max fit. 

• Assessing and analyzing the performance of recent 

development in task scheduling algorithm in the edge 

environment particularly concentrating on failed task, task 

load, resource utilization of VMs and processing time. 

 

Fig.2. Edge Task Scheduling Scenario 

For better scheduling in edge environments Ant-Colony-

Optimization, Random allocation scheduling algorithm and Max 

fit scheduling algorithm are used in the edge environment. The 

scheduling of tasks is done using the optimization algorithm and 

performance analysis is measured for the same. The tasks are 

assigned in the edge environment based on the optimization 

algorithm and reduce the process time in the edge systems. 

1.2 CONTRIBUTION 

• Implementation of Probability based HOT in the cloud 

environment- Modified Heuristic Optimization Technique 

(HOT) is implemented in cloud environment. The algorithm 

follows the principle how natural ant colonies interact with 

one another and search for food by leaving pheromones 

along their travel pattern. Like pheromones in real life, here 

probability is calculated for assigning virtual machine to a 

cloudlet. The global best probability is stored in place of a 

pheromone value and the tasks are given to the best suitable 

VM. 

• To analyze the performance of the Heuristic Optimization 

Technique, different parameters such as number of VM 

utilized in the cloud devices, number of tasks in the 

cloudlets, Processing time, scheduling time and number of 

cloudlets are considered. The size of the virtual ant colony 

is controlled by several parameters, one of which is the 

number of ants. Performance of the algorithm can be 

enhanced by boosting the ant population, but computational 

overhead rises as well. 

• Implement the Random allocation and Max fit algorithm in 

edge environment - Performance of edge computing 

systems, which involve distributing computational tasks 

across a network of edge devices, is greatly improved by 

scheduling methods. 

• The effectiveness of the scheduling techniques in the edge 

devices are analyzed based on number of failed tasks, the 

availability of devices, task load, and resource utilization in 

random allocation and max fit algorithms.  

2. LITERATURE REVIEW 

Gupta et al. [1] have proposed a Scheduling based on Cloud 

using HOT and Load Balancing. The proposed approach aims to 

balance the load that is spread among the virtual machines. The 

paper highlights the challenges faced for load balancing in cloud 

computing and offers a comparative evaluation of various load 

balancing algorithms. The outcomes indicate that the HOT-based 

approach performs far better than other algorithms with respect to 

task completion time and resource utilization. Thus, the paper 

presents load balancing about cloud computing that could 

improve the overall performance of project scheduling in cloud 

environments.  Shi and Shiet [2] have proposed that multi-

objective optimization is used for multi-node scheduling in the 

edge devices. The nodes are dynamic in higher orders and the 

resources are not balanced in edge computing. Because of this 

factor, when a task is scheduled, the resources availability needs 

to be calculated. The impact time with respect to completion, load 

balancing on task scheduling is considered while developing this 

optimization technique. Two different scenarios are considered 

where the edge node shows sensitivity towards real time 

performance and expects to reduce the overhead. The multi 

objective optimization, makes sure that the tasks are scheduled in 

an evenly manner. Reddy et al. [3] have proposed a Scheduling in 

Cloud Environment. A local search based on the pheromone trail 

and heuristic data is then used to improve the first solution that 

the algorithm generated using a constructive heuristic. This paper 

assumes that the resources are equal and that the resources have 

no effect on how quickly tasks are performed. For some cloud 

computing environments, this may not be a valid assumption. Sun 

et al. [4] Based on the concept of load balancing, a scheduling 

strategy is proposed. Business wait queue model and server 

resource scheduling model are used. The scheduling of tasks is 

done based on the standard deviation. Standard deviation of the 

tasks to be computed is used for grouping up the tasks and to 

determine the proportion of services. A secondary allocation 

ideology is used where a heavy load task is assigned to a light load 

resource for the scheduling to take place efficiently. The 

algorithm has achieved the effect of decreasing the load balance 

in the server and improving the resource optimization rate. 

Parvesh Humane et al. [5] proposed the practical method for the 

simulation of cloud systems via CloudSim simulator. The paper 

provides a summary of the CloudSim simulator's key features, 

including its capacity to simulate all components used in cloud. 

The paper presents a case study where they use CloudSim to 

simulate a cloud-based e-commerce application. The performance 

of the application is analyzed under different scenarios, such as 

varying workload, resource allocation, and scheduling policies. 

The experimental results show how effective CloudSim is for 

modeling and assessing cloud systems. The paper also depicts 

some restrictions and difficulties associated with using CloudSim, 

such as the need for accurate modeling of the underlying hardware 

and software elements and the difficulty of accurately capturing 

the dynamic nature of cloud environments.  Zhang et al. [6] 

proposed the paper about energy efficiency aspects of resource 
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allocation in edge computing. The techniques such as dynamic 

voltage scaling, sleep mode operation, and workload 

consolidation to minimize energy consumption. The paper 

reviews various resource allocation algorithms, including 

dynamic programming, game theory, and machine learning 

approaches. It investigates the trade-offs between latency, energy 

consumption, and resource utilization in resource allocation 

decisions. It presents energy-aware resource allocation algorithms 

and optimization frameworks that consider both performance and 

energy efficiency objectives, contributing to sustainable and 

environmentally friendly mobile edge computing deployments. 

Razaque et al. [7] proposed an algorithm in consideration with the 

availability of the network bandwidth in addition to the resources 

needed, execution time and cost, CPU memory, etc. This paper 

discussed the algorithm used for the divisible task scheduling 

model in order to maintain the accuracy in assigning the tasks to 

every virtual machine. Lakra et al. [8] proposed a multi objective 

algorithm in the cloud environment. The paper is based on the 

QoS parameters where the tasks and VMs were assigned based on 

the same. The algorithm demonstrates that the suggested method 

performs FCFS and priority scheduling techniques. This paper 

also proposes a method to improve this algorithm by taking in 

consideration some other QoS parameters. Medhat A. Tawfeek et 

al. [9] presented a system based on Ant-Colony-Optimisation for 

the cloud environment. This paper explains the need for change 

in adaptation of planning approach to the environment's shifting 

needs. The algorithm has achieved the effect of decreasing the 

load balance in the server and improving the resource 

optimization rate. In the future, the impact of task hierarchy and 

load balancing will be viewed as an improvisation. Hu et al. [10] 

The proposed methodology enhances the conventional HOT 

algorithm by considering the dynamic characteristics of cloud 

computing. The algorithm is founded on the notion that 

parameters can self-adjust to the dynamic changes in the cloud 

environment. By cutting down on communication costs and time 

delays between nodes, the proposed methodology improves work 

scheduling. Hence enhancing the overall efficacy of job 

scheduling in cloud computing. Satyanarayanan et al. [11] 

proposed the paper and gives in- depth overview of mobile edge 

computing architectures and computation offloading techniques. 

The paper discusses the benefits, challenges, and practical 

implications of offloading work from mobile devices to edge 

servers. It covers various architectural models, including hybrid, 

cloudlet-based, and fog-based architectures, and evaluates their 

benefits and drawbacks. It examines several Task divisions, 

workload prediction, and decision-making algorithms. The survey 

also examines the impact of network latency, bandwidth, and 

mobility on computation offloading decisions. The paper provides 

case studies and actual mobile edge computing applications, 

illustrating the potential for enhanced performance and decreased 

energy use. Optimisation is suggested to address the DWRR 

algorithm's latency issue with task execution. With regard to both 

these algorithms a fuzzy logic was developed in the cloud 

environment. It further aims at optimizing the make span and the 

time taken to schedule the task. Gao et al. [13] Cloud computing 

makes use of a dynamic work Ant-Colony-Optimisation-based 

scheduling method. The suggested method aims to improve 

system throughput while reducing response time and energy 

usage. The proposed methodology makes use of a dynamic 

pheromone update mechanism that takes into consideration how 

the cloud environment changes. Zheng Shi et al. [14] have 

suggested a technique for edge devices. The proposed 

methodology considers more objectives, like accuracy, latency 

etc. to determine the optimal configuration of an edge device. 

Experimental methods shows that the given methodology 

outperforms the baseline approach, particularly in terms of energy 

efficiency. The authors also analyze the sensitivity of the 

optimization results to different target weights and demonstrate 

the applicability of the approach to different device types and 

peak loads. Mao, Y., You, C al. [15] proposed the paper and 

examines the difficulties and advantages of implementing edge 

computing in mobile networks, including the reduction of latency, 

increased energy efficiency, and improved user experience. To 

provide secure and private edge computing operations, it 

thoroughly investigates data encryption, access control, and 

authentication methods. The paper provides insights into various 

edge architectures, cloudlet, and mobile edge computing. It also 

evaluates the strategies for managing resources like work 

dumping, assigning resources, and load distribution on network 

performance. The paper emphasizes numerous edge computing in 

mobile networks applications and use cases, such as real-time 

analytics, augmented reality, and Internet of Things (IoT) 

deployments. 

3. SYSTEM MODEL  

A sizable user base, a wide range of application task types, and 

a big scale of different resources are all features of the cloud 

computing and edge computing systems. It becomes difficult to 

manage these circumstances when there are many users and 

minimal resources. It can be difficult to schedule non-dynamic 

algorithms when there are lots of users and minimal resources 

available. In order to distribute the vast number of jobs in an 

effective and optimum manner, optimization algorithms that 

dynamically adapt with respect to changes in the scheduling 

environment are necessary. The Heuristic Optimization 

Technique optimizes task scheduling by mimicking the foraging 

behavior of ants. To provide the ideal solution in the optimization 

techniques, the probability of allocating task is important. 

Dynamic scheduling is followed by optimization. The edge 

environment can be taken into consideration as a better method 

for resource allocation or task scheduling because cloud 

computation becomes challenging when there are few resources 

and many jobs.  

3.1 SYSTEM BLOCK DIAGRAM 

The system flow comprises two blocks namely the 

optimization algorithm used in the cloud scenario and the 

scheduling methods in the edge environment. The user submits 

the tasks where the different scheduling methods such as Random 

allocation, Min fit, Successor fit and Max fit are present.  

The Fig.3 explains the flow where a task assigned by the user 

goes to the host via a datacenter broker. In the cloud environment, 

the tasks are optimized by the optimization algorithm. The best 

optimal VM is chosen for the cloudlet assignment based on the 

global updated probability.  Five different scheduling methods are 

used in the edge to allocate the task to the edge devices. The task 

is then processed based by the scheduling algorithm according to 

the type. 
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                  Fig 3 System Block Diagram 

The HOT is the use of positive feedback mechanisms, 

represented by pheromone trails, to guide the search process. Ants 

probabilistically select edges to traverse based on the combination 

of pheromone levels and heuristic information, which encodes 

problem-specific knowledge. The pheromone trails left by ants on 

the edges serve as a form of indirect communication, allowing 

them to exploit the experience of previous ants and bias their 

decisions. By iteratively constructing solutions and adjusting the 

pheromone levels based on the quality of solutions found, HOT 

converges toward better solutions over time. This exploration-

exploitation balance allows HOT to effectively navigate complex 

solution spaces and find near-optimal solutions for combinatorial 

optimization problems. Max fit can be defined as assigning the 

largest available resource to perform a simple task. This way, the 

task can be processed within minimum time. The time taken to 

schedule the smallest task in the maximum resource is less 

compared to other algorithms. In Random allocation algorithm, 

an edge device is selected at random, and it is checked based on 

the resources it contains. If the device can process the incoming 

task, the task is allocated to the VM to perform. 

4. IMPLEMENTATION 

4.1 OPTIMIZATION USING TASK PROBABILITY 

All data Centers available in the cloud need to register 

themselves with the cloud registry. The cloud datacenters are 

created whenever the VM’s are required. Cloudlets have 

computational capabilities, including CPUs (Central Processing 

Units), memory, storage, and networking infrastructure. These 

resources allow the cloudlet to process and execute applications 

or services. In the proposed system, the mapping of VM’s to the 

cloudlet is done by the probability calculation. An array called 

“task probability “is initialized to hold the probability of each 

cloudlet being assigned to a VM, and an array task to hold the VM 

index that each cloudlet is assigned to. Then a boolean array is 

initialized to track which VMs have already been considered for 

each cloudlet assignment. The best optimal VM is chosen for the 

cloudlet assignment based on the global updated probability. 

4.2 HEURISTIC OPTIMIZATION TECHNIQUE 

In HOT, a set of virtual ants iteratively constructs solutions to 

the problem at hand. Each ant probabilistically selects the next 

component or state based on pheromone trails deposited on the 

edges of the problem graph. The amount of pheromone deposited 

is influenced by the quality of the solution found by each ant. Over 

time, the pheromone levels on the edges evolve through local 

pheromone updating and global pheromone evaporation. Local 

updating enhances the pheromone strength of the edges used in 

constructing a solution, while evaporation reduces pheromone 

levels on all edges. This process allows the algorithm to converge 

towards better solutions by exploiting paths with higher 

pheromone levels. HOT can be used on the cloud system to 

overcome the issues of scheduling the user task. The objective is 

to allocate resources in a way that maximizes system performance 

while lowering costs and energy usage. In the Initialization phase, 

the cloud resources as a group of ants are dispersed at random. 

The ant movement is done when each ant travels from its present 

node to a neighboring node in accordance with a probability 

function dependent on the node's desirability and pheromone 

level. In the Resource distribution phase, when an ant arrives at a 

node, it distributes to its application with the resource connected 

to that node. In the Pheromone update phase, depending on how 

well the ant finds a decent allocation and the pheromone level of 

each edge is updated. The final phase is termination, the algorithm 

ends when a predetermined condition is satisfied, such as when 

the allotted number is touched, or a workable solution is 

discovered the resource allocation to the edge is terminated. Here 

the probability of allocating resources in Heuristic Optimization 

Techniques found by  

 tempProb= T[vm][task][t]a  (1) 

It then calculates the value of ‘dij’ as               

dij= (Size of cloudlet) / (Processing capacity) (Cloudlet* VM) (2) 

Then the tempProb is calculated because of raising the value 

of a specific element T matrix which is the pheromone matrix to 

the power of a constant a which is the level at which the 

pheromones have an effect on the probability value. It then 

divides the result by dij and stores the result in ‘tempProb’ In order 

to enhance the probability calculation, the following changes have 

to be made. 

 x = x+ T[vm][task][t]a (3) 

 x= x+ Math.exp(a * T[vm][task][t]) (4) 

  x= x+ log (1 + a * T[vm][task][t]) (5) 

  x= x+ (a * T[vm][task][t]+1) (6) 

 tempProb= x/ (4*dij) (7) 

The probability to find the nearest VM is enhanced using the 

modification. By raising the probability, ants are more likely to 

choose less frequently visited or less favorable edges during 

solution construction. This enables further exploration, leading to 

the discovery of new paths and potential improvements. The 

increased probability promotes the diversification of ant behavior, 

ensuring that different paths and solutions are explored. This 

diversification helps prevent getting stuck in the local optima 

infinitely or choosing an optimal solution before even exploring 

other paths. By allowing for increased exploration and 

diversification, higher probability values in HOT contribute to a 

more thorough search process, potentially leading to the discovery 

of better and more optimal solutions. 

4.3 MAX FIT AND RANDOM ALLOCATION IN 

EDGE DEVICES 

Edge computing provides a greater number of data request or 

application request from different devices need to be scheduled 

appropriately to the edge devices. Three scenarios ae used in the 

edge computing which are 1-tier, 2-tier and 2-tier with Edge 

Orchestrator. In a 1-tier edge computing model, the edge devices 

Scheduling 

Algorithm 
Processed Task 



ISSN: 2229-6948(ONLINE)                                                                                     ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2024, VOLUME: 15, ISSUE: 03 

3265 

themselves perform both data processing and application 

execution. This means that the edge devices directly handle the 

computation tasks without offloading them to separate edge 

servers or cloud resources. The devices act as units that process, 

store, and respond to data locally. The 2-tier edge computing 

model introduces a separation of responsibilities between edge 

devices and edge servers. In this model, the edge devices at the 

network edge capture and processes the data locally. Allocation 

of task to a edge device is EDi, Workload of edge devices is WDi 

,Storage capacity  of edge devices is SCEDi, Computational 

capacity of edge devices is CDEDi. 

Allocation of task based on the availability is considered as 

 XEDi = WDi ∈(SCEDi+CDEDi)) (8) 

Task is allocated based on priority to the edge device is  

       PEDi = WDi ∈  (SCEDi + CDEDi) & XEDi) (9) 

The number of task received for a particular edge device at a 

particular time is mentioned as 

 δT = n(EDi) (10) 

The task waiting to schedule in the queue in cloud and is given                                                

wait  

 (EDi) = XEDi>0 then WDi ∈ (SCEDi+CDEDi)→EDi (11) 

 XEDi>0 then WDi ∈(SCEDi+CDEDi)→EDi = δT-1 (12) 

The edge servers, which are typically more powerful than the 

edge devices, handle the heavy computation and can also provide 

additional services, such as caching, storage, and analytics. The 

2-tier edge computing model can be enhanced by incorporating 

an Edge Orchestrator (EO). The Edge Orchestrator is responsible 

for managing and orchestrating the distribution of workloads 

between the edge devices and the edge servers. It acts as an 

intelligent intermediary that determines where each task or 

workload should be executed based on factors such as device 

capabilities, network conditions, application requirements, and 

resource availability. The application performance and allocation 

of task in Edge Orchestrator is better and it achieves the efficient 

resource utilization and application performance. It also provides 

on demand workload migration and balancing the work load 

across all the edge devices and edge servers. The inclusion of an 

EO adds an additional layer of intelligence and coordination to the 

2-tier edge computing architecture. The Max fit algorithm plays a 

vital role in allocating tasks to edge devices based on the 

maximum available resources in the cloud system. The max fit 

algorithm calculated the resource need of the submitted tasks. The 

algorithm then checks the resources availability on the edge 

devices and cloud devices.  The Random allocation algorithm are 

used to allocate tasks randomly to edge devices based on a random 

selection process. The edge device is selected randomly from the 

pool of available edge devices by the random allocation 

algorithm. This approach guarantees an equal and impartial 

distribution of tasks among the edge devices. 

4.4 RANDOM ALLOCATION ALGORITHM IN 

EDGE ENVIRONMENT  

A heuristic approach in allocating resources to edge devices is 

done with random allocation technique. It operates by choosing a 

resource at random from the pool of resources available and 

assigning it to a job that needs the resource. Until all jobs have 

been assigned to resources, this process is repeated. The Random 

Fit algorithm begins by collecting information about available 

edge devices and their capacities. It considers factors such as CPU 

capacity, memory, and other relevant resources.  

• Task Arrival: When a cloudlet arrives in the system, the 

scheduler needs to find a suitable edge device for its 

execution. The random Fit algorithm selects an edge device 

randomly based on the steps 

Algorithm for Random Fit 

Input: Capacity of Task 

Output: Time taken for a task to run on a VM 

If Random Fit then  

    Int randIndex=simUtils.getRandomNumber(0,vmArray.size()-1) 

Doublerequiredcapacity=((CpuUtilizationModecustom)task.ge

tUtilization                   

ModelCpu().predictUtilization(vmArray.get(randomIndex).get

VMType()); 

                doubletargetVMCapacity=(double)100- 

                vmArray.get(randomIndex). 

getCloudetScheduler(). 

getTotalUtlizationofCPU(CloudSim.clock()); 

if requiredCapacity<=targetVMCapacity then 

 electVM=vmArray.get(randomIndex); 

end if 

end if 

• Step 1: Resource Comparison: The algorithm compares the 

capacity requirements of the cloudlet with the available 

capacity of the selected edge device. It checks whether the 

edge device has sufficient resources to accommodate the 

cloudlet. 

• Step 2: Allocation Decision: If the selected edge device has 

enough capacity to handle the cloudlet, the scheduler assigns 

the task to that edge device for execution. Otherwise, it 

repeats the random selection process until a suitable edge 

device is found. Task 

• Step 3: Execution: Once the task is allocated to an edge 

device, it starts executing on that device using the available 

resources. It aims to distribute tasks randomly across 

available resources without following a specific 

optimization criterion. 

4.5 MAX FIT ALGORITHM IN EDGE 

ENVIRONMENT 

The Max fit algorithm seeks to reduce resource fragmentation 

in an edge computing environment. It operates by choosing the 

resource with the biggest capacity that is available and assigning 

the task to that resource.  

Algorithm for Max Fit 

Input: Capacity  of a Task 

Output : Time taken for a task to run a VM 

doubleselectedVMCapacity=0; 

for VM index=0 to vmArray.size() do 

 doublerequiredCapacity=(CpuUtilizationModelCustom) 

 task.getUtilizationModeCpu().PredictUtilization 

 (vmArray.get(vmIndex).getVmType()); 
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 doubletargetVMcapacity=(double)100-vmArray. 

 get(vmIndex).getCloudletScheduler().getTotalUtlizationof

 CPU(CloudSim.Clock()); 

if required Capacity <=target VMCapacity  

                                                > slelectedVMCapacity then 

 selectedVM=vmArray.get(vmIndex); 

 selectedVMCapacity=targetVMCapapcity; 

end if 

end for 

Task arrival in max fir algorithm happens like Task Arrival: 

When a cloudlet arrives in the system, the scheduler needs to find 

a suitable edge device for its execution. The Max Fit algorithm 

aims to utilize the edge devices with the highest available capacity 

for task allocation. By doing so, it helps to balance the workload 

distribution and leaves smaller available capacities on edge 

devices for future tasks. The Max fit method has the advantage of 

reducing resource fragmentation, which can increase resource 

utilization and lower resource management costs. However, it 

might not always lead to the best resource distribution, 

particularly when resources have a wide range in size or when 

various jobs have varying resource needs. 

4.6 LINEAR FIT, AND  MIN FIT ALGORITHM IN 

EDGE ENVIRONMENT  

Task scheduling in edge computing is about assigning 

different tasks or jobs to the right computers at the edge in an 

efficient way. When there are multiple devices and servers at the 

edge, the scheduler decides which tasks should be done by which 

devices. It considers things like how complex the task is, how 

much computing power each device has, how good the network 

connection is, and how quickly the task needs to be done. The 

scheduler tries to use the available resources wisely, make sure 

tasks are done quickly, and balance the workload across the edge 

devices. It uses smart algorithms and techniques to make the best 

decisions on where to send tasks so that the edge computing 

system works well, and applications perform smoothly. These 

algorithms are used to schedule the tasks to the resources 

accordingly. The Linear fit algorithm schedules the first highest 

resource to the incoming task, where there are chances for the 

other tasks to be resource deficit. The Min fit algorithm finds the 

optimal resource to be allocated to the task whereas the Max fit 

allocates the highest units of resource to the lowest needed task. 

The above-mentioned algorithms were already present in the edge 

simulator for assigning the tasks. 

5. RESULTS AND ANALYSIS 

The parameters used for analyzing the results are the number 

of devices, the number of cloud tasks, the processing time 

required in order for those devices to complete the task. The 

number of processors also have an effect in decreasing the 

processing time. The average processing time and average VM 

utilization are used in the edge environment to calculate the 

resource utilization with respect to the number of tasks. 

Percentage of failed tasks give us the number of tasks that cannot 

be successfully allocated to the resources.  

The Table.1 shows the how the number of processors in a 

cloudlet interacts with the cloud devices and the time taken for 

scheduling tasks in a cloud environment. In a cloud computing 

context, this graph shows the time needed to complete a task in a 

virtual machine (VM) as a function of the task's processing 

requirements. Processing times grow when more processors are 

needed to complete a task because as the required number of 

processes increases for a task to run on a VM, then it means that 

it sometimes must wait for other tasks to free up the processors 

that other tasks have been using to run on a VM when required 

number of processes is not available. Thus more the number of 

processors required by a task, the time taken is directly 

proportional. This behavior is predictable given that the work 

calls for more processors, which in turn calls for more computing 

resources and longer processing times. 

Table.1. Number of tasks(cloudlet) vs the time taken to schedule   

these tasks in HOT algorithm 

Time Taken by VMs to Run a Task 

Number of 

Task/ 

Time Taken 

Time 

taken  

for 20 vm 

Time 

taken  

for 30 vm 

Time 

taken  

for 40 vm 

Time 

taken  

for 50 vm 

10 270 180 177 173 

15 390 200 185 178 

20 460 205 185 178 

25  - 220 190 180 

Table.2. Number of devices vs Percentage of failed task in Max 

fit Algorithm 

Percentage of Failed task in Max Fit 

 Number of Devices/ 

Percentage of  

Failed Task (%) 

1-Tier 2-Tier 2-Tier with EO 

50 0 0 0 

75 0.5 0.3 0 

100 1 0.5 0.1 

125 3.8 2.2 0.3 

150 7.5 4.5 0.3 

175 10.2 7.2 0.3 

200 13 9.5 0.5 

The Table.2 shows the relationship between number of 

devices and percentage of failed tasks in Max fit Algorithm. 1-

tier, 2-tier, and 2-tier with EO entities are depicted in the table. 

The percentage of unsuccessful tasks rises for all three units as the 

number of units rises. The resources required by the tasks to run 

are tracked using “required capacity” and “target capacity” 

mentions the amount of resources that the VM contains. The Max 

fit algorithm is nothing but allocating the largest resource to the 

smallest task, which means that the required capacity must be less 

than target capacity and the largest resources should be chosen 

and that is tracked using “selectedVmCapacity”. It is important to 

remember that, while the 1-tier architecture has the highest task 

error percentage, the 2-tier architecture with EO has the lowest 

task error percent. The consequences of these findings for edge 
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computing include the possibility that a 2-tier architecture 

combined with EO may be more efficient in lowering the 

percentage of failed tasks. This may be since edge orchestration 

can aid in a better distribution of responsibilities among units, 

lowering the likelihood of error. On the other hand, a 1-tier 

architecture may result in more task failures, suggesting that a 

more distributed architecture may be more efficient in edge 

computing scenarios. Thus, the table highlights the importance of 

considering architecture and orchestration when designing an 

edge computing system to reduce the percentage of failed tasks 

and optimize performance. 

The Table.3 shows the how the number of devices allocated to 

the edge devices and their processing time. Processing time is one 

of the major parameters that is used for checking the efficiency of 

a system or an architecture. The scenario here is that tasks are 

assigned as per the Max fit algorithm which means that the 

smallest task gets the largest available resource and then the 

processing time are monitored. 

Table.3. Number of devices vs Average processing time taken in 

Max fit algorithm. 

Average Processing Time in Max Fit 

  Average Processing Time (s)/ 

Number of Devices 
1-Tier 2-Tier 2-Tier with EO 

50 0.3 0.2 0.1 

75 0.5 0.3 0.1 

100 1 0.5 0.1 

125 1.7 1.2 0.1 

150 2.1 1.6 0.1 

175 2.5 2 0.1 

200 2.8 2.3 0.1 

The three entities plotted on the graph are 1-tier, 2-tier, and 2-

tier with EO. As the number of edge devices increases, the 

average processing time of the tasks increases for all three entities 

because more tasks are required to be processed so the average 

time taken increases. The graph shows that using a 2-tier 

architecture with EO can help reduce the average processing time 

even when using a larger number of devices. This may be because 

edge orchestration can help better distribute tasks across devices, 

reducing processing time by balancing workloads. On the other 

hand, using a 1-tier architecture can increase processing time, 

suggesting that a more distributed architecture may be more 

efficient in edge computing scenarios.  

The Table.4 plots the average virtual machine (VM) 

utilization percentage as a function of the number of devices used 

in an edge computing scenario. Average VM utilization is used 

here for the graph because it depicts how efficiently the resources 

are being used. This gives an insight on how to optimize the usage 

of the resources. The VM utilization rate must be improved in 

order to obtain an optimal utilization of the available resources. 

Here the resources required by the tasks to run are tracked using 

“required capacity” and “target capacity” mentions the amount of 

resources that the VM contains. 

The three entities plotted on the graph are 1-tier, 2-tier, and 2-

tier with EO. As the number of devices used increases, the average 

VM utilization percentage increases for all three entities. These 

results have important implications for the design of edge 

computing. The diagram shows that using a 2-tier architecture 

with EO can help reduce average VM utilization even when using 

a larger number of devices. This may be because edge 

orchestration can help better distribute VMs across devices, 

reducing VM usage by balancing workloads. On the other hand, 

using a 1-tier architecture can increase VM utilization, suggesting 

that a more distributed architecture can be more efficient in edge 

computing scenarios. 

Table.4. Number of devices vs Average VM utilization in Max 

fit algorithm 

Average VM Utilization in Max Fit 

  Average VM Utilization(%)/  

Number of Devices 
1-Tier 2-Tier 2-Tier with EO 

50 2.4 2.2 1.5 

75 2.8 2.1 1.6 

100 5.1 3.9 2.1 

125 10.5 8.4 2.9 

150 15.7 11.8 4.1 

175 19 15 5.5 

200 24.5 19 6.5 

Table.5. Number of devices vs Percentage of failed task in 

Random allocation Algorithm 

Percentage of Failed task in Random Allocation 

  Percentage of Failed Tasks/ 

Number of Devices 
1-Tier 2-Tier 

2-Tier  

with EO 

50 0.779065 0.763075 0.759986 

75 1.289363 0.899609 0.656743 

100 1.990336 1.717815 0.613497 

125 4.28616 1.559764 0.501609 

150 3.769856 1.210722 0.739169 

175 4.528569 1.872832 0.502963 

200 10.099068 4.986032 1.042699 

The graph plots the percentage of failed tasks as a function of 

the number of devices used in an edge computing scenario. The 

resources required by the tasks to run is tracked using “required 

capacity” and “target capacity” mentions the amount of resources 

that the VM contains. Random allocation algorithm is allocating 

resource random to a task, which means that the required capacity 

must be less than target capacity and the largest resources should 

be chosen and then resources are randomly allocated. As the 

number of devices used and the Percentage of failed tasks is 

directly proportional for all three entities. The Results of these 

findings for the field of edge computing include the possibility 

that a 2-tier architecture combined with EO may be more efficient 

in lowering the percentage of failed tasks. This may be since 

office orchestration can aid in a better distribution of 

responsibilities among units, lowering the likelihood of error. On 

the other hand, a 1-tier architecture may result in more task 

failures, suggesting that a more distributed architecture may be 

more efficient in edge computing scenarios. Thus, the table 

highlights the importance of considering architecture and 
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orchestration when designing an edge computing system to 

reduce the percentage of failed tasks and optimize performance. 

Fig.6. Number of devices vs Average Processing Time in 

Random allocation Algorithm 

Average VM Utilization in Random Allocation    

Average VM 

Utilization/ 

No. of Devices 

50 75 100 125 150 175 200 

1-Tier 3.99 6.99 6.90 11.21 11.58 14.69 18.71 

2- Tier 3.31 5.16 6.70 8.56 9.03 11.72 14.86 

2- Tier with EO 3.57 3.81 6.25 5.91 8.91 8.361 11.93 

The Table.6 plots the processing time as a function of the 

number of devices used in an edge computing scenario. The 

resources required by the tasks to run is tracked using “required 

capacity” and “target capacity” mentions the amount of resources 

that the VM contains. Random allocation algorithm is allocating 

resource random to a task, which means that the required capacity 

must be less than target capacity and the largest resources should 

be chosen and then resources are randomly allocated. The three 

entities plotted on the graph are 1-tier, 2-tier, and 2-tier with EO. 

When the number of devices  increases randomly, the average 

processing time increases gradually for all three entities. The 

graph shows that using 2-tier architecture with EO can help 

reduce the average processing time even when using a larger 

number of devices. This may be because edge orchestration can 

help better distribute tasks across devices, reducing processing 

time by balancing workloads. On the other hand, using a 1-tier 

architecture can increase processing time, suggesting that a more 

distributed architecture may be more efficient in edge computing 

scenarios. These highlights the importance of considering 

architecture and orchestration in edge computing projects to 

optimize performance and processing time. 

Table.7 Number of devices vs Average VM Utilization Time in 

Random allocation Algorithm. 

Average Processing Time in Random Allocation 

Average Processing Time/ 

No. of Devices 
50 75 100 125 150 175 200 

1-Tier 1.80 1.94 1.91 2.11 2.05 2.07 2.34 

2- Tier 1.53 1.70 1.61 1.61 1.53 1.64 1.76 

2- Tier with EO 1.51 1.38 1.48 1.37 1.47 1.39 1.49 

The Table.7 plots the average virtual machine (VM) 

utilization percentage as a function of the number of devices used 

in an edge computing scenario. Average VM utilization is used 

here for the graph because it depicts how efficiently the resources 

are being used. This gives an insight on how to optimize the usage 

of the resources. The VM utilization rate must be improved in 

order to obtain an optimal utilization of the available resources. 

As the number of devices used increases, the average VM 

utilization percentage increases for all three entities. 

These results have important implications for the design of 

edge computing. These results shows that 2-tier architecture 

combined with EO is more effective in lowering the average VM 

Utilization rate. This may be because branch orchestration can 

help better distribute VMs across devices, reducing VM usage by 

balancing workloads. On the other hand, using 1-tier architecture 

can increase VM utilization, suggesting that a more distributed 

architecture can be more efficient in edge computing scenarios. 

These findings highlight the importance of considering 

architecture and orchestration in edge computing projects to 

optimize resource utilization. 

6. CONCLUSION AND FUTURE 

ENHANCEMENT 

Scheduling is very important in optimizing utilization of 

resources in edge computing for efficient and effective use of 

resources. It determines the allocation of computational tasks 

among computing resources, which plays as factor in system 

performance and energy consumption. The quality of service, in 

edge devices can be employed by optimizing task allocation, 

reduce latency, and optimize system response time, therefore, 

optimizing task scheduling should be prioritized. 

Significant potential lies in optimizing task scheduling for 

edge computing in various applications, including healthcare, 

industrial automation, and autonomous vehicles. An example 

where task scheduling is significant in healthcare is real-time 

medical monitoring systems' data processing tasks. In 

autonomous vehicles, improving task scheduling can augment 

decision-making algorithms, which could yield improved vehicle 

safety. Also, optimizing task scheduling in industrial automation 

can enhance production process efficiency, resulting in increased 

productivity and lowered energy consumption. 

Thus, optimizing task scheduling in edge computing gives a 

beneficial approach for increasing the performance and efficiency 

of an edge computing system. Edge computing can obtain an 

increase in performance in a wide range of industries by 

continuously modifying and adapting task scheduling methods. 

6.1 FUTURE ENHANCEMENTS 

There is a huge potential for improving scheduling methods 

and optimization in edge devices in future. The integration of edge 

computing with 5G networks is one potential topic of future 

research since it might enable extremely low latency and high-

bandwidth connectivity and open up new applications that need 

real-time processing. The development of edge-native algorithms, 

specifically created for local processing, distributed computing, 

and to increase the usage of mobile devices. It could be another 

area of emphasis. Furthermore, there is a chance to research the 

application of blockchain technology for safe and open task 

scheduling in edge computing. Efficiency, dependability, and 

performance of edge computing systems might be significantly 

increased with continuous investment in task scheduling 

optimization, enabling new applications and unlocking new 

opportunities for both industries and clients. 

REFERENCES 

[1] Ashish Gupta and Ritu Garg, “Load Balancing based Task 

Scheduling with HOT in Cloud Computing”, Proceedings of 

International Conference on Computer and Application, pp. 

1-5, 2017. 



ISSN: 2229-6948(ONLINE)                                                                                     ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2024, VOLUME: 15, ISSUE: 03 

3269 

[2] Zheng Shi and Zhiguo Shi, “Multi-Node Task Scheduling 

Algorithm for Edge Computing based on Multi-Objective 

Optimization”, Proceedings of International Symposium on 

Electronic Information Technology and Communication 

Engineering, pp. 19-21, 2017. 

[3] G. Narendra Babu Reddy, “Modified Heuristic Optimization 

Algorithm for Task Scheduling in Cloud Computing 

Systems”, Proceedings of International Conference on 

Computer Communications, pp. 357-365, 2018. 

[4] Lintan Sun and Zigan Li, “Edge Computing Task 

Scheduling Strategy based on Load Balancing”, 

Proceedings of International Conference on Computer 

Science Communication and Network Security, pp. 309-316, 

2019. 

[5] Parvesh Humane, “Simulation of Cloud Infrastructure using 

CloudSim Simulator: A Practical Approach for 

Researchers”, Proceedings of International Conference on 

Information Technology and Mechatronics Engineering, pp. 

1615-1619, 2020. 

[6] M. Peng, Zhang and Jal, “The Resource Allocation for Edge 

Computing in Cellular Networks”, Proceedings of 

International Conference on Computer and Applications, 

pp. 29-41, 2019. 

[7] Abdul Razzaque, “Task Scheduling in Cloud Computing”, 

Proceedings of International Conference on Long Island 

Systems, Applications and Technology, pp. 1-7, 2016. 

[8] Atul Vikas Lakra, “Multi-Objective Tasks Scheduling 

Algorithm for Cloud Computing Throughput Optimization”, 

Proceedings of International Conference on Intelligent 

Computing, Communication and Convergence, pp. 1-6, 

2019. 

[9] Medhat A. Tawfeek, “Cloud Task Scheduling based on 

Heuristic Optimization”, Proceedings of International 

Conference on Computer Engineering Systems, pp. 1-5, 

2013. 

[10] Y. Hu, “An Efficient Improved Heuristic Optimization 

Algorithm for Dynamic Software Rejuvenation in Web 

Services”, Proceedings of International Conference on Fog 

Computing, pp. 1-6, 2021. 

[11] M. Satyanarayana and P. Bahl, “Mobile Edge Computing: A 

Survey on Architecture and Computation Offloading”, 

Proceedings of International Conference on Systems and 

Informatics, pp. 2431-2435, 2017. 

[12] K. Rajakumari, “Fuzzy based Heuristic Optimization 

Scheduling in Cloud Computing,” Proceedings of 

International Conference on Computer Systems Science and 

engineering, Vol. 40, No. 2, pp. 581-592, 2022.  

[13] X. Gao and J. Wu, “Dynamic Load Balancing Strategy for 

Cloud Computing with Heuristic Optimization”, Future 

Internet, Vol. 7, No. 4, pp. 465-483, 2015. 

[14] Y. Zheng Shi, M. Chen, Alam and J. Guo, “Multi-Task 

Scheduling based on Classification in Mobile Edge 

Computing”, Electronics, Vol. 8, No. 9, pp. 938-952, 2019. 

[15] Y. Mao, You and Cal, “The Integration of Edge Computing 

with Mobile Cellular Networks”, Proceedings of 

International Conference on Computer and Applications, 

pp. 1-5, 2017. 

[16] X. Chen, L. Wu and M. Zhang, “An Improved Heuristic 

Optimization Technique Algorithm for Task Scheduling in 

Fog Computing”, Proceedings of International Conference 

on Control and Automation, pp. 1584-1589, 2018. 

[17] S. Li, H. Wang and Y. Zhang, “A Novel Heuristic 

Optimization Technique Approach for Task Scheduling in 

Cloud Computing”, Proceedings of International 

Conference on Cloud Computing and Intelligence Systems, 

pp.437-441, 2017. 

[18] M. Shu, L. Wang and X. Chen, “A Heuristic Optimization 

Technique Algorithm for Task Scheduling in Cloud 

Computing”, Proceedings of International Conference on 

Smart Internet of Things, pp. 58-62, 2018. 

[19] G. Garg and S.K. Garg, “Efficient Task Scheduling using 

Heuristic Optimization Technique in Cloud Computing”, 

Proceedings of International Conference on Computational 

Intelligence and Computing Research, pp. 1-5, 2019. 

[20] J. Singh and V. Chauhan, “Enhanced Heuristic Optimization 

Technique Algorithm for Task Scheduling in Cloud 

Computing”, Proceedings of International Conference on 

Electrical Electronics and Computer Engineering, pp. 1-6, 

2020. 

[21] M.B. Al-Kassab, H. Moharram and A. Fathy, “Enhanced 

Ant-Colony-Optimization Algorithm for Task Scheduling in 

Cloud Computing”, Proceedings of International 

Conference on Computer Engineering, pp. 19-24, 2017. 

[22] K. Gupta and M. Singh, “Hybrid Ant-Colony-Optimization 

for Task Scheduling in Cloud Computing”, Proceedings of 

International Conference on Trends in Electronics and 

Informatics”, pp. 416-420, 2018. 

[23] S. Bansal and A. Chhabra, “Multi-Objective Ant-Colony-

Optimization Algorithm for Task Scheduling in Cloud 

Computing”, Proceedings of International Conference on 

Computing Communication and Security, pp. 1-6, 2019. 

[24] P.S. Rathore, S.K. Singh and D.P. Vidyarthi, “A New Ant-

Colony-Optimization Algorithm for Task Scheduling in 

Cloud Computing”, Proceedings of International 

Conference on Communication Systems, Networks and 

Digital Signal Processing, pp. 1-5, 2020. 

[25] S.R. Singh, S.K. Chaturvedi and K. Chandra, “Ant-Colony-

Optimization with Greedy Load Balancing for Task 

Scheduling in Cloud Computing”, Proceedings of 

International Conference on Electronics, Information and 

Communication, pp. 1-4, 2021. 

[26] K.R. Al-Salihi and F.A. Hadi, “An Improved Ant-Colony-

Optimization Algorithm for Task Scheduling in Fog 

Computing”, Proceedings of International Multi-

Conference on Systems, Signals and Devices, pp. 656-660, 

2018. 

[27] Kumar and P. Rani, “Hybrid Ant-Colony-Optimization for 

Task Scheduling in Fog Computing”, Proceedings of 

International Conference on Cloud Computing and Big 

Data Analysis, pp. 380-385, 2018. 

[28] Y. Li, G. Zhu and J. Liu, “Task Scheduling Algorithm based 

on Improved Ant-Colony-Optimization in Fog Computing”, 

Proceedings of International Conference on Machinery 

Materials and Information Technology Applications, pp. 1-

5, 2019. 

[29] H. Zhang, X. Wang and J. Wang, “An Ant-Colony-

Optimization-based Task Scheduling Algorithm for Fog 

Computing”, Proceedings of International Conference on 

Cloud Computing and Big Data Analysis, pp.194-198, 2020. 



P PRIYA PONNUSWAMY AND CP SHABARIRAM: SCHEDULING AND OPTIMIZATION OF RESOURCES IN EDGE COMPUTING USING RANDOM ALLOCATION AND MAX FIT  

 ALLOCATION 

3270 

[30] Y. Luo and Q. Liu, “Ant-Colony-Optimization Algorithm 

for Task Scheduling in Fog Computing Environment”, 

Proceedings of International Conference on Cloud 

Computing and Big Data Analytics, pp. 380-384, 2020. 

[31] X. Li, Y. Zhao and Y. Guo, “Task Scheduling Optimization 

based on Heuristic Algorithm in Fog Computing”, 

Proceedings of International Conference on Advanced 

Information Management, Communicates, Electronic and 

Automation Control, pp. 1799-1803, 2018. 

[32] H. Li, Q. Wang and H. Zhu, “Task Scheduling Optimization 

in Fog Computing based on Improved Heuristic Algorithm”, 

Proceedings of International Conference on Big Data and 

Internet of Things, pp. 146-150, 2019. 

[33] Y. Li, Y. Wu and Y. Qian, “An Efficient Task Scheduling 

Algorithm for Fog Computing based on Ant-Colony- 

Optimization”, Proceedings of International Conference on 

Communication and Information Systems, pp. 1- 5, 2019. 

[34] Z. Wang, Q. Zhang and Y. Chen, “A Task Scheduling 

Algorithm for Fog Computing based on Improved Ant-

Colony-Optimization”, Proceedings of International 

Conference on Wireless Communications and Signal 

Processing, pp. 1-5, 2020. 

[35] L. Zhang, J. Li and X. Xu, “Task Scheduling Algorithm 

based on Improved Ant-Colony-Optimization in Fog 

Computing”, Proceedings of International Conference on 

Computing and Artificial Intelligence, pp. 1-5, 2021. 

[36] S. Sahu, S. Dehuri and R. Mall, “A Novel Ant-Colony-

Optimization for Task Scheduling in Fog Computing 

Environment”, Proceedings of International Conference on 

Computing Methodologies and Communication, pp. 200-

204, 2018. 

[37] Y. Wu, J. Chen and Y. Qian, “Task Scheduling Algorithm 

based on Improved Ant-Colony-Optimization in Fog 

Computing”, Proceedings of International Conference on 

Computer and Communications, pp. 774-779, 2018. 

[38] S. Yang, W. Tian and J. Li, “A Multi-Objective Ant-Colony-

Optimization Algorithm for Task Scheduling in Fog 

Computing”, Proceedings of International Conference on 

Systems and Informatics, pp. 1509-1514, 2019. 

[39] L. Jiang, Q. Liu and Y. Luo, “Task Scheduling Algorithm 

based on Ant-Colony-Optimization in Fog Computing 

Environment”, Proceedings of International Conference on 

Computer Science Communication and Information 

Technology, pp. 201-205, 2020. 

[40] H. Zhang, Z. Tang and L. Luo, “An Improved Ant-colony 

Optimization Algorithm for Task Scheduling in Fog 

Computing”, Proceedings of International Conference on 

Computer Science and Information Technology, pp. 103-

108, 2021.

 


