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Abstract 

Cloud services are now seeing significant advancements and have 

witnessed a growing demand. Hence, implementing Load Balancing is 

necessary to enhance resource usage by effectively distributing 

workload among numerous Virtual Machines (VMs). The present 

research aims to address task scheduling challenges and achieve 

efficient load balancing for all VMs by implementing a novel non-

cooperative load balancing algorithm called Multi-agent Independent 

Deep Q Networks (MAIDQN-LB) in cloud computing heterogeneous 

networks. The list of tasks is passed to MAIDQN-LB, which will search 

for a list of VM to be allocated, maintaining the load of all VMs. This 

procedure facilitates the identification of optimized VMs, the allocation 

of workloads based on the optimal solution derived from the analysis 

and optimize the performance parameters. The performance analysis 

considers essential parameters, including makespan time, average 

turnaround time, average response time, degree of imbalance (DI), task 

rejection rate (TRR), and convergence loss. The findings indicate that 

MAIDQN-LB demonstrates superior performance compared to the 

current system, exhibiting enhancements of 1.82% and 0.05% 

regarding DI and TRR. 
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1. INTRODUCTION 

The use of the cloud for computing heterogeneous networks 

frequently and concurrently experiences a significant amount of 

requests from various geographical origins. Users have access to 

various computing services through cloud computing, which 

relies on virtual machines as its primary resource. Online access 

is provided for all these services, including data storage, program 

applications, computer servers, and network infrastructure [1]. 

Cloud resources consist of multiple elements, such as storage 

capacity, memory allocation, and network capabilities, which can 

be offered as a service to diverse consumers. The assignment of 

these requests to different cloud providers is done randomly, 

leading to an unequal distribution of workload among nodes, 

where specific nodes bear excessive load while others are 

underutilized [2]. This imbalance has detrimental implications for 

the system’s functioning, highlighting the necessity for 

implementing effective Load Balancing (LB) solutions in 

heterogeneous networks within the context of cloud environment. 

The principal aim of LB is to mitigate the risk of any component 

becoming excessively burdened, guaranteeing the optimal 

utilization of resources and the effective and dependable 

operation of the system [3]. 

LB is of two types, static and dynamic. Dynamic is further 

classified into cooperative and non-cooperative LB [4]. 

Cooperative LB involves the joint decision-making of 

participating entities, such as servers, nodes, or resources, to 

achieve LB. Individuals exchange data regarding their present 

condition, encompassing their ongoing tasks, computational 

capabilities, and accessibility. However, the necessity of 

information sharing, and collaboration might lead to increased 

communication overhead among the institutions involved. 

Utilizing a central load balancer introduces a potential 

vulnerability as it becomes a singular point of failure, posing a 

risk of disrupting the LB mechanism [5]. On the other side, non-

cooperative refers to a scenario where individual entities, such as 

servers, nodes, or resources, make autonomous LB decisions 

without engaging in information sharing. Each individual entity 

makes decisions on the management of its incoming workload 

exclusively based on its local information, which includes factors 

such as its present utilization level and the resources currently 

accessible to it [6]. Non-cooperative LB removes the drawback of 

cooperative sharing by making its own decisions. LB mainly aims 

to optimize the performance parameters by minimizing the 

makespan and response time according to different users’ needs 

[7]. To improve the performance of LB, several non-cooperative 

artificial intelligence techniques [8] are there. One of the 

techniques is independent reinforcement learning (IRL) [9]. IRL 

is a non-cooperative LB technique that focuses on decentralized 

or distributed learning systems in which several agents or learners 

operate in the same environment simultaneously, and each agent 

learns its own policy autonomously by interacting with the 

environment.  

To improve the processing speed of tasks and minimize the 

response time, a non-cooperative multi-agent independent deep Q 

network for LB (MAIDQN-LB) in cloud heterogeneous networks 

is proposed. Initially, a buffer of tasks has been passed to 

MAIDQN to determine the most appropriate VM for the given 

work. The MAIDQN model effectively chooses VM actions by 

considering the present LB state of all the VMs. By doing so, the 

appropriate VM is selected for allocation. The performance of the 

proposed MAIDQN-LB is computed using six parameters 

comprising makespan time, average turnaround time, average 

response time, loss, degree of imbalance (DI), and task rejection 

rate (TRR). The main contributions of the research are: 

• To develop a non-cooperative multi-agent independent deep 

Q network for efficient LB in cloud heterogeneous 

networks. 

• To minimize the response and makespan time while 

balancing the load using the proposed MAIDQN-LB.  

• To assess the system’s efficiency by optimizing its 

performance concerning different parameters, including 

average turnaround time, average response time, makespan 

time, DI, TRR, and convergence loss. 

The subsequent section of the paper will be delineated as 

follows. Section 2 encompasses the literature review, which is 

subsequently followed by the proposed research outlined in 
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Section 3. Section 4 provides a detailed description of the 

experimental setup and presents the results obtained. Section 5 

offers a conclusion of the findings and discusses potential avenues 

for further research.  

2. LITERATURE REVIEW 

Various researchers have worked on LB techniques to balance 

the workload in heterogeneous networks; for example, Sourav et 

al. [10] presented a non-cooperative model for balancing the 

workloads among the cloudlets in a cloud computing 

heterogeneous environment. A computational algorithm has been 

developed that utilizes the Nash equilibrium. From findings, it has 

been found that the cloudlets can optimize their utilities 

effectively by implementing the Nash equilibrium to offload the 

workload from overloaded machines. Ali et al. [11] introduce the 

concept of fuzzy logic for LB in a cloud environment. The fuzzy 

logic work performed well by reducing the response time and 

exhibited superior performance compared to alternative methods. 

Stavros et al. [12] introduced a task LB technique by utilizing 

finite state Markov prose to manage the workload over multiple 

VMs. A centralized server called a load balancer (LBer) is 

employed for fair task allocation among VMs. The experimental 

findings prove that the suggested algorithm performed better than 

various existing state-of-the-art methods regarding response time 

and DI. Similarly, Amine et al. [13] introduced Modified particle 

swarm optimization (PSO) along with game theory for LB in 

heterogeneous networks. A non-cooperative game theory was 

used, reducing the multiple users' response time. The simulation 

results indicate that the presented approach was superior in terms 

of response time. A load scheduling algorithm called HDCBS was 

anticipated by Wenwei et al. [14] for LB in heterogeneous cloud 

data centers. A queuing theory has been employed for the 

representation of computing nodes and to compute the average 

response time. The convex optimization theory assigns the work 

to different data centers. The simulation findings indicate that the 

HDCBS improved the performance by 95% in the context of task 

scheduling.  

Moving ahead, Octavio et al. [15] presented an agent-based 

cooperative LB technique to balance the load in data centers. 

Agents have been utilized that employ heuristics to determine the 

VM to which a task can be migrated. The findings indicate that 

agents, by engaging in independent and adaptive collaboration, 

have effectively distributed and managed workloads in a manner 

that surpasses centralized methods. Avadh et al. [16] presented a 

CO-evolutionary framework based on Differential Evolution 

(CODE) to solve the LB problem aiming to abate both the 

response time and the imbalance in server utilization. The 

experimental findings demonstrate that CODE effectively lessens 

both the response time of jobs and the imbalance in server 

utilization. Ali et al. [17] introduced a hybrid method [18] that 

combines state-action-reward-state-action (SARSA) learning 

with a genetic algorithm for LB in cloud heterogeneous networks. 

During the initial stage, the intelligent agents engage in task 

scheduling as part of the learning process when they explore the 

workflow. Next, every resource is assigned to an agent, with the 

objective of optimizing its consumption through the learning 

process of the respective agent. The process involves carefully 

selecting a suitable collection of tasks that optimizes the 

utilization of available resources. A genetic algorithm has been 

employed to facilitate the convergence of the agents inside the 

suggested method, with the ultimate objective of achieving global 

optimization. The genetic algorithm utilized in this study aimed 

to optimize resource consumption and LB by considering job 

deadlines in its fitness function. The experimental findings 

demonstrate that the suggested method effectively decreases 

makespan, boosts resource usage, and improves LB compared to 

the existing literature. Devaraj et al. [19] introduced a hybrid of 

firefly (FF) and an improved multi-objective PSO (IMPSO) called 

FFIMPSO to balance the load on various VMs. Firefly computed 

the search space, and IMPSO was used to discover the enhanced 

response required to schedule the task on multiple VMs. The 

findings were compared with individual FF, improved PSO 

(IPSO), and combined FF-IPSO. It was also compared with 

various existing algorithms comprising round robin (RR) [20], 

shortest job first (SJF) [20], first come first serve (FCFS) [20], 

weighted RR (WRR) [20], diffusive LB (DLB) [21] and LB Bayes 

and clustering (LB-BC) [21]. From the findings, it was found the 

FFIMPSO outperformed all the existing works efficiently by 

balancing the load on the VMs.  

Table.1. LB techniques in Cloud Heterogeneous Networks 

Work Technique 

Performance Parameters 

Makespan 

Time 

Turn 

Around Time 

Response 

Time 
DI TRR Loss 

Sourav et al. [10] Pure-strategy Nash Equilibrium ✓    ✓        

Ali et al. [11] Fuzzy Logic     ✓        

Stavros et al. [12] Markov Decision Process ✓    ✓  ✓      

Amine et al. [13] Modified PSO and Nash Equilibrium ✓    ✓        

Wenwei et al. [14] Queuing and convex optimization theory. ✓    ✓    ✓    

Octavia et al. [15] Agent-based LB     ✓  ✓  ✓    

Avadh et al. [16] CODE ✓    ✓        

Ali et al. [17] SARSA and genetic algorithms ✓    ✓        

Devraj et al. [19] FFIMPSO ✓  ✓  ✓        

Sami et al. [22] WFBLBA, WFDBLBA ✓    ✓        

MAIDQN-LB Multi-agent Independent Deep Q Networks ✓  ✓  ✓  ✓  ✓  ✓  
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Fig.1. Workflow of MAIDQN-LB 

Sami et al. [22] presented novel LB algorithms called Worst-

Fit-Based LB Algorithm (WFBLBA) that effectively address the 

needs of cloud service providers by addressing the bin stretching 

problem. The experiment was conducted using the CloudSim [23] 

simulator and the findings demonstrated that the WFBLBA 

exhibit superior makespan and waiting time compared to the 

existing works. The Table.1 gives a discussion about the related 

work on LB techniques. 

3. PROPOSED WORK - MAIDQN-LB 

In this research, multi-agent independent non-cooperative 

deep Q network LB (MAIDQN-LB) has been proposed to balance 

the workload of Virtual Machines (VMs). The main aim of the 

proposed work is to reduce response time. Instead of single agent, 

multiple agents act independently to select the specific VM to 

assign the load. These agents interact independently in a non-

cooperative environment, meaning they have their own objectives 

and do not work together cooperatively. Initially, a buffer of tasks 

has been submitted to MAIDQN to determine the most 

appropriate VM for the given work. The MAIDQN model 

effectively chooses VM actions by considering the present LB 

state of all the VMs and provides the selected VM to the cloud 

computing heterogeneous platform model. The environment 

offers a reward that signifies whether the job has been declined or 

completed successfully to train the MAIDQN. During the training 

phase, the MAIDQN model transitions from initial inaccuracies 

to improved decision-making for selecting the most appropriate 

VM for a given task. The performance of the presented 

MAIDQN-LB is computed using six parameters comprising 

makespan time, average turnaround time, average response time, 

loss, DI, and TRR. The complete working of MAIDQN-LB is 

given in Fig.1: 

3.1 CLOUD COMPUTING HETEROGENEOUS 

NETWORK 

The cloud computing heterogeneous network consists of m 

number of virtual machines (VMs) comprising VM1, VM2, …., 

VMm, which are required to perform some suitable tasks. The 

processing speed is considered one of the most crucial aspects of 

VMs. This study examines the disparity in processing speed 

among VMs and observes that, when subjected to identical 

conditions, a VM with a higher rate accomplishes a given task in 

a shorter duration than a VM with a lower speed. The 

determination of the earliest start time (EST) for a task is 

contingent upon both the task’s arrival time and the VMs idle 

time. If the task arrival time is greater than the idle time, the 

arrival time is considered as EST. Conversely, if the task arrival 

time is less than the idle time, then the idle time is regarded as the 

EST. The idle time can be task startup time if it is the first VM or 

the last time the task is completed if it is other than the first VM. 

For each task, MAIDQN selects the VM which can execute the 

task. The load on VMs is getting more significant as the tasks are 

being executed. If it goes to the maximum capacity of the VM, 

the task will be rejected for execution. Once the tasks are 

executed, a load is calculated for VMs, and if the load is more 

than the MAIDQN procedure is repeated until the balancing is 

done. 

3.2 MULTI-AGENT INDEPENDENT DEEP Q 

NETWORK (MAIDQN) 

In the present research, MAIDQN-LB is proposed to balance 

the workload in cloud heterogeneous networks. MAIDQN is an 

extension of Deep Q-Networks (DQN). In DQN [24], the agent 

interacts with the environment iteratively to make decisions. Each 

time the agent interacts, the corresponding Q-values of the agents 

representing action-state values are updated accordingly, which 

enables the agent to approximate the best policy for a solitary 

agent inside the provided environment. On the other side, in 

multi-agent independent DQN, the interactions have been done by 

multiple agents in which the action taken by one agent will 

automatically influence the experiences of the different agents 

involved in the interaction. The complete working of MAIDQN 

is expressed as follows: 

• Environment Modeling and Initialization: The environment 

is modeled for multi-agent interactions using a 5-step 

Markov decision process (MDP) including states (st), 

actions (ac), discount factor (γ), reward function (r), and 

transition probability (p). The state observations, action 

spaces, and rewards have been provided to the agents by the 
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environment. Once the environment is modeled, each agent 

is assigned an individual DQN, which includes target 

networks, hyperparameters, and experience replay buffers. 

• Action Selection: The action is selected by an agent at each 

iteration by making a decision considering the present state 

of the agent and its unique DQN. This selection is based on 

the epsilon greedy approach, i.e., the agent selected the 

random action with a specific probability (p). On the other 

side, the highest Q-value action can also be selected. Based 

on the selected action, the combined actions of all the agents 

have been used to interact with the environment, which in 

turn returns the next state and reward function. This is done 

for each episode or epoch.  

• Experience collection and Replay: Once the action has been 

selected, the next state, action, and reward have been 

collected by the agents, which are stored in the experience 

replay buffer. This replay buffer is used during several 

points in training where some mini-batches of experience 

have been utilized to update the DQN of each individual 

agent. The DQN algorithm operates a neural network to 

estimate the Q-function, denoted as Q(st, ac). The neural 

network receives the environmental states as input and 

generates Q-values for every feasible action (ac). The neural 

network’s weights are iteratively adjusted throughout the 

training process using the stochastic gradient descent 

algorithm to minimize the loss function. The loss function is 

computed using a Bellman equation, which quantifies the 

discrepancy between the predicted and actual Q-values. The 

Bellman equation is given by the following Eq.(1): 

 Q(st,ac)←Q(st,ac)+α*[r+γ*max(Q(st',ac'))-Q(st,ac)] (1)  

where the temporal difference (TD) is given by r+γ*max(Qtarget 

(s',a'))-Q(s,a), the learning rate is denoted by α, and the reward 

and discount factor is given by r and γ. The maximum Q value 

among all states and actions is given by max (Q(st', ac')). 

• Multi-agent Independence: In the MAIDQN framework, 

individual agents uphold their Deep DQN, and the learning 

process is conducted autonomously without any 

interdependence on other agents. Agents gather their 

experiences and execute Q-learning updates according to 

their own observations and behaviors. The autonomy 

provided enables agents to acquire their respective policies 

without direct communication or collaboration with other 

agents. 

• Update DQN and target network: The weights of each 

individual DQN are updated using TD to minimize the Q-

value loss. This is followed by the updation of the target 

network, which is done by copying the weights of DQN. By 

doing this, the learning process is stabilized, and it helps in 

preventing divergence. 

• Convergence: The training procedure is iterated until the 

agents of DQN reach a state of convergence, approximating 

the ideal action-value function. Subsequently, the agents' 

policies are employed to make decisions within the given 

environment. 

In the current research, the state space consists of a load of 

each individual VM (load1, load2, … loadm), and the action state is 

a selection of VM from multiple VMs, i.e., VM1, VM2, …. VMm, 

for efficient LB. When the DQN algorithm chooses a VM for a 

given job, the action value 1 is assigned to the particular VM, 0 is 

assigned to the remaining VMs. For instance, in the scenario when 

the mth virtual machine is chosen to carry out the assigned task, 

the vector is represented as (0,0,...,1). Algorithm 1 gives a 

pseudocode of MAIDQN-LB. 

Algorithm 1: Pseudocode of MAIDQN-LB 

Input: Tasks, VMs 

Output: Balanced VMs, Performance parameters    

Begin: 

1. User Request for task assignment 

2. Task (T) to be allocated present in a queue 

3. For each task in T // Call MAIDQN 

4. Select for suitable VM from a cloud computing 

heterogeneous network 

5. Create a state space for VMs load, i.e., load1, load2, … loadm 

6. Create an action state of VM1, VM2, …. VMm 

7. Select an action considering present space and independent 

DQN 

8. Compute Experience and Q-values for individual 

independent DQN 

9. Update DQN and Target network 

10. Compute Convergence loss 

11.  End For 

12. Compute Load on each VM 

13. If (under-loaded or overloaded) 

14.       Repeat steps 3-11 

15. Else 

16.     Stop 

17. Compute Performance parameters 

End 

4. EXPERIMENTAL SETUP AND RESULTS 

In this current research, MAIDQN-LB is presented for LB in 

cloud computing heterogeneous networks. To implement the 

proposed work, Python 3.9 has been utilized. The minimum 

hardware requirement includes Windows 8, 8 Gb Ram, and i5 

processor. CloudSim is used to perform VM simulations. The 

libraries used are tensorflow, matplot lib, numpy, random, math, 

and time. 

4.1 PERFORMANCE PARAMETERS 

To compute the performance of proposed MAIDQN, six 

parameters comprising makespan time, average turnaround time, 

average response time, DI, TRR, and convergence loss at different 

hyper-parameters have been computed and are described below: 

• Makespan time: The total time to compute all the tasks is 

known as makespan time.  

• Turnaround time: It is the time interval between the arrival 

of a task and completion of a particular task. 

• Response time: Response time pertains to the duration a 

system or component requires to react to a particular event 

or solicitation. 

• Convergence loss: Convergence loss pertains to the 

numerical representation of the loss function throughout the 

iterative training procedure of MAIDQN as it approaches a 

state of stability.   
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• Degree of Imbalance: It is the imbalance of loads between 

the VMs, and the smaller the value of the DI, the more the 

load is balanced between VMs. The DI is computed using 

the following Eq.(2): 

 DI=(Maximum load-Minimum load)/(Average load) (2) 

• Task Rejection Rate: When assigning the tasks, a task is 

rejected if the corresponding task violates the maximum load 

condition. The TRR is computed by the given Eq.(3): 

 TRR=(No. of rejected tasks)/(Total tasks) (3) 

4.2 RESULTS 

To compute the results of MAIDQN-LB, different types of 

scenarios have been considered. In the first case scenario, the 

different number of tasks comprising 2000, 4000, 6000, 8000, and 

10000 tasks have been assigned to 8 VMs maintaining the load 

balance. The results showed that the MAIDQN performed 

effectively with a total turnaround time of 20.57 ms, 28,63 ms, 

34.4 ms, 40.12 ms, and 49.28 ms, respectively. Similarly, the 

average response time for all the tasks has been computed, and it 

has been found that the MAIDQN performs effectively with a 

minimum response time of 18.36 ms, 25.32 ms, 29.43 ms, 35.45 

ms, and 45.11 ms for 2000, 4000, 6000, 8000, and 10000 tasks 

respectively. The results of turnaround time and response time are 

given in Table 2. 

Table.2. Average turnaround time and response time for 

different no. of tasks assigned to 8 VMs 

No. of Tasks Turn Around time (ms) Response Time (ms) 

2000 20.57 18.36 

4000 28.63 25.32 

6000 34.4 29.43 

8000 40.12 35.45 

10000 49.28 45.11 

Moreover, the line plots of turnaround time and response time 

have been plotted for 2000, 4000, 6000, 8000, and 10,000 tasks 

assigned to 8 VMs have been plotted and shown in Fig.2.  

 

Fig.2. Line plots for turnaround time and response time for 

different no. of tasks 

The trend in line plots shows the effectiveness of the proposed 

MAIDQN-LB. In the second case scenario, the number of VMs 

has been increased to 4, 8, 16, 24, and 32 VMs, and 8000 tasks 

have been allocated. Then the corresponding turnaround and 

response times are computed and shown in Table 3. The results 

show that the MAIDQN-LB performed effectively by reducing 

the response time and turnaround time, respectively. Moreover, 

the makespan time is also computed and it is found that 

MAIDQN-LB performed well with a makespan time of 80 s, 92 

s, 113 s, 125 s, and 136 s for 4, 8, 16, 24, and 32 VMs respectively. 

Table.3. Turnaround time and response time for different no. of 

VMs 

No. of VMs Turn Around time (ms) Response Time (ms) 

4 50.5 45.16 

8 40.12 35.45 

16 28.20 21.36 

24 21.10 15.5 

32 15.28 9.31 

The line plots have also plotted for turnaround time and 

response time for different no. of VMS, and it has been found that 

MAIDQN-LB performed effectively with 50.5 ms, 40.12 ms, 

28.20 ms, 21.10 ms, and 15.28 ms of turnaround time and 45.16 

ms, 35.45 ms, 21.36 ms, 15.5 ms, and 9.31 ms of response time 

respectively. Fig.3 shows the line plot for turnaround and 

response times for different no. of VMs. 

 

Fig.3. Line plots for turnaround time and response time for 

different no. of VMs 

In the third case scenario, the DI and TRR has been computed 

for different activation functions [25] comprising relu, selu, elu, 

tanh, and sigmoid functions, and shown in Table 4 below. The 

total VMs used is 8, and 8000 tasks are assigned to them. The 

MAIDQN-LB runs for 100 episodes with a learning rate of e^-1 

(~0.36788). The experimental findings show that the MAIDQN-

LB performed effectively with a DI and TRR values of 0.150, 

0.176, 0.170, 0.207, 0.344, and 0.05994. 0.05996, 0.005991, 

0.05933, and 0.3000 for the above-mentioned activation 

functions.  

Table.4. DI and TRR of different activation functions. 

Activation Function DI TRR 

relu 0.150 0.0599493 

selu 0.176 0.0599697 

elu 0.170 0.0599162 

tanh 0.207 0.0593345 

sigmoid 0.344 0.3000553 

Moving ahead, the bar plot and line plot combination have 

been plotted for the DI and TRR, as shown in Fig.4. As lesser the 
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value of the DI and TRR, the more balanced the load on VMs is. 

Therefore, the results show that the MAIDQN-LB performed best 

on the tanh activation function, followed by the relu, selu, and elu 

functions, and performed worst for the sigmoid activation 

function. 

 

Fig.4. Plot of a DI and TRR for different activation functions  

In the following case, the DI and TRR of MAIDQN-LB for 

different learning rates comprising e^-1 (~0.3678), e^-2 

(~0.1353), e^-3 (~0.0497), and e^-4 (0.0183) have been computed 

with relu activation function and for 100 episodes. Table 5 shows 

the results of MAIDQN-LB, and it has been found that the 

MAIDQN-LB gives 0.069, 0.150, 0.104, and 0.295 degrees of 

imbalance values and 0.050, 0.230, 0.278, and 0.350 TRR value 

for e-1, e-2, e-3, and e-4 respectively. 

Table.5. DI and TRR for different learning rates 

Learning Rates DI TRR 

e-1 0.069 0.05036 

e-2 0.150 0.23076 

e-3 0.104 0.27864 

e-4 0.295 0.35097 

Furthermore, the plots for the DI and TRR for MAIDQN-LB’s 

different learning rates and shown in Fig.5. The MAIDQN-LB 

performed best on e-1 learning rate and worst on e-4 learning rate 

values. In the next case, the convergence loss value has been 

computed for 8000 tasks assigned to 8 VMs. The MAIDQN-LB 

runs for 100 episodes with different learning rates and different 

activation functions. The convergence plot is shown in Fig.6(a) 

and Fig.6(b). the Fig.6(a) represents the convergence plot on 

different learning rates. The convergence loss is higher for e-3, 

followed by e-2, e-4, and e-1 for the first 35 episodes. This is 

followed by lower loss for all the learning rates for the remaining 

episodes. The Fig.6(b) shows the convergence loss of MAIDQN-

LB on different activation functions, and it shows the highest 

convergence for the Selu activation function. After 40 episodes, 

fewer fluctuations and a lower loss value are achieved. From the 

loss value, it is found that MAIDQN-LB performed best on the e-

1 learning rate, and the Relu activation function shows a lesser loss 

than other learning rates and activation functions. 

 

Fig.5. Plots on the DI and TRR for different learning rates. 

 

(a) Different Learning rates 

 

(b) Different activation functions 

Fig.6. Convergence loss for MAIDQN-LB on different learning 

rates and activation functions 

Moving ahead, the MAIDQN-LB is compared with several 

existing works comprising opportunistic LB (OLB) [26], round 

robin, and random LB techniques, and their corresponding DI and 

TRRs have been computed. The Table.6 shows the comparison 

results, and it has been found that MAIDQN-LB performed better 

than the existing OLB, round robin, and random in case of a DI. 

It gives a DI value of 0.23, 0.13, 0.15, and 0.27 for 2000, 5000, 

8000, and 10,000, respectively. Only for TRR, OLB performed 

better; for rest in all cases, MAIDQN-LB performed best with 

0.07, 0.06, 0.05, and 0.06 TRR values for 2000, 5000, 8000, and 

10000 tasks, respectively. 
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Table.6. Comparison results of MAIDQN-LB with existing 

works in increasing no. of tasks. 

Task /  

Work 

OLB Round Robin Random MAIDQN 

DI TRR DI TRR DI TRR DI TRR 

2000 0.85 0.01 1.3 0.08 0.9 0.17 0.23 0.07 

5000 0.82 0.01 1.5 0.09 0.95 0.175 0.13 0.06 

8000 0.81 0.01 1.5 0.10 0.96 0.16 0.15 0.05 

10000 0.80 0.01 1.5 0.11 0.99 0.18 0.27 0.06 

Additionally, line plots have been made for comparison of 

MAIDQN-LB with existing works, as shown in Fig.7. Findings 

show that MAIDQN-LB shows an improvement of 0.62%, 

0.69%, 0.66%, and 0.53% when compared to the second-best 

performing OLB technique in case of DI. Similarly, MAIDQN-

LB improves the performance by 0.01%, 0.03%, 0.05%, and 

0.05% when compared with round robin regarding TRR.      

 

Fig.7. Line plot for comparison of MAIDQN-LB with increasing 

no. of tasks 

In the next case scenario, MAIDQN-LB is compared with 

existing work in terms of increasing no. of VMS (VM4, VM8, 

VM16, VM32) and with 8000 tasks. Table 7 shows the 

comparison results, and it has been found that MAIDQN-LB 

performed best with 0.05, 0.15, 0.20, and 0.28 degrees of 

imbalance and 0.08, 0.5, 0.03, and 0.02 TRR value for VM4, 

VM8, VM16, and VM32 respectively.  

Table 7. Comparison of MAIDQN-LB with existing works for 

increasing no. of VMs 

VMs /  

Work 

OLB Round Robin Random MAIDQN-LB 

DI TRR DI TRR DI TRR DI TRR 

4 0.70 0.01 1.1 0.17 0.9 0.20 0.05 0.08 

8 0.81 0.01 1.5 0.10 0.96 0.16 0.15 0.05 

16 1.3 0.01 1.7 0.05 1.3 0.10 0.20 0.03 

32 2.1 0.01 2.5 0.06 2.2 0.08 0.28 0.02 

Moreover, that line plots for comparison are also plotted and 

shown in Fig.8. The 8000 tasks have been assigned to 4,8,16, and 

32 VMs and it has been found that MAIDQN-LB improves the 

performance by 0.65%, 0.66%, 1.1%, and 1.82% in terms of DI 

when compared with OLB. Similarly, it shows an improvement 

of 0.09%, 0.05%, 0.02%, and 0.04% compared to the round-robin 

regarding TRR. 

 

Fig.8. Comparison plots of MAIDQN-LB with increasing no. of 

VMs 

Additionally, MAIDQN-LB is also compared with some static 

load balancing comprising RR [19], SJF [19], and FCFS [19], and 

some dynamic load balancing techniques comprising Firefly [19], 

IPSO [19], FF-IPSO [19], FFIMPSO [19], and LW-PSO [27] in 

terms of Average TAT, and RT for 32 VMs. Table 8 shows the 

comparison results for TAT, RT, and load and it is found that 

RSLbestPSO performed best with average TAT of 15.28ms and 

average RT of 9.31ms, respectively. It takes less TAT and RT as 

compared to existing works. 

Table.8. Comparison results of MAIDQN-LB in terms of 

Average TAT, and RT  

Work Average TAT (ms) Average RT (ms) 

RR [19] 41.98 30.5 

SJF [19] 41.56 30.24 

FCFS [19] 41.87 30.84 

Firefly [19] 55.54 48.87 

IPSO [19] 57.74 49.23 

FF-IPSO [19] 22.13 15.21 

FFIMPSO [19] 21.09 13.58 

LW-PSO [27] 20.56 12.96 

MAIDQN-LB 15.28 9.31 

5. CONCLUSION AND FUTURE WORK 

Cloud services have experienced notable breakthroughs and a 

noticeable increase in demand. Therefore, incorporating LB is 

vital to optimizing resource utilization by efficiently distributing 

workload across several Virtual Machines (VMs). The main goal 

of this research is to tackle the difficulties associated with job 

scheduling and attain optimal LB for all VMs within cloud 

heterogeneous networks. To achieve this, a non-cooperative LB 

method known as Multi-agent Independent Deep Q Networks 

(MAIDQN-LB) is proposed to balance the workload by lessening 

the response makespan times. In the user request model, the job 

is first submitted to the MAIDQN model, which then selects the 

best virtual machine (VM) for the supplied work. The cloud 

heterogeneous platform receives the selected VMs from the 

MAIDQN model after considering the present LB status of the 

VMs. The MAIDQN model is trained using the environment, 

which offers a reward that indicates whether the task has been 
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approved or successfully finished. The MAIDQN model changes 

from initial inaccuracies to increasing accuracy during training in 

its decision-making process for choosing the best VM for a 

particular task. The performance of proposed MAIDQN-LB is 

computed using six metrics comprising makespan time, average 

turnaround time, average reaction time, loss, DI, and TRR. The 

results indicate that the proposed MAIDQN-LB performed 

effectively when 8000 tasks were assigned to 8VMs with 

40.12ms, 35.45ms, 125s, 0.15, and 0.05 value of average 

turnaround time, average response time, makespan time, DI, and 

TRR respectively. In the future, it is anticipated that other 

dynamic LB techniques will be employed to distribute the 

workload across heterogeneous cloud networks effectively. 

Moreover, MAIDQN-LB can be improved by dynamically 

reevaluating its task allocation decisions based on real-time 

feedback from VMs. If certain VMs become overloaded or 

underutilized, the algorithm can dynamically redistribute tasks to 

balance the load more effectively. Additionally, it can consider 

factors like VM performance metrics (e.g., CPU utilization, 

memory usage) and prioritize task allocation accordingly. 
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