
TANU KAISTHA AND KIRAN AHUJA: MULTI-AGENT INDEPENDENT NON-COOPERATIVE REINFORCEMENT LEARNING FOR LOAD BALANCING IN CLOUD

HETEROGENEOUS NETWORKS

DOI: 10.21917/ijct.2024.0478

3208

MULTI-AGENT INDEPENDENT NON-COOPERATIVE REINFORCEMENT

LEARNING FOR LOAD BALANCING IN CLOUD HETEROGENEOUS NETWORKS

Tanu Kaistha1 and Kiran Ahuja2
1Department of Electronics and Communication Engineering, IK Gujral-Punjab Technical University, India

2Department of Electronics and Communication Engineering, DAV Institute of Engineering and Technology, India

Abstract

Cloud services are now seeing significant advancements and have

witnessed a growing demand. Hence, implementing Load Balancing is

necessary to enhance resource usage by effectively distributing

workload among numerous Virtual Machines (VMs). The present

research aims to address task scheduling challenges and achieve

efficient load balancing for all VMs by implementing a novel non-

cooperative load balancing algorithm called Multi-agent Independent

Deep Q Networks (MAIDQN-LB) in cloud computing heterogeneous

networks. The list of tasks is passed to MAIDQN-LB, which will search

for a list of VM to be allocated, maintaining the load of all VMs. This

procedure facilitates the identification of optimized VMs, the allocation

of workloads based on the optimal solution derived from the analysis

and optimize the performance parameters. The performance analysis

considers essential parameters, including makespan time, average

turnaround time, average response time, degree of imbalance (DI), task

rejection rate (TRR), and convergence loss. The findings indicate that

MAIDQN-LB demonstrates superior performance compared to the

current system, exhibiting enhancements of 1.82% and 0.05%

regarding DI and TRR.

Keywords:

Non-cooperative, Multi-Agent, Independent, Deep Q Networks, Cloud

Heterogeneous Networks

1. INTRODUCTION

The use of the cloud for computing heterogeneous networks

frequently and concurrently experiences a significant amount of

requests from various geographical origins. Users have access to

various computing services through cloud computing, which

relies on virtual machines as its primary resource. Online access

is provided for all these services, including data storage, program

applications, computer servers, and network infrastructure [1].

Cloud resources consist of multiple elements, such as storage

capacity, memory allocation, and network capabilities, which can

be offered as a service to diverse consumers. The assignment of

these requests to different cloud providers is done randomly,

leading to an unequal distribution of workload among nodes,

where specific nodes bear excessive load while others are

underutilized [2]. This imbalance has detrimental implications for

the system’s functioning, highlighting the necessity for

implementing effective Load Balancing (LB) solutions in

heterogeneous networks within the context of cloud environment.

The principal aim of LB is to mitigate the risk of any component

becoming excessively burdened, guaranteeing the optimal

utilization of resources and the effective and dependable

operation of the system [3].

LB is of two types, static and dynamic. Dynamic is further

classified into cooperative and non-cooperative LB [4].

Cooperative LB involves the joint decision-making of

participating entities, such as servers, nodes, or resources, to

achieve LB. Individuals exchange data regarding their present

condition, encompassing their ongoing tasks, computational

capabilities, and accessibility. However, the necessity of

information sharing, and collaboration might lead to increased

communication overhead among the institutions involved.

Utilizing a central load balancer introduces a potential

vulnerability as it becomes a singular point of failure, posing a

risk of disrupting the LB mechanism [5]. On the other side, non-

cooperative refers to a scenario where individual entities, such as

servers, nodes, or resources, make autonomous LB decisions

without engaging in information sharing. Each individual entity

makes decisions on the management of its incoming workload

exclusively based on its local information, which includes factors

such as its present utilization level and the resources currently

accessible to it [6]. Non-cooperative LB removes the drawback of

cooperative sharing by making its own decisions. LB mainly aims

to optimize the performance parameters by minimizing the

makespan and response time according to different users’ needs

[7]. To improve the performance of LB, several non-cooperative

artificial intelligence techniques [8] are there. One of the

techniques is independent reinforcement learning (IRL) [9]. IRL

is a non-cooperative LB technique that focuses on decentralized

or distributed learning systems in which several agents or learners

operate in the same environment simultaneously, and each agent

learns its own policy autonomously by interacting with the

environment.

To improve the processing speed of tasks and minimize the

response time, a non-cooperative multi-agent independent deep Q

network for LB (MAIDQN-LB) in cloud heterogeneous networks

is proposed. Initially, a buffer of tasks has been passed to

MAIDQN to determine the most appropriate VM for the given

work. The MAIDQN model effectively chooses VM actions by

considering the present LB state of all the VMs. By doing so, the

appropriate VM is selected for allocation. The performance of the

proposed MAIDQN-LB is computed using six parameters

comprising makespan time, average turnaround time, average

response time, loss, degree of imbalance (DI), and task rejection

rate (TRR). The main contributions of the research are:

• To develop a non-cooperative multi-agent independent deep

Q network for efficient LB in cloud heterogeneous

networks.

• To minimize the response and makespan time while

balancing the load using the proposed MAIDQN-LB.

• To assess the system’s efficiency by optimizing its

performance concerning different parameters, including

average turnaround time, average response time, makespan

time, DI, TRR, and convergence loss.

The subsequent section of the paper will be delineated as

follows. Section 2 encompasses the literature review, which is

subsequently followed by the proposed research outlined in

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2024, VOLUME: 15, ISSUE: 02

3209

Section 3. Section 4 provides a detailed description of the

experimental setup and presents the results obtained. Section 5

offers a conclusion of the findings and discusses potential avenues

for further research.

2. LITERATURE REVIEW

Various researchers have worked on LB techniques to balance

the workload in heterogeneous networks; for example, Sourav et

al. [10] presented a non-cooperative model for balancing the

workloads among the cloudlets in a cloud computing

heterogeneous environment. A computational algorithm has been

developed that utilizes the Nash equilibrium. From findings, it has

been found that the cloudlets can optimize their utilities

effectively by implementing the Nash equilibrium to offload the

workload from overloaded machines. Ali et al. [11] introduce the

concept of fuzzy logic for LB in a cloud environment. The fuzzy

logic work performed well by reducing the response time and

exhibited superior performance compared to alternative methods.

Stavros et al. [12] introduced a task LB technique by utilizing

finite state Markov prose to manage the workload over multiple

VMs. A centralized server called a load balancer (LBer) is

employed for fair task allocation among VMs. The experimental

findings prove that the suggested algorithm performed better than

various existing state-of-the-art methods regarding response time

and DI. Similarly, Amine et al. [13] introduced Modified particle

swarm optimization (PSO) along with game theory for LB in

heterogeneous networks. A non-cooperative game theory was

used, reducing the multiple users' response time. The simulation

results indicate that the presented approach was superior in terms

of response time. A load scheduling algorithm called HDCBS was

anticipated by Wenwei et al. [14] for LB in heterogeneous cloud

data centers. A queuing theory has been employed for the

representation of computing nodes and to compute the average

response time. The convex optimization theory assigns the work

to different data centers. The simulation findings indicate that the

HDCBS improved the performance by 95% in the context of task

scheduling.

Moving ahead, Octavio et al. [15] presented an agent-based

cooperative LB technique to balance the load in data centers.

Agents have been utilized that employ heuristics to determine the

VM to which a task can be migrated. The findings indicate that

agents, by engaging in independent and adaptive collaboration,

have effectively distributed and managed workloads in a manner

that surpasses centralized methods. Avadh et al. [16] presented a

CO-evolutionary framework based on Differential Evolution

(CODE) to solve the LB problem aiming to abate both the

response time and the imbalance in server utilization. The

experimental findings demonstrate that CODE effectively lessens

both the response time of jobs and the imbalance in server

utilization. Ali et al. [17] introduced a hybrid method [18] that

combines state-action-reward-state-action (SARSA) learning

with a genetic algorithm for LB in cloud heterogeneous networks.

During the initial stage, the intelligent agents engage in task

scheduling as part of the learning process when they explore the

workflow. Next, every resource is assigned to an agent, with the

objective of optimizing its consumption through the learning

process of the respective agent. The process involves carefully

selecting a suitable collection of tasks that optimizes the

utilization of available resources. A genetic algorithm has been

employed to facilitate the convergence of the agents inside the

suggested method, with the ultimate objective of achieving global

optimization. The genetic algorithm utilized in this study aimed

to optimize resource consumption and LB by considering job

deadlines in its fitness function. The experimental findings

demonstrate that the suggested method effectively decreases

makespan, boosts resource usage, and improves LB compared to

the existing literature. Devaraj et al. [19] introduced a hybrid of

firefly (FF) and an improved multi-objective PSO (IMPSO) called

FFIMPSO to balance the load on various VMs. Firefly computed

the search space, and IMPSO was used to discover the enhanced

response required to schedule the task on multiple VMs. The

findings were compared with individual FF, improved PSO

(IPSO), and combined FF-IPSO. It was also compared with

various existing algorithms comprising round robin (RR) [20],

shortest job first (SJF) [20], first come first serve (FCFS) [20],

weighted RR (WRR) [20], diffusive LB (DLB) [21] and LB Bayes

and clustering (LB-BC) [21]. From the findings, it was found the

FFIMPSO outperformed all the existing works efficiently by

balancing the load on the VMs.

Table.1. LB techniques in Cloud Heterogeneous Networks

Work Technique

Performance Parameters

Makespan

Time

Turn

Around Time

Response

Time
DI TRR Loss

Sourav et al. [10] Pure-strategy Nash Equilibrium ✓ ✓

Ali et al. [11] Fuzzy Logic ✓

Stavros et al. [12] Markov Decision Process ✓ ✓ ✓

Amine et al. [13] Modified PSO and Nash Equilibrium ✓ ✓

Wenwei et al. [14] Queuing and convex optimization theory. ✓ ✓ ✓

Octavia et al. [15] Agent-based LB ✓ ✓ ✓

Avadh et al. [16] CODE ✓ ✓

Ali et al. [17] SARSA and genetic algorithms ✓ ✓

Devraj et al. [19] FFIMPSO ✓ ✓ ✓

Sami et al. [22] WFBLBA, WFDBLBA ✓ ✓

MAIDQN-LB Multi-agent Independent Deep Q Networks ✓ ✓ ✓ ✓ ✓ ✓

TANU KAISTHA AND KIRAN AHUJA: MULTI-AGENT INDEPENDENT NON-COOPERATIVE REINFORCEMENT LEARNING FOR LOAD BALANCING IN CLOUD

HETEROGENEOUS NETWORKS

3210

Fig.1. Workflow of MAIDQN-LB

Sami et al. [22] presented novel LB algorithms called Worst-

Fit-Based LB Algorithm (WFBLBA) that effectively address the

needs of cloud service providers by addressing the bin stretching

problem. The experiment was conducted using the CloudSim [23]

simulator and the findings demonstrated that the WFBLBA

exhibit superior makespan and waiting time compared to the

existing works. The Table.1 gives a discussion about the related

work on LB techniques.

3. PROPOSED WORK - MAIDQN-LB

In this research, multi-agent independent non-cooperative

deep Q network LB (MAIDQN-LB) has been proposed to balance

the workload of Virtual Machines (VMs). The main aim of the

proposed work is to reduce response time. Instead of single agent,

multiple agents act independently to select the specific VM to

assign the load. These agents interact independently in a non-

cooperative environment, meaning they have their own objectives

and do not work together cooperatively. Initially, a buffer of tasks

has been submitted to MAIDQN to determine the most

appropriate VM for the given work. The MAIDQN model

effectively chooses VM actions by considering the present LB

state of all the VMs and provides the selected VM to the cloud

computing heterogeneous platform model. The environment

offers a reward that signifies whether the job has been declined or

completed successfully to train the MAIDQN. During the training

phase, the MAIDQN model transitions from initial inaccuracies

to improved decision-making for selecting the most appropriate

VM for a given task. The performance of the presented

MAIDQN-LB is computed using six parameters comprising

makespan time, average turnaround time, average response time,

loss, DI, and TRR. The complete working of MAIDQN-LB is

given in Fig.1:

3.1 CLOUD COMPUTING HETEROGENEOUS

NETWORK

The cloud computing heterogeneous network consists of m

number of virtual machines (VMs) comprising VM1, VM2, ….,

VMm, which are required to perform some suitable tasks. The

processing speed is considered one of the most crucial aspects of

VMs. This study examines the disparity in processing speed

among VMs and observes that, when subjected to identical

conditions, a VM with a higher rate accomplishes a given task in

a shorter duration than a VM with a lower speed. The

determination of the earliest start time (EST) for a task is

contingent upon both the task’s arrival time and the VMs idle

time. If the task arrival time is greater than the idle time, the

arrival time is considered as EST. Conversely, if the task arrival

time is less than the idle time, then the idle time is regarded as the

EST. The idle time can be task startup time if it is the first VM or

the last time the task is completed if it is other than the first VM.

For each task, MAIDQN selects the VM which can execute the

task. The load on VMs is getting more significant as the tasks are

being executed. If it goes to the maximum capacity of the VM,

the task will be rejected for execution. Once the tasks are

executed, a load is calculated for VMs, and if the load is more

than the MAIDQN procedure is repeated until the balancing is

done.

3.2 MULTI-AGENT INDEPENDENT DEEP Q

NETWORK (MAIDQN)

In the present research, MAIDQN-LB is proposed to balance

the workload in cloud heterogeneous networks. MAIDQN is an

extension of Deep Q-Networks (DQN). In DQN [24], the agent

interacts with the environment iteratively to make decisions. Each

time the agent interacts, the corresponding Q-values of the agents

representing action-state values are updated accordingly, which

enables the agent to approximate the best policy for a solitary

agent inside the provided environment. On the other side, in

multi-agent independent DQN, the interactions have been done by

multiple agents in which the action taken by one agent will

automatically influence the experiences of the different agents

involved in the interaction. The complete working of MAIDQN

is expressed as follows:

• Environment Modeling and Initialization: The environment

is modeled for multi-agent interactions using a 5-step

Markov decision process (MDP) including states (st),

actions (ac), discount factor (γ), reward function (r), and

transition probability (p). The state observations, action

spaces, and rewards have been provided to the agents by the

Task 1 Task 2 Task 3

Task 4 Task 5 Task 6

Task m-2

Task m-1

Task m

.

.

.

.

.

.

MAIDQN

VM2

VM1

VM3 VMm

Users

Tasks to be assigned

Cloud Computing Heterogeneous Network

Select suitable VM

Compute Load

Overloaded/ Under-loaded

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2024, VOLUME: 15, ISSUE: 02

3211

environment. Once the environment is modeled, each agent

is assigned an individual DQN, which includes target

networks, hyperparameters, and experience replay buffers.

• Action Selection: The action is selected by an agent at each

iteration by making a decision considering the present state

of the agent and its unique DQN. This selection is based on

the epsilon greedy approach, i.e., the agent selected the

random action with a specific probability (p). On the other

side, the highest Q-value action can also be selected. Based

on the selected action, the combined actions of all the agents

have been used to interact with the environment, which in

turn returns the next state and reward function. This is done

for each episode or epoch.

• Experience collection and Replay: Once the action has been

selected, the next state, action, and reward have been

collected by the agents, which are stored in the experience

replay buffer. This replay buffer is used during several

points in training where some mini-batches of experience

have been utilized to update the DQN of each individual

agent. The DQN algorithm operates a neural network to

estimate the Q-function, denoted as Q(st, ac). The neural

network receives the environmental states as input and

generates Q-values for every feasible action (ac). The neural

network’s weights are iteratively adjusted throughout the

training process using the stochastic gradient descent

algorithm to minimize the loss function. The loss function is

computed using a Bellman equation, which quantifies the

discrepancy between the predicted and actual Q-values. The

Bellman equation is given by the following Eq.(1):

 Q(st,ac)←Q(st,ac)+α*[r+γ*max(Q(st',ac'))-Q(st,ac)] (1)

where the temporal difference (TD) is given by r+γ*max(Qtarget

(s',a'))-Q(s,a), the learning rate is denoted by α, and the reward

and discount factor is given by r and γ. The maximum Q value

among all states and actions is given by max (Q(st', ac')).

• Multi-agent Independence: In the MAIDQN framework,

individual agents uphold their Deep DQN, and the learning

process is conducted autonomously without any

interdependence on other agents. Agents gather their

experiences and execute Q-learning updates according to

their own observations and behaviors. The autonomy

provided enables agents to acquire their respective policies

without direct communication or collaboration with other

agents.

• Update DQN and target network: The weights of each

individual DQN are updated using TD to minimize the Q-

value loss. This is followed by the updation of the target

network, which is done by copying the weights of DQN. By

doing this, the learning process is stabilized, and it helps in

preventing divergence.

• Convergence: The training procedure is iterated until the

agents of DQN reach a state of convergence, approximating

the ideal action-value function. Subsequently, the agents'

policies are employed to make decisions within the given

environment.

In the current research, the state space consists of a load of

each individual VM (load1, load2, … loadm), and the action state is

a selection of VM from multiple VMs, i.e., VM1, VM2, …. VMm,

for efficient LB. When the DQN algorithm chooses a VM for a

given job, the action value 1 is assigned to the particular VM, 0 is

assigned to the remaining VMs. For instance, in the scenario when

the mth virtual machine is chosen to carry out the assigned task,

the vector is represented as (0,0,...,1). Algorithm 1 gives a

pseudocode of MAIDQN-LB.

Algorithm 1: Pseudocode of MAIDQN-LB

Input: Tasks, VMs

Output: Balanced VMs, Performance parameters

Begin:

1. User Request for task assignment

2. Task (T) to be allocated present in a queue

3. For each task in T // Call MAIDQN

4. Select for suitable VM from a cloud computing

heterogeneous network

5. Create a state space for VMs load, i.e., load1, load2, … loadm

6. Create an action state of VM1, VM2, …. VMm

7. Select an action considering present space and independent

DQN

8. Compute Experience and Q-values for individual

independent DQN

9. Update DQN and Target network

10. Compute Convergence loss

11. End For

12. Compute Load on each VM

13. If (under-loaded or overloaded)

14. Repeat steps 3-11

15. Else

16. Stop

17. Compute Performance parameters

End

4. EXPERIMENTAL SETUP AND RESULTS

In this current research, MAIDQN-LB is presented for LB in

cloud computing heterogeneous networks. To implement the

proposed work, Python 3.9 has been utilized. The minimum

hardware requirement includes Windows 8, 8 Gb Ram, and i5

processor. CloudSim is used to perform VM simulations. The

libraries used are tensorflow, matplot lib, numpy, random, math,

and time.

4.1 PERFORMANCE PARAMETERS

To compute the performance of proposed MAIDQN, six

parameters comprising makespan time, average turnaround time,

average response time, DI, TRR, and convergence loss at different

hyper-parameters have been computed and are described below:

• Makespan time: The total time to compute all the tasks is

known as makespan time.

• Turnaround time: It is the time interval between the arrival

of a task and completion of a particular task.

• Response time: Response time pertains to the duration a

system or component requires to react to a particular event

or solicitation.

• Convergence loss: Convergence loss pertains to the

numerical representation of the loss function throughout the

iterative training procedure of MAIDQN as it approaches a

state of stability.

TANU KAISTHA AND KIRAN AHUJA: MULTI-AGENT INDEPENDENT NON-COOPERATIVE REINFORCEMENT LEARNING FOR LOAD BALANCING IN CLOUD

HETEROGENEOUS NETWORKS

3212

• Degree of Imbalance: It is the imbalance of loads between

the VMs, and the smaller the value of the DI, the more the

load is balanced between VMs. The DI is computed using

the following Eq.(2):

 DI=(Maximum load-Minimum load)/(Average load) (2)

• Task Rejection Rate: When assigning the tasks, a task is

rejected if the corresponding task violates the maximum load

condition. The TRR is computed by the given Eq.(3):

 TRR=(No. of rejected tasks)/(Total tasks) (3)

4.2 RESULTS

To compute the results of MAIDQN-LB, different types of

scenarios have been considered. In the first case scenario, the

different number of tasks comprising 2000, 4000, 6000, 8000, and

10000 tasks have been assigned to 8 VMs maintaining the load

balance. The results showed that the MAIDQN performed

effectively with a total turnaround time of 20.57 ms, 28,63 ms,

34.4 ms, 40.12 ms, and 49.28 ms, respectively. Similarly, the

average response time for all the tasks has been computed, and it

has been found that the MAIDQN performs effectively with a

minimum response time of 18.36 ms, 25.32 ms, 29.43 ms, 35.45

ms, and 45.11 ms for 2000, 4000, 6000, 8000, and 10000 tasks

respectively. The results of turnaround time and response time are

given in Table 2.

Table.2. Average turnaround time and response time for

different no. of tasks assigned to 8 VMs

No. of Tasks Turn Around time (ms) Response Time (ms)

2000 20.57 18.36

4000 28.63 25.32

6000 34.4 29.43

8000 40.12 35.45

10000 49.28 45.11

Moreover, the line plots of turnaround time and response time

have been plotted for 2000, 4000, 6000, 8000, and 10,000 tasks

assigned to 8 VMs have been plotted and shown in Fig.2.

Fig.2. Line plots for turnaround time and response time for

different no. of tasks

The trend in line plots shows the effectiveness of the proposed

MAIDQN-LB. In the second case scenario, the number of VMs

has been increased to 4, 8, 16, 24, and 32 VMs, and 8000 tasks

have been allocated. Then the corresponding turnaround and

response times are computed and shown in Table 3. The results

show that the MAIDQN-LB performed effectively by reducing

the response time and turnaround time, respectively. Moreover,

the makespan time is also computed and it is found that

MAIDQN-LB performed well with a makespan time of 80 s, 92

s, 113 s, 125 s, and 136 s for 4, 8, 16, 24, and 32 VMs respectively.

Table.3. Turnaround time and response time for different no. of

VMs

No. of VMs Turn Around time (ms) Response Time (ms)

4 50.5 45.16

8 40.12 35.45

16 28.20 21.36

24 21.10 15.5

32 15.28 9.31

The line plots have also plotted for turnaround time and

response time for different no. of VMS, and it has been found that

MAIDQN-LB performed effectively with 50.5 ms, 40.12 ms,

28.20 ms, 21.10 ms, and 15.28 ms of turnaround time and 45.16

ms, 35.45 ms, 21.36 ms, 15.5 ms, and 9.31 ms of response time

respectively. Fig.3 shows the line plot for turnaround and

response times for different no. of VMs.

Fig.3. Line plots for turnaround time and response time for

different no. of VMs

In the third case scenario, the DI and TRR has been computed

for different activation functions [25] comprising relu, selu, elu,

tanh, and sigmoid functions, and shown in Table 4 below. The

total VMs used is 8, and 8000 tasks are assigned to them. The

MAIDQN-LB runs for 100 episodes with a learning rate of e^-1

(~0.36788). The experimental findings show that the MAIDQN-

LB performed effectively with a DI and TRR values of 0.150,

0.176, 0.170, 0.207, 0.344, and 0.05994. 0.05996, 0.005991,

0.05933, and 0.3000 for the above-mentioned activation

functions.

Table.4. DI and TRR of different activation functions.

Activation Function DI TRR

relu 0.150 0.0599493

selu 0.176 0.0599697

elu 0.170 0.0599162

tanh 0.207 0.0593345

sigmoid 0.344 0.3000553

Moving ahead, the bar plot and line plot combination have

been plotted for the DI and TRR, as shown in Fig.4. As lesser the

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2024, VOLUME: 15, ISSUE: 02

3213

value of the DI and TRR, the more balanced the load on VMs is.

Therefore, the results show that the MAIDQN-LB performed best

on the tanh activation function, followed by the relu, selu, and elu

functions, and performed worst for the sigmoid activation

function.

Fig.4. Plot of a DI and TRR for different activation functions

In the following case, the DI and TRR of MAIDQN-LB for

different learning rates comprising e^-1 (~0.3678), e^-2

(~0.1353), e^-3 (~0.0497), and e^-4 (0.0183) have been computed

with relu activation function and for 100 episodes. Table 5 shows

the results of MAIDQN-LB, and it has been found that the

MAIDQN-LB gives 0.069, 0.150, 0.104, and 0.295 degrees of

imbalance values and 0.050, 0.230, 0.278, and 0.350 TRR value

for e-1, e-2, e-3, and e-4 respectively.

Table.5. DI and TRR for different learning rates

Learning Rates DI TRR

e-1 0.069 0.05036

e-2 0.150 0.23076

e-3 0.104 0.27864

e-4 0.295 0.35097

Furthermore, the plots for the DI and TRR for MAIDQN-LB’s

different learning rates and shown in Fig.5. The MAIDQN-LB

performed best on e-1 learning rate and worst on e-4 learning rate

values. In the next case, the convergence loss value has been

computed for 8000 tasks assigned to 8 VMs. The MAIDQN-LB

runs for 100 episodes with different learning rates and different

activation functions. The convergence plot is shown in Fig.6(a)

and Fig.6(b). the Fig.6(a) represents the convergence plot on

different learning rates. The convergence loss is higher for e-3,

followed by e-2, e-4, and e-1 for the first 35 episodes. This is

followed by lower loss for all the learning rates for the remaining

episodes. The Fig.6(b) shows the convergence loss of MAIDQN-

LB on different activation functions, and it shows the highest

convergence for the Selu activation function. After 40 episodes,

fewer fluctuations and a lower loss value are achieved. From the

loss value, it is found that MAIDQN-LB performed best on the e-

1 learning rate, and the Relu activation function shows a lesser loss

than other learning rates and activation functions.

Fig.5. Plots on the DI and TRR for different learning rates.

(a) Different Learning rates

(b) Different activation functions

Fig.6. Convergence loss for MAIDQN-LB on different learning

rates and activation functions

Moving ahead, the MAIDQN-LB is compared with several

existing works comprising opportunistic LB (OLB) [26], round

robin, and random LB techniques, and their corresponding DI and

TRRs have been computed. The Table.6 shows the comparison

results, and it has been found that MAIDQN-LB performed better

than the existing OLB, round robin, and random in case of a DI.

It gives a DI value of 0.23, 0.13, 0.15, and 0.27 for 2000, 5000,

8000, and 10,000, respectively. Only for TRR, OLB performed

better; for rest in all cases, MAIDQN-LB performed best with

0.07, 0.06, 0.05, and 0.06 TRR values for 2000, 5000, 8000, and

10000 tasks, respectively.

TANU KAISTHA AND KIRAN AHUJA: MULTI-AGENT INDEPENDENT NON-COOPERATIVE REINFORCEMENT LEARNING FOR LOAD BALANCING IN CLOUD

HETEROGENEOUS NETWORKS

3214

Table.6. Comparison results of MAIDQN-LB with existing

works in increasing no. of tasks.

Task /

Work

OLB Round Robin Random MAIDQN

DI TRR DI TRR DI TRR DI TRR

2000 0.85 0.01 1.3 0.08 0.9 0.17 0.23 0.07

5000 0.82 0.01 1.5 0.09 0.95 0.175 0.13 0.06

8000 0.81 0.01 1.5 0.10 0.96 0.16 0.15 0.05

10000 0.80 0.01 1.5 0.11 0.99 0.18 0.27 0.06

Additionally, line plots have been made for comparison of

MAIDQN-LB with existing works, as shown in Fig.7. Findings

show that MAIDQN-LB shows an improvement of 0.62%,

0.69%, 0.66%, and 0.53% when compared to the second-best

performing OLB technique in case of DI. Similarly, MAIDQN-

LB improves the performance by 0.01%, 0.03%, 0.05%, and

0.05% when compared with round robin regarding TRR.

Fig.7. Line plot for comparison of MAIDQN-LB with increasing

no. of tasks

In the next case scenario, MAIDQN-LB is compared with

existing work in terms of increasing no. of VMS (VM4, VM8,

VM16, VM32) and with 8000 tasks. Table 7 shows the

comparison results, and it has been found that MAIDQN-LB

performed best with 0.05, 0.15, 0.20, and 0.28 degrees of

imbalance and 0.08, 0.5, 0.03, and 0.02 TRR value for VM4,

VM8, VM16, and VM32 respectively.

Table 7. Comparison of MAIDQN-LB with existing works for

increasing no. of VMs

VMs /

Work

OLB Round Robin Random MAIDQN-LB

DI TRR DI TRR DI TRR DI TRR

4 0.70 0.01 1.1 0.17 0.9 0.20 0.05 0.08

8 0.81 0.01 1.5 0.10 0.96 0.16 0.15 0.05

16 1.3 0.01 1.7 0.05 1.3 0.10 0.20 0.03

32 2.1 0.01 2.5 0.06 2.2 0.08 0.28 0.02

Moreover, that line plots for comparison are also plotted and

shown in Fig.8. The 8000 tasks have been assigned to 4,8,16, and

32 VMs and it has been found that MAIDQN-LB improves the

performance by 0.65%, 0.66%, 1.1%, and 1.82% in terms of DI

when compared with OLB. Similarly, it shows an improvement

of 0.09%, 0.05%, 0.02%, and 0.04% compared to the round-robin

regarding TRR.

Fig.8. Comparison plots of MAIDQN-LB with increasing no. of

VMs

Additionally, MAIDQN-LB is also compared with some static

load balancing comprising RR [19], SJF [19], and FCFS [19], and

some dynamic load balancing techniques comprising Firefly [19],

IPSO [19], FF-IPSO [19], FFIMPSO [19], and LW-PSO [27] in

terms of Average TAT, and RT for 32 VMs. Table 8 shows the

comparison results for TAT, RT, and load and it is found that

RSLbestPSO performed best with average TAT of 15.28ms and

average RT of 9.31ms, respectively. It takes less TAT and RT as

compared to existing works.

Table.8. Comparison results of MAIDQN-LB in terms of

Average TAT, and RT

Work Average TAT (ms) Average RT (ms)

RR [19] 41.98 30.5

SJF [19] 41.56 30.24

FCFS [19] 41.87 30.84

Firefly [19] 55.54 48.87

IPSO [19] 57.74 49.23

FF-IPSO [19] 22.13 15.21

FFIMPSO [19] 21.09 13.58

LW-PSO [27] 20.56 12.96

MAIDQN-LB 15.28 9.31

5. CONCLUSION AND FUTURE WORK

Cloud services have experienced notable breakthroughs and a

noticeable increase in demand. Therefore, incorporating LB is

vital to optimizing resource utilization by efficiently distributing

workload across several Virtual Machines (VMs). The main goal

of this research is to tackle the difficulties associated with job

scheduling and attain optimal LB for all VMs within cloud

heterogeneous networks. To achieve this, a non-cooperative LB

method known as Multi-agent Independent Deep Q Networks

(MAIDQN-LB) is proposed to balance the workload by lessening

the response makespan times. In the user request model, the job

is first submitted to the MAIDQN model, which then selects the

best virtual machine (VM) for the supplied work. The cloud

heterogeneous platform receives the selected VMs from the

MAIDQN model after considering the present LB status of the

VMs. The MAIDQN model is trained using the environment,

which offers a reward that indicates whether the task has been

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2024, VOLUME: 15, ISSUE: 02

3215

approved or successfully finished. The MAIDQN model changes

from initial inaccuracies to increasing accuracy during training in

its decision-making process for choosing the best VM for a

particular task. The performance of proposed MAIDQN-LB is

computed using six metrics comprising makespan time, average

turnaround time, average reaction time, loss, DI, and TRR. The

results indicate that the proposed MAIDQN-LB performed

effectively when 8000 tasks were assigned to 8VMs with

40.12ms, 35.45ms, 125s, 0.15, and 0.05 value of average

turnaround time, average response time, makespan time, DI, and

TRR respectively. In the future, it is anticipated that other

dynamic LB techniques will be employed to distribute the

workload across heterogeneous cloud networks effectively.

Moreover, MAIDQN-LB can be improved by dynamically

reevaluating its task allocation decisions based on real-time

feedback from VMs. If certain VMs become overloaded or

underutilized, the algorithm can dynamically redistribute tasks to

balance the load more effectively. Additionally, it can consider

factors like VM performance metrics (e.g., CPU utilization,

memory usage) and prioritize task allocation accordingly.

REFERENCES

[1] A. Rashid and A. Chaturvedi, “Cloud Computing

Characteristics and Services a Brief Review”, International

Journal of Computer Sciences and Engineering, Vol. 7, No.

2, pp. 421-426, 2019.

[2] S. S. Tripathy, “State-of-the-Art Load Balancing Algorithms

for Mist-Fog-Cloud Assisted Paradigm: A Review and

Future Directions”, Springer, 2023.

[3] N. Kumar and N. Mishra, “Load Balancing Techniques:

Need, Objectives and Major Challenges in Cloud

Computing- A Systematic Review”, International Journal

on Computer Applications, Vol. 131, No. 18, pp. 11-19,

2015.

[4] D.A. Shafiq, N.Z. Jhanjhi and A. Abdullah, “Load

Balancing Techniques in Cloud Computing Environment: A

Review”, Journal of King Saud University - Computer and

Information Sciences, Vol. 34, No. 7, pp. 3910-3933, 2022.

[5] M.H. Al Bowarab, N.A. Zakaria and Z. Zainal Abidin,

“Load Balancing Algorithms in Software Defined

Network”, International Journal of Recent Technology and

Engineering, Vol. 7, No. 6, pp. 686-693, 2019.

[6] K.S. Gill, S. Saxena and A. Sharma, “GTM-CSec: Game

Theoretic Model for Cloud Security based on IDS and

Honeypot”, Computer Security, Vol. 92, pp. 101-109, 2020.

[7] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang and K. Li,

“Maximizing Reliability with Energy Conservation for

Parallel Task Scheduling in a Heterogeneous Cluster”,

Information Science, Vol. 319, pp. 113-131, 2015.

[8] A. Dhillon, A. Singh and V.K. Bhalla, “Biomarker

Identification and Cancer Survival Prediction using Random

Spatial Local Best Cat Swarm and Bayesian Optimized

DNN”, Applied Soft Computing, Vol. 146, pp. 110649-

110658, 2023.

[9] J. Foerster, “Stabilising Experience Replay for Deep Multi-

Agent Reinforcement Learning”, Proceedings of

International Conference on Machine Learning, Vol. 3, pp.

1879-1888, 2017.

[10] S. Mondal, G. Das and E. Wong, “A Game-Theoretic

Approach for Non-Cooperative Load Balancing among

Competing Cloudlets”, IEEE Open Journal of the

Communications Society, Vol. 1, No. 1, pp. 226-241, 2020.

[11] A. Pourghaffari, M. Barari and S. Sedighian Kashi, “An

Efficient Method for Allocating Resources in a Cloud

Computing Environment with a Load Balancing Approach”,

Concurrency and Computation: Practice and Experience,

Vol. 31, No. 17, pp. 1-15, 2019.

[12] S. Souravlas, S.D. Anastasiadou, N. Tantalaki and S.

Katsavounis, “A Fair, Dynamic Load Balanced Task

Distribution Strategy for Heterogeneous Cloud Platforms

Based on Markov Process Modeling”, IEEE Access, Vol. 10,

pp. 26149-26162, 2022.

[13] A. Mrhari and Y. Hadi, “A Load Balancing Algorithm in

Cloud Computing Based on Modified Particle Swarm

Optimization and Game Theory”, Proceedings of IEEE

World Conference on Complex Systems, pp. 1-6, 2019.

[14] W. Cai, J. Zhu, W. Bai, W. Lin, N. Zhou and K. Li, “A Cost

Saving and Load Balancing Task Scheduling Model for

Computational Biology in Heterogeneous Cloud

Datacenters”, Journal of Supercomputing, Vol. 76, No. 8,

pp. 6113-6139, 2020.

[15] J.O. Gutierrez-Garcia and A. Ramirez-Nafarrate, “Agent-

Based Load Balancing in Cloud Data Centers”, Cluster

Computing, Vol. 18, No. 3, pp. 1041-1062, 2015.

[16] A. Kishor and R. Niyogi, “Multi-Objective Load Balancing

in Distributed Computing Environment: An Evolutionary

Computing Approach”, Proceedings of the ACM Symposium

on Applied Computing, pp. 170-175, 2020.

[17] A. Asghari, M.K. Sohrabi and F. Yaghmaee, “Task

Scheduling, Resource Provisioning, and Load Balancing on

Scientific Workflows using Parallel SARSA Reinforcement

Learning Agents and Genetic Algorithm”, Journal of

Supercomputing, Vol. 77, No. 3, pp. 2800-2828, 2021.

[18] K. Ahuja, B. Singh and R. Khanna, “Network Selection in

Wireless Heterogeneous Environment by C-P-F Hybrid

Algorithm”, Wireless Personal Communications, Vol. 98,

No. 3, pp. 2733-2751, 2018.

[19] A.F.S. Devaraj, M. Elhoseny, S. Dhanasekaran, E.L. Lydia

and K. Shankar, “Hybridization of firefly and Improved

Multi-Objective Particle Swarm Optimization Algorithm for

Energy Efficient Load Balancing in Cloud Computing

Environments”, Journal of Parallel and Distributed

Computing, Vol. 142, pp. 36-45, 2020.

[20] D. Chaudhary and B. Kumar, “An Analysis of the Load

Scheduling Algorithms in the Cloud Computing

Environment: A Survey”, Proceedings of International

Conference on Industrial and Information Systems, pp. 1-6,

2015.

[21] J. Zhao, K. Yang, X. Wei, Y. Ding, L. Hu and G. Xu, “A

Heuristic Clustering-Based Task Deployment Approach for

Load Balancing using Bayes Theorem in Cloud

Environment”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 27, No. 2, pp. 305-316, 2016.

[22] S. Dhahbi, M. Berrima and F.A.M. Al Yarimi, “Load

Balancing in Cloud Computing using Worst-Fit Bin-

Stretching”, Cluster Computing, Vol. 24, No. 4, pp. 2867-

2881, 2021.

TANU KAISTHA AND KIRAN AHUJA: MULTI-AGENT INDEPENDENT NON-COOPERATIVE REINFORCEMENT LEARNING FOR LOAD BALANCING IN CLOUD

HETEROGENEOUS NETWORKS

3216

[23] A. Sundas and S.N. Panda, “An Introduction of CloudSim

Simulation tool for Modelling and Scheduling”,

Proceedings of International Conference on Emerging

Smart Computing and Informatics, pp. 263-268, 2020.

[24] W. Du and S. Ding, “A Survey on Multi-Agent Deep

Reinforcement Learning: from the Perspective of

Challenges and Applications”, Artificial Intelligence

Review, Vol. 54, No. 5, pp. 3215-3238, 2021.

[25] S. Sharma and A. Anidhya, “Understanding Activation

Functions in Neural Networks”, International Journal of

Engineering Applied Sciences and Technology, Vol. 4, No.

12, pp. 310-316, 2020.

[26] G. Patel, R. Mehta and U. Bhoi, “Enhanced Load Balanced

Min-min Algorithm for Static Meta Task Scheduling in

Cloud Computing”, Procedia Computer Science, Vol. 57,

pp. 545-553, 2015.

[27] M. Malik and S. Suman, “Lateral Wolf Based Particle

Swarm Optimization (LW-PSO) for Load Balancing on

Cloud Computing”, Wireless Personal Communications,

Vol. 125, No. 2, pp. 1125-1144, 2022.

