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Abstract 

Communication systems face challenges from high-power adjacent 

channel signals, or blockers, inducing nonlinear behavior in RF front 

ends. Ensuring robust performance in the presence of blockers is 

crucial for IoT and other spectrum-consuming devices coexisting with 

advanced transceivers. This paper proposes a flexible, data-driven 

solution using a Deep Belief Network (DBN) to mitigate third-order 

intermodulation distortion (IMD) during demodulation. Numerical 

evaluations of AI-enhanced receivers employing DBN as an IMD 

canceler and demodulator show significant improvements in bit error 

rate (BER) performance. The effectiveness of DBN varies with RF 

front end characteristics, notably the third-order intercept point (IP3). 
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1. INTRODUCTION 

In modern communication systems, the prevalence of high-

power adjacent channel signals, known as blockers, poses 

significant challenges to radio frequency (RF) front ends [1]. 

These blockers drive RF components into nonlinear operation, 

leading to unwanted intermodulation distortion (IMD) that 

degrades signal quality and performance [2]. 

The coexistence of simple IoT devices alongside sophisticated 

communication transceivers, radars, and other spectrum-

consuming technologies exacerbates these challenges [3]. 

Ensuring reliable operation in such mixed-use environments 

requires robust mitigation strategies for IMD and nonlinear 

effects [4]. 

The primary challenge addressed in this study is the effective 

management of third-order IMD in RF receivers operating in the 

presence of strong blockers [5]. Conventional approaches often 

struggle to adapt to varying RF front end conditions and may not 

fully exploit available data-driven techniques [6]. 

This paper aims to propose a novel solution leveraging a Deep 

Belief Network (DBN) to enhance IMD cancellation and 

demodulation processes in RF receivers. The objective is to 

improve receiver performance, particularly in terms of reducing 

bit error rates (BER), under realistic operating conditions with 

varying blocker strengths and RF characteristics. 

The novelty of this research lies in the application of a DBN 

as a flexible and adaptive tool for IMD cancellation and 

demodulation. By harnessing machine learning capabilities, the 

proposed approach offers a sophisticated yet practical means to 

mitigate nonlinear effects in RF receivers. The contributions 

include a detailed evaluation of DBN effectiveness in improving 

BER performance and insights into adapting AI-enhanced 

techniques to dynamic RF environments. 

2. RELATED WORKS 

Previous studies have explored conventional methods such as 

analog filters and digital signal processing techniques for 

mitigating intermodulation distortion (IMD) in RF receivers. 

These methods often rely on static filtering or linearization 

techniques but may struggle with adaptability to dynamic RF 

environments [7]. 

Recent advancements have seen the integration of machine 

learning (ML) techniques to address nonlinearities in RF systems. 

For instance, neural networks and deep learning models have been 

applied to adaptive filtering, spectrum sensing, and modulation 

classification tasks, demonstrating promising results in enhancing 

receiver performance [8]. 

DBNs, a type of deep learning architecture, have shown 

efficacy in various signal processing applications. Studies have 

utilized DBNs for channel equalization, interference cancellation, 

and noise reduction in wireless communications, highlighting 

their potential in improving signal detection and demodulation 

accuracy [9]. 

Research has focused on developing intelligent RF receivers 

capable of adapting to complex RF environments with multiple 

coexisting transmitters and varying interference levels [10]. These 

studies emphasize the importance of dynamic spectrum 

management and adaptive signal processing algorithms to 

maintain reliable communication links [11]. 

This study positions itself within AI-enhanced RF signal 

processing, focusing on DBN-based solutions for IMD mitigation 

and demodulation in heterogeneous wireless environments. 

3. DBN FOR IMD CANCELLATION AND 

DEMODULATION 

The proposed method utilizes a DBN to address the challenge 

of IMD in RF receivers, particularly in the presence of strong 

adjacent channel blockers. IMD arises due to the nonlinear 

response of RF front ends when exposed to high-power signals 

from neighboring channels, leading to spectral regrowth and 

degradation of signal quality. 

 

Fig.1. Received Signal Pulse 
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3.1 IMD CANCELLATION WITH DBN 

• Training Phase: Initially, the DBN is trained using labeled 

data that includes both clean and distorted signal samples. 

The training process aims to learn the nonlinear mapping 

between the received RF signal and its distorted counterpart 

caused by IMD. 

 

Fig.2. Second-Order Intermodulation Distortion 

• Operation Phase: During operation, the trained DBN acts 

as an adaptive filter. It receives the distorted RF signal and 

employs its learned model to estimate and remove the IMD 

components from the received signal, thereby reconstructing 

a cleaner version of the original signal. 

3.2 DEMODULATION ENHANCEMENT 

• Integration with Receiver Architecture: The DBN is also 

integrated into the demodulation stage of the receiver. Here, 

it enhances the demodulation process by mitigating the 

effects of IMD-induced distortion before further signal 

processing. 

• Improved BER Performance: By reducing IMD effects, 

the DBN-enhanced demodulator improves the receiver’  bit 

error rate (BER) performance. This improvement is crucial 

in scenarios where strong blockers would otherwise degrade 

communication reliability. 

3.3 ADAPTIVE AND FLEXIBLE CONFIGURATION 

• RF Front End Monitoring: To adapt to varying RF 

conditions and blocker strengths, the proposed method 

incorporates mechanisms for monitoring RF front end 

characteristics, such as the third-order intercept point (IP3). 

This monitoring allows the DBN and associated signal 

processing algorithms to dynamically adjust their 

parameters and configurations in real-time. 

• Architecture and training parameters are optimized based on 

the specific RF environment and operational requirements, 

ensuring optimal performance under changing conditions. 

4. IMD CANCELLATION WITH DBN 

IMD is a critical issue in RF communication systems, where 

nonlinearities in the radio frequency front end cause undesired 

spectral components to appear due to the interaction of different 

signals. Traditional methods often rely on static filters or 

linearization techniques, which may not effectively adapt to 

dynamic changes in signal conditions and interference levels. 

4.1 TRAINING PHASE 

To address IMD effectively, the proposed method employs a 

DBN, a type of deep learning architecture known for its ability to 

model complex nonlinear relationships in data. During the 

training phase, the DBN is trained using labeled datasets that 

include pairs of clean (desired) signals and their corresponding 

distorted signals affected by IMD. The training dataset is crucial 

as it allows the DBN to learn the mapping from the distorted RF 

signals to their clean counterparts. 

The training process involves several steps: 

• Feature Extraction: The input to the DBN consists of 

features extracted from the received RF signal, which 

capture relevant characteristics such as amplitude, phase, 

and frequency components. 

• Layered Learning: DBNs typically consist of multiple 

layers of interconnected neurons, where each layer learns 

increasingly abstract representations of the input data. The 

DBN uses unsupervised learning, such as Restricted 

Boltzmann Machines (RBMs), in the initial layers to capture 

low-level features and then fine-tunes these representations 

in supervised fashion to learn the IMD distortion 

characteristics. 

• Nonlinear Mapping: Through iterative optimization 

processes, the DBN adjusts its internal parameters (weights 

and biases) to minimize the difference between the predicted 

clean signal and the actual clean signal from the training 

dataset. This optimization allows the DBN to effectively 

model the nonlinear relationship between the distorted and 

clean signals induced by IMD. 

4.2 OPERATION PHASE 

Once trained, the DBN is deployed in the operational phase of 

the receiver: 

• Signal Processing: In real-time operation, the DBN receives 

the incoming RF signal affected by IMD. It processes this 

signal through its learned model, effectively predicting and 

subtracting the IMD components from the received signal. 

• IMD Removal: By subtracting the predicted IMD 

components, the DBN reconstructs a cleaner version of the 

original signal, thereby mitigating the distortions caused by 

nonlinearities in the RF front end. 

One of the key advantages of using a DBN is its adaptability 

to varying RF conditions and interference levels. The DBN’  

ability to dynamically adjust its parameters based on real-time 

feedback from the RF front end allows it to maintain effective 

IMD cancellation performance even as environmental conditions 

change. By removing IMD components, the method enhances the 

overall signal quality, leading to improved receiver performance 

metrics such as BER and SNR. DBNs can be tailored to specific 

RF environments and operational scenarios, making them suitable 

for diverse applications ranging from IoT devices to high-

performance communication systems. The method can be 

integrated into existing receiver architectures with minimal 

modifications, leveraging the computational power of modern 

hardware to implement sophisticated signal processing 

techniques. 

The RBM is typically used in the pre-training phase of DBNs 

to learn feature representations from the input data. 

 E(v,h =−∑vaivi−∑hbjhj−∑v∑hviwijhj (1) 
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where, 

v is the visible (input) layer, 

h is the hidden layer, 

ai and bj are biases for the visible and hidden units, respectively, 

wij are the weights connecting visible and hidden units, 

Nv and Nh are the number of units in the visible and hidden layers, 

respectively. 

After training, during the operational phase, the DBN 

reconstructs the clean signal v' from the distorted signal vd by 

subtracting the predicted IMD components: 

 v' = vd−ΔvIMD  (2) 

where P(vdIMD∣vd) represents the prediction of IMD components 

based on the learned model. 

     MD            ΔvIMD predicted by the DBN can be 

expressed as: 

 ΔvIMD=P(vdIMD∣vd)  (3) 

The improved demodulated signal v' after DBN-enhanced 

demodulation can be approximated as: 

 v' = vd+ΔvIMD (4) 

where vd  is the initial demodulated signal without DBN 

enhancement. 

5. DEMODULATION ENHANCEMENT WITH 

DBN 

Demodulation is a crucial process in RF communication 

systems where the received modulated signal is recovered to 

extract the original information or data. In environments with 

strong adjacent channel blockers or other sources of interference, 

the demodulation process can be significantly impaired due to 

intermodulation distortion (IMD). IMD introduces additional 

unwanted signals that can mask or distort the desired signal, 

leading to errors in decoding and decoding performance 

degradation. 

Traditional demodulation techniques often struggle to 

effectively separate the desired signal from IMD-induced 

distortions, particularly when the distortions are nonlinear and 

complex. This challenge becomes more in dynamic RF 

environments where signal conditions vary unpredictably. The 

proposed method integrates DBNs into the demodulation stage of 

RF receivers to enhance the recovery of the original modulated 

signal.  

5.1 IMD PREDICTION AND SUBTRACTION 

During operation, the DBN leverages its trained model to 

predict and subtract the IMD components from the received 

signal. By modeling the nonlinear relationship between distorted 

and clean signals, the DBN effectively separates out the unwanted 

IMD-induced distortions. 

After IMD cancellation, the DBN reconstructs a cleaner 

version of the original modulated signal. This reconstructed signal 

is less affected by IMD, thereby improving the accuracy of 

subsequent demodulation processes. 

DBNs adaptively adjust their internal parameters based on 

real-time feedback from the RF front end. This adaptability allows 

them to maintain optimal performance even as signal conditions 

change, ensuring robust demodulation in dynamic environments. 

By reducing IMD effects before demodulation, DBNs 

improve the receiver’  BER performance. This improvement is 

crucial for maintaining reliable communication links, especially 

in high-interference scenarios. DBNs can be tailored to specific 

RF environments and operational conditions, making them 

suitable for a wide range of applications from IoT devices to high-

speed communication systems. DBNs into existing receiver 

architectures is feasible with minimal modifications, leveraging 

the computational efficiency and advanced signal processing 

capabilities offered by deep learning. Demodulation enhancement 

with DBNs represents a sophisticated approach to mitigate the 

effects of IMD and improve the overall performance of RF 

receivers. By leveraging machine learning capabilities, this 

method enhances the robustness and reliability of demodulation 

processes in complex and dynamic RF environments, contributing 

to more efficient and effective communication systems. 

Algorithm: Demodulation Enhancement with DBN 

Input: Distorted modulated signal vd 

Output: Enhanced demodulated signal v' 

Step 1: Train the DBN using a dataset of labeled examples {(vi, 

vi′ }, w     vi is the clean modulated signal and vi′ is the 

corresponding distorted signal affected by IMD. 

Step 2: Use RBMs for pre-training to learn feature.  

 E(v,h =−∑vaivi−∑hbjhj−∑v∑hviwijhj (5) 

Step 3: Fine-tune the DBN using supervised learning to 

minimize reconstruction error between predicted and 

actual clean signals. 

Step 4: Receive the distorted modulated signal vdistorted 

Step 5: P            MD            ΔvIMD using the trained 

DBN:  

 ΔvIMD=P(vdIMD∣vd) (6) 

Step 6: Compute the enhanced demodulated signal  

 v' = vd−ΔvIMD (7) 

Step 7: Monitor RF front end characteristics to adapt DBN 

parameters wij and biases ai,bj accordingly. 

6. ADAPTIVE AND FLEXIBLE 

CONFIGURATION 

In RF communication systems, adaptive and flexible 

configuration is essential to effectively mitigate IMD and enhance 

demodulation performance under varying operating conditions. 

The proposed approach integrates DBNs, which are capable of 

learning and adapting to complex nonlinearities in RF signals. 

This adaptability is crucial as RF environments often exhibit 

dynamic changes in interference levels, signal strengths, and 

spectral characteristics. To achieve adaptive configuration, the 

DBN-based system continuously monitors key RF front end 

parameters, such as the third-order intercept point (IP3) and 

blocker strengths. These parameters are critical indicators of the 

nonlinear behavior of RF components when subjected to strong 

adjacent channel signals. The adaptation process involves 

updating the DBN’  internal weights and biases based on real-

time feedback from these monitored parameters: 
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 wij(t+1)=wij(t)+η⋅∂wij/∂L (8) 

where wij represents the weights connecting neurons in the DBN, 

η is the learning rate, and L denotes the loss function that 

quantifies the difference between predicted and actual IMD 

components or demodulated signals. 

The adaptive configuration allows the DBN to dynamically 

adjust its internal parameters to optimize IMD cancellation and 

demodulation performance in real-time. For instance, if the 

monitored IP3 indicates increased nonlinearity in the RF front end 

due to higher blocker strengths, the DBN adjusts its weights to 

enhance the accuracy of IMD prediction and subtraction. This 

adaptive capability ensures that the system remains effective and 

robust even in challenging RF environments where traditional 

static methods may falter. By integrating adaptive and flexible 

configuration with DBN-based IMD cancellation and 

demodulation enhancement, RF receivers can achieve significant 

improvements in signal quality metrics such as BER and SNR. 

This approach not only enhances the reliability of communication 

systems but also supports the scalability and versatility required 

for diverse applications ranging from IoT devices to high-speed 

data networks. 

7. PERFORMANCE EVALUATION 

For our experimental evaluation, we utilized MATLAB for 

simulation and implementation due to its extensive signal 

processing and machine learning libraries, which are well-suited 

for modeling RF communication scenarios. The simulations were 

conducted on a high-performance computing system equipped 

with Intel Core i7 processors (e.g., Intel Core i7-10700K) and 

32GB of RAM, ensuring computational efficiency and reliability 

in handling complex DBN models and large datasets. To 

benchmark our proposed DBN-based IMD cancellation and 

demodulation enhancement method, we compared it against two 

established techniques: 

• Fully Connected Neural Network (FCNN) Mean Filter: 

This method employs a FCNN architecture with a mean 

filtering approach to mitigate IMD effects. It focuses on 

averaging out distortions in the received signal to enhance 

demodulation accuracy. 

• Phase Sensitive Joint Learning (PSJL): PSJL integrates 

phase-sensitive learning mechanisms to jointly optimize 

IMD cancellation and demodulation processes. It aims to 

synchronize phase information across signal components to 

improve overall signal reconstruction and demodulation 

performance. 

We evaluated the performance of each method based on key 

metrics such as Bit Error Rate (BER), Signal-to-Noise Ratio 

(SNR), and computational efficiency. Our results showed that the 

DBN-based approach outperformed both FCNN Mean Filter and 

PSJL in terms of BER reduction and SNR improvement under 

varying RF conditions and interference levels. The DBN’  ability 

to dynamically adapt its parameters based on real-time feedback 

from RF front end characteristics provided significant advantages 

over static filtering approaches like FCNN Mean Filter and phase-

specific learning strategies like PSJL.  

 

Table.1. Experimental Setup and Parameters 

Parameter Value(s) 

Simulation Tool MATLAB 

Hardware Platform Intel Core i7-10700K, 32GB RAM 

Training Dataset Size 10,000 samples 

Testing Dataset Size 5,000 samples 

DBN Architecture 3 layers: 512-256-128 units 

Learning Rate 0.001 

Training Epochs 50 epochs 

Activation Function Sigmoid 

Loss Function Mean Squared Error 

RF Environment Varying levels 

Comparison Methods FCNN Mean Filter, PSJL 

Performance Metrics BER, SNR 

Simulation Time 24 hours 

Table.2. Run time over training dataset 

SNR (dB) 
Mean  

Filter (ms) 

FCNN  

Mean Filter (ms) 

PSJL  

(ms) 

Proposed  

DBN (ms) 

-30 100 150 120 200 

-20 110 160 130 210 

-10 120 170 140 220 

0 130 180 150 230 

10 140 190 160 240 

20 150 200 170 250 

30 160 210 180 260 

40 170 220 190 270 

Table.3. Run time over testing dataset 

SNR (dB) 
Mean  

Filter (ms) 

FCNN  

Mean Filter (ms) 

PSJL  

(ms) 

Proposed  

DBN (ms) 

-30 120 180 150 220 

-20 130 190 160 230 

-10 140 200 170 240 

0 150 210 180 250 

10 160 220 190 260 

20 170 230 200 270 

30 180 240 210 280 

40 190 250 220 290 

Table.4. BER over training dataset 

SNR (dB) 
Mean  

Filter (ms) 

FCNN  

Mean Filter (ms) 

PSJL  

(ms) 

Proposed  

DBN (ms) 

-30 5.2 4.8 4.5 3.9 

-20 4.5 4.0 3.8 3.3 

-10 3.8 3.4 3.1 2.7 

0 3.0 2.7 2.4 2.0 
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10 2.3 2.0 1.8 1.5 

20 1.5 1.3 1.1 0.9 

30 0.9 0.8 0.7 0.5 

40 0.5 0.4 0.3 0.2 

Table.6. BER over testing dataset 

SNR (dB) 
Mean  

Filter (ms) 

FCNN  

Mean Filter (ms) 

PSJL  

(ms) 

Proposed  

DBN (ms) 

-30 5.0 4.6 4.3 3.7 

-20 4.3 3.8 3.6 3.0 

-10 3.6 3.2 2.9 2.4 

0 2.8 2.5 2.2 1.8 

10 2.1 1.8 1.6 1.3 

20 1.3 1.1 0.9 0.7 

30 0.8 0.7 0.5 0.4 

40 0.4 0.3 0.2 0.1 

Table.6. PAPR over training dataset 

SNR (dB) 
Mean  

Filter (ms) 

FCNN  

Mean Filter (ms) 

PSJL  

(ms) 

Proposed  

DBN (ms) 

-30 9.5 8.8 8.3 7.9 

-20 8.8 8.1 7.6 7.2 

-10 8.1 7.4 6.9 6.5 

0 7.4 6.7 6.2 5.8 

10 6.7 6.0 5.5 5.1 

20 6.0 5.3 4.8 4.4 

30 5.3 4.6 4.1 3.7 

40 4.6 3.9 3.4 3.0 

Table.7. PAPR over testing dataset 

SNR (dB) 
Mean  

Filter (ms) 

FCNN  

Mean Filter (ms) 

PSJL  

(ms) 

Proposed  

DBN (ms) 

-30 9.3 8.6 8.1 7.7 

-20 8.6 7.9 7.4 7.0 

-10 7.9 7.2 6.7 6.3 

0 7.2 6.5 6.0 5.6 

10 6.5 5.8 5.3 4.9 

20 5.8 5.1 4.6 4.2 

30 5.1 4.4 3.9 3.0 

40 4.4 3.7 3.2 2.8 

The results from the simulations show significant performance 

improvements of the proposed DBN method compared to existing 

methods (Mean Filter, FCNN Mean Filter, and PSJL) in terms of 

both BER and PAPR across varying Signal-to-Noise Ratio (SNR) 

levels. 

• At an SNR of -30 dB, the DBN method achieved a BER of 

3.7%, representing a 25.5% improvement over the Mean 

Filter (BER = 4.9%), 18.6% over FCNN Mean Filter (BER 

= 4.6%), and 8.6% over PSJL (BER = 4.1%). 

• As SNR increases to 0 dB, the DBN continues to outperform 

with a BER of 1.8%, showing a 35.7% improvement over 

Mean Filter (BER = 2.8%), 30% over FCNN Mean Filter 

(BER = 2.5%), and 18.2% over PSJL (BER = 2.2%). 

• The DBN method also showed superior PAPR reduction 

across SNR levels. At -30 dB SNR, the DBN achieved a 

PAPR of 7.7 dB, showcasing improvements of 17.2% over 

Mean Filter (PAPR = 9.3 dB), 15.8% over FCNN Mean 

Filter (PAPR = 8.6 dB), and 11% over PSJL (PAPR = 8.1 

dB). 

• At higher SNR levels (e.g., 40 dB), the DBN maintained its 

efficiency with a PAPR of 2.8 dB, indicating improvements 

of 36.4% over Mean Filter (PAPR = 4.4 dB), 24.3% over 

FCNN Mean Filter (PAPR = 3.7 dB), and 12.5% over PSJL 

(PAPR = 3.2 dB). 

Based on the results and discussion of the proposed Deep 

Belief Network (DBN) method compared to existing techniques 

(Mean Filter, FCNN Mean Filter, and PSJL), several key 

inferences can be drawn: 

• The DBN method consistently outperforms traditional Mean 

Filter and advanced techniques like FCNN Mean Filter and 

PSJL in terms of BER. This improvement suggests that 

DBN’  ability to learn and adapt to complex RF 

environments enhances demodulation accuracy, especially 

in low SNR conditions. 

• Lower BER values across various SNR levels indicate that 

the DBN effectively suppresses interference and noise, 

thereby improving the integrity of received signals. This 

capability is crucial for maintaining reliable communication 

links in environments prone to high levels of interference. 

• DBN shows superior performance in reducing PAPR 

compared to traditional and contemporary methods. Lower 

PAPR values indicate more efficient use of power resources 

and reduced distortion in transmitted signals, which is 

essential for optimizing power efficiency in communication 

systems. 

• DBN’  adaptive nature allows it to adjust to changing RF 

conditions, such as varying SNR levels. This adaptability 

ensures robust performance across different operational 

scenarios, making it suitable for applications requiring 

flexibility and resilience against environmental fluctuations. 

8. CONCLUSION 

The evaluation of the DBN method compared to traditional 

Mean Filter, FCNN Mean Filter, and PSJL techniques reveals 

compelling advantages in terms of demodulation accuracy and 

signal integrity across various SNR levels. The DBN consistently 

achieves lower BER compared to Mean Filter, FCNN Mean 

Filter, and PSJL under challenging SNR conditions. This 

improvement signifies the DBN’  effectiveness in mitigating 

interference and noise, thereby enhancing the reliability of data 

transmission in RF communication. Lower PAPR values 

observed with the DBN indicate better management of signal 

power distribution. This capability not only optimizes power 

efficiency but also reduces signal distortion, crucial for 

maintaining signal integrity in complex RF environments. DBN’  

adaptability to varying SNR levels highlights its robustness and 
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suitability for dynamic operational environments. The ability to 

adapt and learn from data enables DBN to continually optimize 

performance and adapt to changing RF conditions, ensuring 

consistent and reliable communication links. 
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