
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2024, VOLUME: 15, ISSUE: 02
DOI: 10.21917/ijct.2024.0480

3223

AN ENSEMBLE ADAPTIVE REINFORCEMENT LEARNING BASED EFFICIENT

LOAD BALANCING IN MOBILE AD HOC NETWORKS

G. Rajiv Suresh Kumar1 and G. Arul Geetha2
1Department of Information Technology, Hindusthan College of Engineering and Technology, India

2Department of Computer Science, Bishop Appasamy College of Arts and Science, India

Abstract

This research work introduces an Ensemble Adaptive Reinforcement

Learning (EARL) approach for efficient load balancing in Mobile Ad

Hoc Networks (MANETs). Traditional methods often fail to adapt to

the dynamic nature of MANETs, leading to congestion and

inefficiency. EARL leverages multiple reinforcement learning agents,

trained with Q-learning and Deep Q-Networks (DQN), to optimize

routing decisions based on real-time network conditions. The ensemble

mechanism combines the strengths of individual agents, enhancing

adaptability and performance. Simulation results demonstrate that

EARL significantly outperforms traditional methods like AODV and

DSR, achieving higher packet delivery ratios, lower end-to-end delays,

increased throughput, better energy efficiency, and reduced packet

loss, thereby proving its effectiveness in dynamic network

environments.

Keywords:

Ad Hoc Networks, Load Balancing, Adaptive, Learning, Efficient

1. INTRODUCTION

Mobile ad hoc networks, also known as MANETs, have

rapidly become a popular means of networking since they are easy

to use, have a low-cost structure, and can perform well over

greater areas. Due to the absence of a major control node, the

networks have the potential to become highly slow and

inefficient. This circumstance presents a challenge for resource

allocation algorithms, even though the comfort level has grown

[1]. There are a variety of research companies that have provided

excellent resource allocation systems that employ a wide variety

of strategies to address this problem. Within the context of cloud

computing, a wide range of approaches to the distribution of

MANET resources are presented as potential options [2].

Methods that utilize cloud computing have the potential to

create better overall community performance than other

techniques. This is since cloud computing can maximize

resources across a huge region with less effect from visitor

congestion. Postpone throughput, dependability, and efficiency

are the three parameters that can be utilized to measure the

effectiveness of these algorithms [3].

When it comes to the distribution of assistance, a solid set of

guidelines ought to perform well in all three of these categories.

Since it has an immediate impact on the entire reaction time of the

consumer, delay is an essential statistic that should be considered

when evaluating the effectiveness of a set of rules for allocation

inevitable that latency will grow as extra resources are allocated

because of the overhead that is necessary to process requests.

Throughput is an important attribute because efficient resource

allocation algorithms need to be able to handle applications that

are very sensitive to networks with limited bandwidth. This is

because throughput is a measure of communication speed. The

reliability of an allocation algorithm is therefore an essential

component in establishing the effectiveness of the method [4].

Customers will not find much use for a method for aid

allocation if it is unable to provide trustworthy overall

performance in situations when there is a considerable amount of

competition. The process may get even more complicated if cloud

algorithms are incorporated into MANET resource allocation

algorithm evaluations. This is because the overall performance of

the algorithms will now need to be examined within the standard

system. The algorithms that are stored in the cloud could optimize

assets across a vast area; nevertheless, there are certain

circumstances in which they will not deliver ideal results, which

will result in a decrease in performance. To determining how

efficient cloud computing algorithms are at distributing resources,

it is necessary to conduct simulations in order to see the outcomes

of various situations that occur in the real world [5].

Researchers can make use of these simulations in order to

examine the robustness of the algorithms under a variety of

scenarios, which ultimately assists them in developing more

effective allocation methods. The methodologies that are typically

used in cloud computing offer an up-to-date method for

optimizing assets in MANETs. A proper evaluation of these

algorithms and the development of more robust aid allocation

mechanisms requires an efficient evaluation approach that

simulates the conditions of real-world networks. This is important

to ensure that the evaluation is accurate. Cellular ad hoc networks,

also known as MANETs, are utilized by a multitude of military

and civilian applications to deliver a variety of services. These

services include disaster aid, vehicle programs, and rapid network

deployment. These services are provided without the necessity of

establishing permanent communication links [6].

In line with the development of MANETs, there has been an

increase in the desire for resource allocation strategies that are less

harmful to the environment. The dilemma of how to most

effectively distribute resources in these kinds of networks can be

solved in a realistic manner by using algorithms that are

performed on the cloud. By examining records and employing

sophisticated modeling approaches, algorithms in the cloud can

extract insight from complex datasets. This is accomplished to

determine the most effective ways to distribute resources.

In MANETs, it is feasible to make more efficient use of the

resources that are available by combining these concepts with

operational strategies for the distribution of those resources.

Methods of cloud computing have the potential to improve

communication latency, congestion control, and strength intake,

in addition to achieving the most effective utilization of valuable

assistance. Algorithms in the cloud can, as they should, sense the

quality solutions for certain network scenarios. This is in addition

to ensuring that assets are used appropriately. MANETs present a

difficult challenge when it comes to resource allocation because

G RAJIV SURESH KUMAR AND G ARULGEETHA: AN ENSEMBLE ADAPTIVE REINFORCEMENT LEARNING BASED EFFICIENT LOAD BALANCING IN MOBILE AD HOC

NETWORKS

3224

of the many different spoken communication settings and the

mobility of the nodes [7].

Inefficiency, low scalability, and dynamic source switching

are only some of the issues that plague traditional solutions

despite their many advantages [8]. Cloud computing methods

have the potential to provide more effective and dependable asset

control in MANETs. This is accomplished by enabling users to

make decisions based on real-time data evaluation and improved

modeling methodologies. In addition, the techniques for

allocating help in the cloud have the potential to lessen the

likelihood of resource over-allocation, which can result in

congestion or other problems related to intelligence [9]. Through

the utilization of algorithms hosted in the cloud, administrators of

cell communities can rapidly adjust to new situations by gaining

an understanding of which resource allocation strategies are most

effective for their MANETs.

2. PROPOSED METHOD

The proposed method, named Ensemble Adaptive

Reinforcement Learning (EARL), aims to enhance load balancing

efficiency in Mobile Ad Hoc Networks (MANETs). This method

integrates multiple reinforcement learning (RL) agents, each

adapted to different network conditions, and combines their

outputs to make informed routing decisions. The core idea is to

leverage the strengths of various RL agents to handle the dynamic

and unpredictable nature of MANETs. EARL uses Q-learning and

Deep Q-Networks (DQN) to adaptively distribute the network

load, reducing congestion and improving overall network

performance. Each RL agent learns optimal policies for load

balancing based on real-time feedback from the network

environment, and an ensemble decision mechanism aggregates

these policies to select the best action for routing data packets.

2.1 ENSEMBLE ADAPTIVE REINFORCEMENT

LEARNING BASED LOAD BALANCING

The proposed Ensemble Adaptive Reinforcement Learning

(EARL) method for load balancing in Mobile Ad Hoc Networks

(MANETs) is designed to dynamically manage network traffic

and improve overall performance. MANETs are characterized by

their highly dynamic and unpredictable nature due to node

mobility and varying network conditions. Traditional load

balancing methods often struggle to adapt to these changing

conditions, leading to congestion, packet loss, and inefficient

resource utilization.

EARL addresses these challenges by leveraging the strengths

of multiple reinforcement learning (RL) agents. Each RL agent is

trained using different RL algorithms, such as Q-learning and

Deep Q-Networks (DQN), to optimize routing decisions based on

specific network conditions. By training multiple agents on varied

scenarios, EARL creates an ensemble of agents, each capable of

handling different aspects of the network’s dynamics.

In operation, each RL agent continuously learns and updates

its policy based on real-time feedback from the network. The

agents monitor key network metrics, such as node load, link

quality, and mobility patterns, to make informed routing

decisions. The ensemble approach aggregates the outputs of these

agents, combining their learned policies to select the best possible

route for data packets. This ensemble decision mechanism ensures

that the most suitable agent’s policy is applied to current network

conditions, leading to improved load balancing and network

performance.

EARL’s adaptive nature allows it to dynamically adjust to the

network’s state, distributing the load more evenly across nodes

and avoiding congestion. This results in higher packet delivery

ratios, lower end-to-end delays, and increased throughput.

Additionally, EARL’s energy-efficient routing decisions help

extend the battery life of network nodes, which is crucial for the

sustainability of MANETs.

2.1.1 Pseudocode: EARL:

class RLAgent:

 def __init__(self, agent_id, algorithm):

 self.agent_id = agent_id

 self.algorithm = algorithm

 self.q_table = {} # Q-table for Q-learning

 self.dqn_model = None # Model for DQN if applicable

 self.epsilon = 0.1 # Exploration rate

 self.learning_rate = 0.01 # Learning rate

 self.discount_factor = 0.9 # Discount factor

 def choose_action(self, state):

 if random.random() < self.epsilon:

 return random_action() # Exploration

 else:

 return self.best_action(state) # Exploitation

 def best_action(self, state):

 if self.algorithm == "Q-learning":

 return max(self.q_table[state],

key=self.q_table[state].get)

 elif self.algorithm == "DQN":

 return self.dqn_model.predict(state)

 else:

 return random_action()

 def update(self, state, action, reward, next_state):

 if self.algorithm == "Q-learning":

 self.q_table[state][action] = (1 - self.learning_rate) *

self.q_table[state][action] + \

 self.learning_rate * (reward +

self.discount_factor * max(self.q_table[next_state].values()))

 elif self.algorithm == "DQN":

 self.dqn_model.train(state, action, reward, next_state)

def ensemble_decision(agents, state):

 actions = [agent.choose_action(state) for agent in agents]

 best_action = select_best_action(actions) # Function to

aggregate and select the best action

 return best_action

Simulation setup

agents = [RLAgent(agent_id=1, algorithm="Q-learning"),

 RLAgent(agent_id=2, algorithm="DQN"),

 RLAgent(agent_id=3, algorithm="Q-learning"),

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2024, VOLUME: 15, ISSUE: 02

3225

 RLAgent(agent_id=4, algorithm="DQN"),

 RLAgent(agent_id=5, algorithm="Q-learning")]

Simulation loop

while network_is_active:

 for node in network_nodes:

 state = node.get_state()

 best_action = ensemble_decision(agents, state)

 reward, next_state = node.perform_action(best_action)

 for agent in agents:

 agent.update(state, best_action, reward, next_state)

Function to select the best action from the ensemble

def select_best_action(actions):

 action_counts = Counter(actions)

 return action_counts.most_common(1)[0][0]

2.1.2 Algorithm: Load Balancing:

1) Initialization:

a) Initialize multiple RL agents with different RL algorithms

(e.g., Q-learning, DQN).

b) Set initial parameters for each agent, including Q-tables,

DQN models, exploration rates, learning rates, and

discount factors.

c) Deploy network nodes in the simulation environment with

specified parameters (e.g., node mobility, transmission

range, traffic type).

2) Network Monitoring:

a) Continuously monitor the network state, including metrics

like node load, link quality, and mobility patterns.

b) Each node periodically collects state information and

communicates it to the RL agents.

3) Action Selection:

a) For each node, use the ensemble decision mechanism to

select the best action for routing data packets.

b) Each RL agent evaluates the current state and proposes an

action based on its learned policy.

c) Aggregate the proposed actions from all agents and select

the most suitable action using a predefined selection

strategy (e.g., majority voting, weighted average).

4) Data Transmission:

a) Nodes perform the selected routing actions to transmit data

packets.

b) Record the outcomes of these actions, including rewards

(e.g., successful packet delivery, reduced latency) and the

next state of the network.

5) Learning and Update:

a) Update each RL agent’s knowledge based on the observed

rewards and the next state.

b) For Q-learning agents, update the Q-values using the Q-

learning update rule.

c) For DQN agents, train the DQN models using the observed

state-action-reward-next state tuples.

2.1.3 Pseudocode: Load Balancing:

class RLAgent:

 def __init__(self, agent_id, algorithm):

 self.agent_id = agent_id

 self.algorithm = algorithm

 self.q_table = {}

 self.dqn_model = None

 self.epsilon = 0.1

 self.learning_rate = 0.01

 self.discount_factor = 0.9

 def choose_action(self, state):

 if random.random() < self.epsilon:

 return random_action()

 else:

 return self.best_action(state)

 def best_action(self, state):

 if self.algorithm == "Q-learning":

 return max(self.q_table[state],

key=self.q_table[state].get)

 elif self.algorithm == "DQN":

 return self.dqn_model.predict(state)

 else:

 return random_action()

 def update(self, state, action, reward, next_state):

 if self.algorithm == "Q-learning":

 self.q_table[state][action] = (1 - self.learning_rate) *

self.q_table[state][action] + \

 self.learning_rate * (reward +

self.discount_factor * max(self.q_table[next_state].values()))

 elif self.algorithm == "DQN":

 self.dqn_model.train(state, action, reward, next_state)

def ensemble_decision(agents, state):

 actions = [agent.choose_action(state) for agent in agents]

 best_action = select_best_action(actions)

 return best_action

def select_best_action(actions):

 action_counts = Counter(actions)

 return action_counts.most_common(1)[0][0]

Simulation setup

agents = [RLAgent(agent_id=1, algorithm="Q-learning"),

 RLAgent(agent_id=2, algorithm="DQN"),

 RLAgent(agent_id=3, algorithm="Q-learning"),

 RLAgent(agent_id=4, algorithm="DQN"),

 RLAgent(agent_id=5, algorithm="Q-learning")]

Simulation loop

while network_is_active:

 for node in network_nodes:

 state = node.get_state()

G RAJIV SURESH KUMAR AND G ARULGEETHA: AN ENSEMBLE ADAPTIVE REINFORCEMENT LEARNING BASED EFFICIENT LOAD BALANCING IN MOBILE AD HOC

NETWORKS

3226

 best_action = ensemble_decision(agents, state)

 reward, next_state = node.perform_action(best_action)

 for agent in agents:

 agent.update(state, best_action, reward, next_state)

3. RESULTS AND DISCUSSION

The experimental setup involves a simulation environment

created using the Network Simulator 3 (NS-3). The simulation is

run on a cluster of high-performance computers equipped with

Intel I7 processors and 128 GB of RAM. The network topology

consists of 50 mobile nodes distributed randomly in a 1000m x

1000m area. Nodes move according to the Random Waypoint

Mobility Model with a maximum speed of 10 m/s. Performance

metrics such as packet delivery ratio (PDR), end-to-end delay, and

throughput are used to evaluate the proposed method. EARL’s

performance is compared with traditional load balancing methods

like Ad hoc On-Demand Distance Vector (AODV) and Dynamic

Source Routing (DSR) protocols. Results show that EARL

outperforms these traditional methods in terms of PDR, delay, and

throughput, demonstrating its effectiveness in managing network

load in dynamic MANET environments.

Table.1. Settings and Parameters

Parameter Value

Simulation Tool NS-3

Network Area 1000m x 1000m

Number of Nodes 50

Mobility Model Random Waypoint

Maximum Node Speed 10 m/s

Transmission Range 250 meters

Traffic Type Constant Bit Rate (CBR)

Packet Size 512 bytes

Simulation Duration 900 seconds

Number of RL Agents 5

RL Algorithms Q-learning, Deep Q-Networks

Hardware Used Intel I7 processors, 128 GB RAM

3.1 PERFORMANCE METRICS

• Packet Delivery Ratio (PDR): This metric measures the

ratio of the number of packets successfully delivered to the

destination to the total number of packets sent by the source.

It indicates the reliability and effectiveness of the routing

protocol in ensuring data packet delivery despite network

dynamics and potential link failures.

• End-to-End Delay: This metric calculates the average time

taken for a data packet to travel from the source to the

destination. It includes all possible delays caused by route

discovery, queuing at the interface queue, retransmissions at

the MAC layer, and propagation and transfer times. Lower

end-to-end delay signifies a more efficient routing protocol

in delivering data quickly across the network.

• Throughput: Throughput is the rate at which data packets

are successfully delivered over the network, typically

measured in bits per second (bps). Higher throughput

indicates better network performance and efficiency in

handling and transmitting large volumes of data.

Table.2. Performance Metrics

Number of

Nodes
Method

Packet

Delivery

Ratio (PDR)

End-to-End

Delay

(ms)

Throughput

(Mbps)

2500

AODV 85.3% 120 1.5

DSR 82.7% 130 1.4

EARL 91.5% 100 1.8

5000

AODV 83.2% 150 1.4

DSR 80.5% 160 1.3

EARL 90.2% 130 1.7

7500

AODV 81.0% 170 1.3

DSR 78.9% 180 1.2

EARL 88.7% 140 1.6

10000

AODV 79.5% 200 1.2

DSR 77.0% 210 1.1

EARL 87.3% 160 1.5

Table.3. Energy Metrics

Number of

Nodes
Method

Energy

Efficiency

(J/bit)

Residual

Energy (J)

Packet

Loss (%)

2500

AODV 0.006 4500 14.7

DSR 0.007 4600 17.3

EARL 0.004 4700 8.5

5000

AODV 0.008 9000 16.8

DSR 0.009 9200 19.5

EARL 0.005 9400 9.8

7500

AODV 0.009 13500 19.0

DSR 0.010 13800 21.1

EARL 0.006 14200 11.3

10000

AODV 0.010 18000 20.5

DSR 0.011 18400 23.0

EARL 0.007 18800 12.7

• Energy Efficiency: This metric measures the amount of

energy consumed per bit of data transmitted, with lower

values indicating better energy efficiency. The proposed

EARL method consistently demonstrates lower energy

consumption compared to AODV and DSR. This is due to

EARL’s ability to adaptively manage network load and

reduce unnecessary retransmissions, leading to more

efficient energy usage.

• Residual Energy: Residual energy refers to the remaining

energy in the network nodes at the end of the simulation.

Higher residual energy indicates that the routing protocol is

more energy-efficient and conserves battery life. EARL

shows higher residual energy across all node densities,

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2024, VOLUME: 15, ISSUE: 02

3227

highlighting its effectiveness in conserving energy

compared to AODV and DSR.

• Packet Loss: Packet loss measures the percentage of data

packets that fail to reach their destination. Lower packet loss

indicates a more reliable and efficient routing protocol.

EARL significantly reduces packet loss compared to AODV

and DSR, benefiting from its adaptive load balancing and

real-time route optimization.

• Packet Delivery Ratio (PDR): EARL outperforms AODV

and DSR in PDR, demonstrating its superior ability to

deliver packets reliably. This improvement is due to EARL’s

adaptive reinforcement learning approach, which

dynamically adjusts to network conditions and reduces

congestion.

• End-to-End Delay: EARL consistently achieves lower E2E

Delay, indicating faster data transmission from source to

destination. This is a result of its efficient route selection and

reduced queuing delays.

• Throughput: EARL provides higher throughput, showing

its capability to handle large volumes of data efficiently.

This improvement is attributed to its effective load balancing

and reduced packet loss, which ensure continuous and stable

data transmission.

4. CONCLUSION

The proposed EARL method demonstrates significant

improvements in load balancing for MANETs by dynamically

adapting to varying network conditions. The ensemble approach,

which integrates multiple RL agents, leverages the strengths of

different algorithms to optimize routing decisions. This results in

higher packet delivery ratios, lower end-to-end delays, increased

throughput, and better energy efficiency compared to traditional

methods like AODV and DSR. Additionally, EARL ability to

reduce packet loss further enhances network reliability. EARL’s

adaptive nature allows it to effectively manage dynamic network

conditions, leading to superior performance metrics. The method

significantly conserves energy, extending the operational lifespan

of network nodes. EARL performs well even as network size

increases, demonstrating its scalability and robustness. The

improvements in reliability and efficiency make EARL a viable

solution for real-world MANET applications, such as disaster

recovery and military communications.

REFERENCES

[1] C. Yang, J. Li, M. Guizani and M. Elkashlan “Advanced

Bandwidth Sharing in 5G Cognitive Heterogeneous

Networks”, IEEE Wireless Communications, Vol. 15, No. 2,

pp. 94-101, 2016.

[2] I. Khan, M.H. Zafar, M.T. Jan, J Lloret, M Basheri and D

Singh, “Spectral and Energy Efficient Low-Overhead

Uplink and Downlink Channel Estimation for 5G Massive

MIMO Systems”, Entropy, Vol. 20, No. 2, pp. 92-108, 2018.

[3] E. Hossain and V.K. Bhargava, “Cognitive Wireless

Communication Networks”, Springer Publisher, 2007.

[4] K. Dasgupta, B. Mandal, P. Dutta and J.K. Mandal, “A

Genetic Algorithm (GA) based Load Balancing Strategy for

Cloud Computing”, Procedia Technology, Vol. 10, pp. 340-

347, 2013.

[5] F. McLoughlin, A. Duffy and M. Conlon, “A Clustering

Approach to Domestic Electricity Load Profile

Characterisation using Smart Metering Data”, Applied

Energy, Vol. 141, pp. 190-199, 2015.

[6] D. Thazhathethil, N. Katre, J. Mane Deshmukh and M.

Kshirsagar, “A Model for Load Balancing by Partitioning

the Public Cloud”, International Journal of Innovative

Research in Computer and Communication Engineering,

Vol. 2, No. 1, pp. 2466-2471, 2014.

[7] Debraj De and Sajal K. Das, “SREE-Tree: SelfReorganizing

Energy-Efficient Tree Topology Management in Sensor

Networks”, Proceedings of International Conference on

Sustainable Internet and ICT for Sustainability, pp. 113-119,

2015.

[8] Antoni Morell et al., “Data Aggregation and Principal

Component Analysis in WSNs”, IEEE Transactions on

Wireless Communications, Vol. 15, No. 6, pp. 3908-3919,

2015.

[9] D.S.K. Tiruvakadu and V. Pallapa, “Confirmation of

Wormhole Attack in MANETs using Honeypot”,

Computers and Security, Vol. 76, No. 2, pp. 32-49, 2018.

