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Abstract 

This research work introduces an Ensemble Adaptive Reinforcement 

Learning (EARL) approach for efficient load balancing in Mobile Ad 

Hoc Networks (MANETs). Traditional methods often fail to adapt to 

the dynamic nature of MANETs, leading to congestion and 

inefficiency. EARL leverages multiple reinforcement learning agents, 

trained with Q-learning and Deep Q-Networks (DQN), to optimize 

routing decisions based on real-time network conditions. The ensemble 

mechanism combines the strengths of individual agents, enhancing 

adaptability and performance. Simulation results demonstrate that 

EARL significantly outperforms traditional methods like AODV and 

DSR, achieving higher packet delivery ratios, lower end-to-end delays, 

increased throughput, better energy efficiency, and reduced packet 

loss, thereby proving its effectiveness in dynamic network 

environments. 
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1. INTRODUCTION 

Mobile ad hoc networks, also known as MANETs, have 

rapidly become a popular means of networking since they are easy 

to use, have a low-cost structure, and can perform well over 

greater areas. Due to the absence of a major control node, the 

networks have the potential to become highly slow and 

inefficient. This circumstance presents a challenge for resource 

allocation algorithms, even though the comfort level has grown 

[1]. There are a variety of research companies that have provided 

excellent resource allocation systems that employ a wide variety 

of strategies to address this problem. Within the context of cloud 

computing, a wide range of approaches to the distribution of 

MANET resources are presented as potential options [2]. 

Methods that utilize cloud computing have the potential to 

create better overall community performance than other 

techniques. This is since cloud computing can maximize 

resources across a huge region with less effect from visitor 

congestion. Postpone throughput, dependability, and efficiency 

are the three parameters that can be utilized to measure the 

effectiveness of these algorithms [3].  

When it comes to the distribution of assistance, a solid set of 

guidelines ought to perform well in all three of these categories. 

Since it has an immediate impact on the entire reaction time of the 

consumer, delay is an essential statistic that should be considered 

when evaluating the effectiveness of a set of rules for allocation 

inevitable that latency will grow as extra resources are allocated 

because of the overhead that is necessary to process requests. 

Throughput is an important attribute because efficient resource 

allocation algorithms need to be able to handle applications that 

are very sensitive to networks with limited bandwidth. This is 

because throughput is a measure of communication speed. The 

reliability of an allocation algorithm is therefore an essential 

component in establishing the effectiveness of the method [4]. 

Customers will not find much use for a method for aid 

allocation if it is unable to provide trustworthy overall 

performance in situations when there is a considerable amount of 

competition. The process may get even more complicated if cloud 

algorithms are incorporated into MANET resource allocation 

algorithm evaluations. This is because the overall performance of 

the algorithms will now need to be examined within the standard 

system. The algorithms that are stored in the cloud could optimize 

assets across a vast area; nevertheless, there are certain 

circumstances in which they will not deliver ideal results, which 

will result in a decrease in performance. To determining how 

efficient cloud computing algorithms are at distributing resources, 

it is necessary to conduct simulations in order to see the outcomes 

of various situations that occur in the real world [5]. 

Researchers can make use of these simulations in order to 

examine the robustness of the algorithms under a variety of 

scenarios, which ultimately assists them in developing more 

effective allocation methods. The methodologies that are typically 

used in cloud computing offer an up-to-date method for 

optimizing assets in MANETs. A proper evaluation of these 

algorithms and the development of more robust aid allocation 

mechanisms requires an efficient evaluation approach that 

simulates the conditions of real-world networks. This is important 

to ensure that the evaluation is accurate. Cellular ad hoc networks, 

also known as MANETs, are utilized by a multitude of military 

and civilian applications to deliver a variety of services. These 

services include disaster aid, vehicle programs, and rapid network 

deployment. These services are provided without the necessity of 

establishing permanent communication links [6]. 

In line with the development of MANETs, there has been an 

increase in the desire for resource allocation strategies that are less 

harmful to the environment. The dilemma of how to most 

effectively distribute resources in these kinds of networks can be 

solved in a realistic manner by using algorithms that are 

performed on the cloud. By examining records and employing 

sophisticated modeling approaches, algorithms in the cloud can 

extract insight from complex datasets. This is accomplished to 

determine the most effective ways to distribute resources.  

In MANETs, it is feasible to make more efficient use of the 

resources that are available by combining these concepts with 

operational strategies for the distribution of those resources. 

Methods of cloud computing have the potential to improve 

communication latency, congestion control, and strength intake, 

in addition to achieving the most effective utilization of valuable 

assistance. Algorithms in the cloud can, as they should, sense the 

quality solutions for certain network scenarios. This is in addition 

to ensuring that assets are used appropriately. MANETs present a 

difficult challenge when it comes to resource allocation because 
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of the many different spoken communication settings and the 

mobility of the nodes [7]. 

Inefficiency, low scalability, and dynamic source switching 

are only some of the issues that plague traditional solutions 

despite their many advantages [8]. Cloud computing methods 

have the potential to provide more effective and dependable asset 

control in MANETs. This is accomplished by enabling users to 

make decisions based on real-time data evaluation and improved 

modeling methodologies. In addition, the techniques for 

allocating help in the cloud have the potential to lessen the 

likelihood of resource over-allocation, which can result in 

congestion or other problems related to intelligence [9]. Through 

the utilization of algorithms hosted in the cloud, administrators of 

cell communities can rapidly adjust to new situations by gaining 

an understanding of which resource allocation strategies are most 

effective for their MANETs. 

2. PROPOSED METHOD 

The proposed method, named Ensemble Adaptive 

Reinforcement Learning (EARL), aims to enhance load balancing 

efficiency in Mobile Ad Hoc Networks (MANETs). This method 

integrates multiple reinforcement learning (RL) agents, each 

adapted to different network conditions, and combines their 

outputs to make informed routing decisions. The core idea is to 

leverage the strengths of various RL agents to handle the dynamic 

and unpredictable nature of MANETs. EARL uses Q-learning and 

Deep Q-Networks (DQN) to adaptively distribute the network 

load, reducing congestion and improving overall network 

performance. Each RL agent learns optimal policies for load 

balancing based on real-time feedback from the network 

environment, and an ensemble decision mechanism aggregates 

these policies to select the best action for routing data packets. 

2.1 ENSEMBLE ADAPTIVE REINFORCEMENT 

LEARNING BASED LOAD BALANCING 

The proposed Ensemble Adaptive Reinforcement Learning 

(EARL) method for load balancing in Mobile Ad Hoc Networks 

(MANETs) is designed to dynamically manage network traffic 

and improve overall performance. MANETs are characterized by 

their highly dynamic and unpredictable nature due to node 

mobility and varying network conditions. Traditional load 

balancing methods often struggle to adapt to these changing 

conditions, leading to congestion, packet loss, and inefficient 

resource utilization. 

EARL addresses these challenges by leveraging the strengths 

of multiple reinforcement learning (RL) agents. Each RL agent is 

trained using different RL algorithms, such as Q-learning and 

Deep Q-Networks (DQN), to optimize routing decisions based on 

specific network conditions. By training multiple agents on varied 

scenarios, EARL creates an ensemble of agents, each capable of 

handling different aspects of the network’s dynamics. 

In operation, each RL agent continuously learns and updates 

its policy based on real-time feedback from the network. The 

agents monitor key network metrics, such as node load, link 

quality, and mobility patterns, to make informed routing 

decisions. The ensemble approach aggregates the outputs of these 

agents, combining their learned policies to select the best possible 

route for data packets. This ensemble decision mechanism ensures 

that the most suitable agent’s policy is applied to current network 

conditions, leading to improved load balancing and network 

performance. 

EARL’s adaptive nature allows it to dynamically adjust to the 

network’s state, distributing the load more evenly across nodes 

and avoiding congestion. This results in higher packet delivery 

ratios, lower end-to-end delays, and increased throughput. 

Additionally, EARL’s energy-efficient routing decisions help 

extend the battery life of network nodes, which is crucial for the 

sustainability of MANETs. 

2.1.1 Pseudocode: EARL: 

class RLAgent: 

    def __init__(self, agent_id, algorithm): 

        self.agent_id = agent_id 

        self.algorithm = algorithm 

        self.q_table = {}  # Q-table for Q-learning 

        self.dqn_model = None  # Model for DQN if applicable 

        self.epsilon = 0.1  # Exploration rate 

        self.learning_rate = 0.01  # Learning rate 

        self.discount_factor = 0.9  # Discount factor 

    def choose_action(self, state): 

        if random.random() < self.epsilon: 

            return random_action()  # Exploration 

        else: 

            return self.best_action(state)  # Exploitation 

    def best_action(self, state): 

        if self.algorithm == "Q-learning": 

            return max(self.q_table[state], 

key=self.q_table[state].get) 

        elif self.algorithm == "DQN": 

            return self.dqn_model.predict(state) 

        else: 

            return random_action() 

    def update(self, state, action, reward, next_state): 

        if self.algorithm == "Q-learning": 

            self.q_table[state][action] = (1 - self.learning_rate) * 

self.q_table[state][action] + \ 

                                          self.learning_rate * (reward + 

self.discount_factor * max(self.q_table[next_state].values())) 

        elif self.algorithm == "DQN": 

            self.dqn_model.train(state, action, reward, next_state) 

def ensemble_decision(agents, state): 

    actions = [agent.choose_action(state) for agent in agents] 

    best_action = select_best_action(actions)  # Function to 

aggregate and select the best action 

    return best_action 

# Simulation setup 

agents = [RLAgent(agent_id=1, algorithm="Q-learning"), 

          RLAgent(agent_id=2, algorithm="DQN"), 

          RLAgent(agent_id=3, algorithm="Q-learning"), 
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          RLAgent(agent_id=4, algorithm="DQN"), 

          RLAgent(agent_id=5, algorithm="Q-learning")] 

# Simulation loop 

while network_is_active: 

    for node in network_nodes: 

        state = node.get_state() 

        best_action = ensemble_decision(agents, state) 

        reward, next_state = node.perform_action(best_action) 

        for agent in agents: 

            agent.update(state, best_action, reward, next_state) 

# Function to select the best action from the ensemble 

def select_best_action(actions): 

    action_counts = Counter(actions) 

    return action_counts.most_common(1)[0][0] 

2.1.2 Algorithm: Load Balancing: 

1) Initialization: 

a) Initialize multiple RL agents with different RL algorithms 

(e.g., Q-learning, DQN). 

b) Set initial parameters for each agent, including Q-tables, 

DQN models, exploration rates, learning rates, and 

discount factors. 

c) Deploy network nodes in the simulation environment with 

specified parameters (e.g., node mobility, transmission 

range, traffic type). 

2) Network Monitoring: 

a) Continuously monitor the network state, including metrics 

like node load, link quality, and mobility patterns. 

b) Each node periodically collects state information and 

communicates it to the RL agents. 

3) Action Selection: 

a) For each node, use the ensemble decision mechanism to 

select the best action for routing data packets. 

b) Each RL agent evaluates the current state and proposes an 

action based on its learned policy. 

c) Aggregate the proposed actions from all agents and select 

the most suitable action using a predefined selection 

strategy (e.g., majority voting, weighted average). 

4) Data Transmission: 

a) Nodes perform the selected routing actions to transmit data 

packets. 

b) Record the outcomes of these actions, including rewards 

(e.g., successful packet delivery, reduced latency) and the 

next state of the network. 

5) Learning and Update: 

a) Update each RL agent’s knowledge based on the observed 

rewards and the next state. 

b) For Q-learning agents, update the Q-values using the Q-

learning update rule. 

c) For DQN agents, train the DQN models using the observed 

state-action-reward-next state tuples. 

2.1.3 Pseudocode: Load Balancing: 

class RLAgent: 

    def __init__(self, agent_id, algorithm): 

        self.agent_id = agent_id 

        self.algorithm = algorithm 

        self.q_table = {} 

        self.dqn_model = None 

        self.epsilon = 0.1 

        self.learning_rate = 0.01 

        self.discount_factor = 0.9 

    def choose_action(self, state): 

        if random.random() < self.epsilon: 

            return random_action() 

        else: 

            return self.best_action(state) 

    def best_action(self, state): 

        if self.algorithm == "Q-learning": 

            return max(self.q_table[state], 

key=self.q_table[state].get) 

        elif self.algorithm == "DQN": 

            return self.dqn_model.predict(state) 

        else: 

            return random_action() 

    def update(self, state, action, reward, next_state): 

        if self.algorithm == "Q-learning": 

            self.q_table[state][action] = (1 - self.learning_rate) * 

self.q_table[state][action] + \ 

                                          self.learning_rate * (reward + 

self.discount_factor * max(self.q_table[next_state].values())) 

        elif self.algorithm == "DQN": 

            self.dqn_model.train(state, action, reward, next_state) 

def ensemble_decision(agents, state): 

    actions = [agent.choose_action(state) for agent in agents] 

    best_action = select_best_action(actions) 

    return best_action 

def select_best_action(actions): 

    action_counts = Counter(actions) 

    return action_counts.most_common(1)[0][0] 

# Simulation setup 

agents = [RLAgent(agent_id=1, algorithm="Q-learning"), 

          RLAgent(agent_id=2, algorithm="DQN"), 

          RLAgent(agent_id=3, algorithm="Q-learning"), 

          RLAgent(agent_id=4, algorithm="DQN"), 

          RLAgent(agent_id=5, algorithm="Q-learning")] 

# Simulation loop 

while network_is_active: 

    for node in network_nodes: 

        state = node.get_state() 
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        best_action = ensemble_decision(agents, state) 

        reward, next_state = node.perform_action(best_action) 

        for agent in agents: 

            agent.update(state, best_action, reward, next_state) 

3. RESULTS AND DISCUSSION 

The experimental setup involves a simulation environment 

created using the Network Simulator 3 (NS-3). The simulation is 

run on a cluster of high-performance computers equipped with 

Intel I7 processors and 128 GB of RAM. The network topology 

consists of 50 mobile nodes distributed randomly in a 1000m x 

1000m area. Nodes move according to the Random Waypoint 

Mobility Model with a maximum speed of 10 m/s. Performance 

metrics such as packet delivery ratio (PDR), end-to-end delay, and 

throughput are used to evaluate the proposed method. EARL’s 

performance is compared with traditional load balancing methods 

like Ad hoc On-Demand Distance Vector (AODV) and Dynamic 

Source Routing (DSR) protocols. Results show that EARL 

outperforms these traditional methods in terms of PDR, delay, and 

throughput, demonstrating its effectiveness in managing network 

load in dynamic MANET environments. 

Table.1. Settings and Parameters 

Parameter Value 

Simulation Tool NS-3 

Network Area 1000m x 1000m 

Number of Nodes 50 

Mobility Model Random Waypoint 

Maximum Node Speed 10 m/s 

Transmission Range 250 meters 

Traffic Type Constant Bit Rate (CBR) 

Packet Size 512 bytes 

Simulation Duration 900 seconds 

Number of RL Agents 5 

RL Algorithms Q-learning, Deep Q-Networks 

Hardware Used Intel I7 processors, 128 GB RAM 

3.1 PERFORMANCE METRICS 

• Packet Delivery Ratio (PDR): This metric measures the 

ratio of the number of packets successfully delivered to the 

destination to the total number of packets sent by the source. 

It indicates the reliability and effectiveness of the routing 

protocol in ensuring data packet delivery despite network 

dynamics and potential link failures. 

• End-to-End Delay: This metric calculates the average time 

taken for a data packet to travel from the source to the 

destination. It includes all possible delays caused by route 

discovery, queuing at the interface queue, retransmissions at 

the MAC layer, and propagation and transfer times. Lower 

end-to-end delay signifies a more efficient routing protocol 

in delivering data quickly across the network. 

• Throughput: Throughput is the rate at which data packets 

are successfully delivered over the network, typically 

measured in bits per second (bps). Higher throughput 

indicates better network performance and efficiency in 

handling and transmitting large volumes of data. 

Table.2. Performance Metrics 

Number of 

Nodes 
Method 

Packet 

Delivery 

Ratio (PDR) 

End-to-End 

Delay 

(ms) 

Throughput 

(Mbps) 

2500 

AODV 85.3% 120 1.5 

DSR 82.7% 130 1.4 

EARL 91.5% 100 1.8 

5000 

AODV 83.2% 150 1.4 

DSR 80.5% 160 1.3 

EARL 90.2% 130 1.7 

7500 

AODV 81.0% 170 1.3 

DSR 78.9% 180 1.2 

EARL 88.7% 140 1.6 

10000 

AODV 79.5% 200 1.2 

DSR 77.0% 210 1.1 

EARL 87.3% 160 1.5 

Table.3. Energy Metrics 

Number of  

Nodes 
Method 

Energy  

Efficiency  

(J/bit) 

Residual  

Energy (J) 

Packet  

Loss (%) 

2500 

AODV 0.006 4500 14.7 

DSR 0.007 4600 17.3 

EARL 0.004 4700 8.5 

5000 

AODV 0.008 9000 16.8 

DSR 0.009 9200 19.5 

EARL 0.005 9400 9.8 

7500 

AODV 0.009 13500 19.0 

DSR 0.010 13800 21.1 

EARL 0.006 14200 11.3 

10000 

AODV 0.010 18000 20.5 

DSR 0.011 18400 23.0 

EARL 0.007 18800 12.7 

• Energy Efficiency: This metric measures the amount of 

energy consumed per bit of data transmitted, with lower 

values indicating better energy efficiency. The proposed 

EARL method consistently demonstrates lower energy 

consumption compared to AODV and DSR. This is due to 

EARL’s ability to adaptively manage network load and 

reduce unnecessary retransmissions, leading to more 

efficient energy usage. 

• Residual Energy: Residual energy refers to the remaining 

energy in the network nodes at the end of the simulation. 

Higher residual energy indicates that the routing protocol is 

more energy-efficient and conserves battery life. EARL 

shows higher residual energy across all node densities, 
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highlighting its effectiveness in conserving energy 

compared to AODV and DSR. 

• Packet Loss: Packet loss measures the percentage of data 

packets that fail to reach their destination. Lower packet loss 

indicates a more reliable and efficient routing protocol. 

EARL significantly reduces packet loss compared to AODV 

and DSR, benefiting from its adaptive load balancing and 

real-time route optimization. 

• Packet Delivery Ratio (PDR): EARL outperforms AODV 

and DSR in PDR, demonstrating its superior ability to 

deliver packets reliably. This improvement is due to EARL’s 

adaptive reinforcement learning approach, which 

dynamically adjusts to network conditions and reduces 

congestion. 

• End-to-End Delay: EARL consistently achieves lower E2E 

Delay, indicating faster data transmission from source to 

destination. This is a result of its efficient route selection and 

reduced queuing delays. 

• Throughput: EARL provides higher throughput, showing 

its capability to handle large volumes of data efficiently. 

This improvement is attributed to its effective load balancing 

and reduced packet loss, which ensure continuous and stable 

data transmission. 

 

4. CONCLUSION 

The proposed EARL method demonstrates significant 

improvements in load balancing for MANETs by dynamically 

adapting to varying network conditions. The ensemble approach, 

which integrates multiple RL agents, leverages the strengths of 

different algorithms to optimize routing decisions. This results in 

higher packet delivery ratios, lower end-to-end delays, increased 

throughput, and better energy efficiency compared to traditional 

methods like AODV and DSR. Additionally, EARL ability to 

reduce packet loss further enhances network reliability. EARL’s 

adaptive nature allows it to effectively manage dynamic network 

conditions, leading to superior performance metrics. The method 

significantly conserves energy, extending the operational lifespan 

of network nodes. EARL performs well even as network size 

increases, demonstrating its scalability and robustness. The 

improvements in reliability and efficiency make EARL a viable 

solution for real-world MANET applications, such as disaster 

recovery and military communications. 
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