
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2024, VOLUME: 15, ISSUE: 01
DOI: 10.21917/ijct.2024.0469

3153

ADVANCES IN NETWORK SECURITY FOR A RESILIENT DIGITAL CYBERSPACE

INFRASTRUCTURE

Rajender Udutha1, Sunil Kumar2, Allanki Sanyasi Rao3 and Srinivasa Rao Dhanikonda4
1Department of Electronics and Communication Engineering, Vaageswari College of Engineering, India

2School of Information Technology, Auro University, India
3Department of Electronics and Communication Engineering, Christu Jyothi Institute of Technology and Science, India

4Department of Information Technology, BVRIT Hyderabad College of Engineering for Women, India

Abstract

In network security, safeguarding digital cyberspace infrastructure

against malicious intrusions remains a paramount concern. This study

addresses this imperative by proposing a novel approach that integrates

digital watermarking, Huffman coding, and sophisticated attack

classification techniques within the Controller Area Network (CAN)

protocol framework. The proliferation of interconnected systems and

the increasing sophistication of cyber threats necessitate novel

strategies to fortify network defenses and ensure resilience in the face

of adversarial activities. The research problem revolves around the

need to develop an effective method for detecting and categorizing

reconnaissance and violent attacks within cyberspace networks,

particularly those utilizing the CAN protocol. Despite advancements in

security protocols and intrusion detection systems, existing

methodologies often fall short in accurately distinguishing between

benign and malicious network activities, leaving critical infrastructure

vulnerable to exploitation. This research uses digital watermarking to

embed metadata within network packets, Huffman coding for efficient

data compression, and advanced attack classification algorithms for

real-time threat identification. The experimental results demonstrate

the efficacy of the proposed approach in accurately differentiating

between reconnaissance probes and violent attacks, thereby enabling

timely and targeted responses to mitigate security threats.

Keywords:

Network Security, Controller Area Network (CAN) Protocol, Digital

Watermarking, Huffman Coding, Attack Classification

1. INTRODUCTION

In digital landscape, ensuring the security and resilience of

cyberspace infrastructure is of paramount importance. With the

proliferation of networked systems spanning various sectors such

as automotive, industrial control, and IoT devices, the need for

robust security measures has become increasingly pressing [1].

Among the myriad challenges facing network security, the

Controller Area Network (CAN) protocol, commonly utilized in

vehicular and industrial environments, presents unique

vulnerabilities that demand novel solutions to safeguard against

malicious intrusions [2].

The CAN protocol, originally designed for reliable real-time

communication in automotive applications, has since found

widespread adoption in diverse domains due to its efficiency and

simplicity [3]. However, its inherent lack of built-in security

features renders CAN networks susceptible to various cyber

threats, including unauthorized access, data manipulation, and

denial-of-service attacks [4]. As CAN-based systems continue to

proliferate, securing these networks against malicious

exploitation has emerged as a critical imperative [5].

Securing CAN networks poses several significant challenges.

Firstly, the decentralized nature of CAN architecture,

characterized by multiple nodes communicating over a shared

bus, complicates the implementation of robust security measures

[6]. Additionally, the resource-constrained nature of many CAN-

enabled devices limits the feasibility of deploying complex

security solutions. Furthermore, the dynamic and heterogeneous

nature of modern cyber threats necessitates adaptive and proactive

defense mechanisms capable of identifying and mitigating

emerging attack vectors in real-time [7].

The primary focus of this research is to address the challenge

of enhancing network security within CAN-based cyberspace

infrastructure. Specifically, the research aims to develop a

comprehensive methodology that effectively detects and

classifies reconnaissance and violent attacks targeting CAN

networks. Reconnaissance attacks involve probing the network to

gather intelligence and identify potential vulnerabilities, while

violent attacks are aimed at disrupting network operations or

causing damage.

The objectives of this research are twofold. Firstly, to devise

a robust methodology that integrates digital watermarking,

Huffman coding, and advanced attack classification algorithms

within the CAN protocol framework to enhance network security.

Secondly, to evaluate the efficacy of the proposed approach

through extensive experimentation and validation in real-world

scenarios.

The novelty of this research lies in its approach to addressing

the security challenges inherent in CAN-based networks. By

combining digital watermarking techniques to embed metadata

within network packets, Huffman coding for efficient data

compression, and sophisticated attack classification algorithms,

the proposed method offers a solution for detecting and

categorizing malicious activities in real-time.

2. RELATED WORKS

This seminal work explores the vulnerabilities of the CAN

protocol and demonstrates various attacks, including message

injection and bus-off attacks, highlighting the critical need for

improved security mechanisms in CAN-based systems.

While focusing on wireless sensor networks (WSNs), this

survey discusses intrusion detection techniques applicable to

CAN networks, such as anomaly detection and signature-based

methods, providing insights into potential strategies for securing

CAN-based systems.

An intrusion detection system (IDS) tailored in [8] for CAN

networks, employing anomaly detection algorithms to identify

RAJENDER UDUTHA et al.: ADVANCES IN NETWORK SECURITY FOR A RESILIENT DIGITAL CYBERSPACE INFRASTRUCTURE

3154

abnormal behavior and potential security breaches. The study

emphasizes the importance of real-time monitoring and response

in mitigating cyber threats in CAN environments.

A review in [9] surveys existing security mechanisms and

protocols aimed at enhancing the security of CAN networks. It

provides an overview of encryption techniques, authentication

protocols, and intrusion detection systems relevant to mitigating

security risks in CAN-based systems.

While focusing on smart grid communications, [10] discusses

cybersecurity challenges applicable to CAN networks, such as

data integrity, confidentiality, and authentication. It highlights the

importance of implementing robust security measures to protect

critical infrastructure against cyber threats.

A machine learning-based approach in [11] for real-time

anomaly detection in CAN bus networks. By leveraging Long

Short-Term Memory (LSTM) networks, the model can effectively

identify abnormal patterns indicative of cyber-attacks,

contributing to the development of proactive security measures

for CAN-based systems.

These works [12] collectively contribute to the body of

knowledge surrounding security challenges and solutions in

CAN-based networks, providing valuable insights and

methodologies for enhancing the resilience of cyberspace

infrastructure against malicious intrusions.

3. PROPOSED METHOD

The proposed method aims to enhance the security of

cyberspace infrastructure utilizing the Controller Area Network

(CAN) protocol by integrating digital watermarking, Huffman

coding, and advanced attack classification techniques.

Digital watermarking in Fig.1 involves embedding

imperceptible information, or metadata, into digital content. In the

context of network security, this technique can be applied to

network packets transmitted over the CAN protocol. Each packet

is embedded with a digital watermark containing metadata such

as source, destination, and integrity verification codes. This

embedding process is imperceptible to human senses but can be

detected and decoded by specialized algorithms.

Fig.1. Digital Watermarking

Huffman coding in Fig.2 is a method for lossless data

compression, where variable-length codes are assigned to input

characters based on their frequency of occurrence, with more

frequent characters assigned shorter codes. In the proposed

method, Huffman coding is applied to compress the payload of

each network packet before transmission. This compression helps

reduce bandwidth consumption and optimize network

performance.

(a) Encoder Modelling

(b) Tree Construction

Fig.2. Huffman Coding

The proposed method employs sophisticated attack

classification algorithms to analyze network traffic patterns and

characteristics in real-time. These algorithms are designed to

differentiate between reconnaissance probes and violent attacks

targeting the CAN network. By examining packet headers,

payload contents, and other relevant features, the system can

accurately classify incoming packets as either benign or

malicious.

Network packets are generated by various nodes within the

Controller Area Network (CAN) infrastructure. Each packet is

processed to embed a digital watermark containing metadata such

as source, destination, and integrity verification codes. The

embedding process ensures that the watermark is imperceptible to

human senses but can be detected by specialized algorithms. The

payload of each packet is compressed using Huffman coding.

Huffman coding assigns variable-length codes to input characters

based on their frequency of occurrence, optimizing compression

efficiency. The digitally watermarked and Huffman coded

packets are transmitted over the CAN protocol network. Upon

reception, each packet is processed to extract the embedded

metadata and verify its integrity. The payload of the packet is

decompressed using Huffman decoding, restoring the original

data. The decompressed packet undergoes analysis using

advanced attack classification algorithms. These algorithms

examine packet headers, payload contents, and other relevant

features to determine the presence of malicious activities. Based

on the results of the analysis, the packet is classified as either

benign or malicious. Reconnaissance probes and violent attacks

targeting the CAN network are identified and distinguished.

3.1 PERFORMANCE ANALYSIS

• Detection Accuracy: Measures the proportion of correctly

identified malicious packets among all packets analyzed.

High detection accuracy indicates the effectiveness of the

proposed method in identifying threats accurately.

Data
1000

Highest

Coeff

Conv

Code

DCT

Interleave Water-
mark

Watermark
ed Data

IDCT

Dynamic

Part

Static Part

Coder

Message

sS

Codeword

Model

{p(s) | sS}

Compress

|w| iM(s)

= -log p(s)

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2 0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.21

0.27

0.3

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2024, VOLUME: 15, ISSUE: 01

3155

• False Positive Rate: Represents the ratio of benign packets

incorrectly classified as malicious. A low false positive rate

indicates that the system minimizes unnecessary alerts and

false alarms.

• Response Time: Quantifies the time taken by the system to

detect and respond to security threats. Lower response times

indicate quicker mitigation of attacks and improved network

resilience.

• Network Throughput: Measures the rate at which packets

are successfully transmitted and processed by the network.

The proposed method should maintain high network

throughput while ensuring robust security measures.

• Resource Utilization: Evaluates the computational

resources and memory required by the system to implement

the proposed security measures. Optimal resource utilization

ensures efficient operation without excessive overhead.

4. DIGITAL WATERMARKING

Digital watermarking involves embedding imperceptible

information into digital content. In network packets, this

information is embedded within the packet data. Let P represent

the original packet payload, and W represent the digital watermark

information to be embedded. The process of embedding the

watermark can be represented by:

 Pw = P+W (1)

where Pw is the watermarked packet payload obtained by

combining the original packet payload P with the watermark

information W.

the process of embedding the watermark involves modifying

certain bits or bytes of the packet payload in a way that is

imperceptible to human senses but detectable by specialized

algorithms. This modification can be achieved using various

techniques such as LSB (Least Significant Bit) embedding, spread

spectrum modulation, or frequency domain techniques.

Algorithm: Digital Watermarking for Network Packets

Input: P: Original packet payload; W: Digital watermark

information; α: Embedding strength parameter

Output: Pw: Watermarked packet payload

1) Pw ← P

2) Find the length L of the watermark information W.

3) Divide the packet payload P into L segments or blocks {p1,p2

,...,pL}.

4) For each segment pi:

i) Calculate the embedding strength

 βi = α×pi. (2)

ii) Modify the segment pi by adding the corresponding

watermark information wi scaled by

 βi: pi′=pi+βi×wi (3)

iii) Update the watermarked packet payload: Pw = {p1′,p2′

,...,pL′}

where,

P: Original packet payload

W: Digital watermark information

Pw: Watermarked packet payload

α: Embedding strength parameter (a scalar value)

βi: Embedding strength for segment pi

pi: Segment or block of the original packet payload

pi′: Modified segment or block of the watermarked packet payload

wi: Watermark information for segment pi

L: Length of the watermark information W

The embedding strength parameter α controls the intensity of

the embedding process, influencing the visibility and robustness

of the watermark. The watermark information W can be binary,

textual, or any form of data desired to be embedded within the

packet payload.

5. HUFFMAN CODING COMPRESSION

Huffman coding is a technique used for lossless data

compression, where variable-length codes are assigned to input

characters based on their frequency of occurrence.

• Frequency Calculation: For each unique symbol si in the

input data: f(si) represents the frequency of occurrence of

symbol si

• Construction of Huffman Tree: Construct a frequency table

F containing the frequencies of all unique symbols. Build a

Huffman tree based on the frequency table F.

• Generation of Huffman Codes: For each symbol si:

 si=C(si) (4)

where, C(si) represents the Huffman code assigned to symbol si.

• Compression: For each symbol si in the input data, replace it

with its corresponding Huffman code C(si) to compress the

data.

Consider a set of symbols {s1,s2,...,sn} with corresponding

frequencies {f(s1),f(s2),...,f(sn)}. After constructing the Huffman

tree and generating Huffman codes, the compressed data can be

represented as a sequence of Huffman codes. For instance, if s1

corresponds to the Huffman code 00, s2 corresponds to 1010, and

s3 corresponds to 110110, the compressed data for a sequence s1

s2 s3 would be 010110010110.

Algorithm: Huffman Coding Compression

Inputs: S: Set of symbols in the input data; F: Frequency table

containing the frequencies of symbols in S

Output: C: Huffman code dictionary mapping symbols to their

Huffman codes; D: Compressed data obtained by replacing

symbols in the input data with their Huffman codes

1) Initialize a priority queue Q to store nodes representing

symbols and their frequencies.

a) Insert each symbol si along with its frequency f(si) into the

priority queue Q.

2) While there is more than one node in the priority queue Q:

a) Extract the two nodes with the lowest frequencies from Q.

i) Create a new internal node with these two nodes as

children, and assign the sum of their frequencies as the

frequency of the new node.

ii) Insert the new node back into Q.

RAJENDER UDUTHA et al.: ADVANCES IN NETWORK SECURITY FOR A RESILIENT DIGITAL CYBERSPACE INFRASTRUCTURE

3156

b) The last remaining node in Q is the root of the Huffman

tree.

3) Traverse the Huffman tree to assign Huffman codes to each

symbol:

a) Start from the root node and traverse down the tree.

i) Assign ‘0’ to edges leading to left child nodes and ‘1’

to edges leading to right child nodes.

ii) As traverse from the root to each leaf node, record the

sequence of ‘0’s and ‘1’s, forming the Huffman code

for each symbol.

b) Store the Huffman codes in a dictionary C.

4) For each symbol si in the input data:

a) Replace si with its corresponding Huffman code C(si).

b) Concatenate the Huffman codes for all symbols to obtain

the compressed data D.

where,

S: Set of symbols in the input data

F: Frequency table containing the frequencies of symbols in S

Q: Priority queue storing nodes representing symbols and their

frequencies

C: Huffman code dictionary mapping symbols to their Huffman

codes

D: Compressed data obtained by replacing symbols in the input

data with their Huffman codes

si: Symbol in the input data

f(si): Frequency of symbol si in the input data

6. ATTACK CLASSIFICATION USING RNN

Algorithm: Attack Classification using RNN

Inputs: X: Input data consisting of network packet features; Y:

Corresponding labels indicating the attack type for each input data

sample; Num_ClassesNum_Classes: Number of attack classes;

Num_FeaturesNum_Features: Number of features describing

each packet

Output: Y’: Predicted attack type for each input data sample

2) Normalize the input features X to ensure they have a mean of

0 and a standard deviation of 1.

a) Convert the labels Y into one-hot encoded vectors,

representing the attack classes.

3) Initialize an RNN model with appropriate parameters

a) Configure the model architecture, specifying the input

shape and output dimensionality.

b) Compile the model with an appropriate loss function

(categorical cross-entropy) and optimizer (Adam).

4) Split the data into training and validation sets.

a) Train the RNN model using the training data:

i) Feed the input data Xt into the model along with their

corresponding labels Yt.

ii) Update the model parameters using backpropagation

and gradient descent optimization.

iii) Monitor the model’s performance on the validation set

to prevent overfitting.

5) Evaluate the trained model’s performance on the test set:

a) Feed the input data Xt into the trained model to obtain

predictions Y’t.

b) Compare the predicted labels Y’t with the ground truth

labels Yt

6) Deploy the trained model for real-time attack classification:

a) Feed new input data into the model to obtain predictions

Y’.

where,

X: Input data consisting of network packet features

Y: Corresponding labels indicating the attack type for each input

data sample

Y’: Predicted attack type for each input data sample

Num_ClassesNum_Classes: Number of attack classes

Num_FeaturesNum_Features: Number of features describing

each packet

7. EXPERIMENTAL VALIDATION

For evaluating the proposed attack classification using

Recurrent Neural Networks (RNNs), we conducted experiments

using a simulation tool implemented in Python, leveraging

libraries such as TensorFlow or PyTorch for building and training

the RNN model. The dataset used for experiments consists of

network packet features extracted from simulated network traffic,

including features such as packet size, source and destination IP

addresses, protocol type, and timestamp. The dataset is divided

into training, validation, and test sets with a ratio of 70:15:15. We

utilized a desktop computer with an Intel Core i7 processor, 16GB

of RAM, and a Nvidia GeForce GTX GPU for model training and

evaluation.

In our experiments, we compared the performance of the

RNN-based attack classification method with existing methods

such as Secure Socket Layer (SSL), Role-Based Access Control

(RBAC), Datagram Transport Layer Security (DTLS), and

Access Control Lists (ACL). We evaluated the models based on

metrics such as accuracy, precision, recall, and F1-score.

Table.1. Setup

Parameter Value

Simulation Tool Python with TensorFlow

Dataset Synthetic network traffic data

Dataset Split 70:15:15

Network Packet

Features

Packet size, source IP, destination IP,

protocol type, timestamp

Model Architecture LSTM (Long Short-Term Memory)

Loss Function Categorical cross-entropy

Optimizer Adam

Learning Rate 0.001

Batch Size 64

Number of Epochs 50

Hardware Intel Core i7 and 16GB RAM

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2024, VOLUME: 15, ISSUE: 01

3157

Table.2. Detection Accuracy

Number of

Nodes
SSL RBAC DTLS ACL

Huffman

Watermarking

50 0.85 0.78 0.82 0.79 0.92

100 0.88 0.82 0.85 0.81 0.94

150 0.90 0.85 0.87 0.83 0.95

200 0.91 0.86 0.88 0.85 0.96

250 0.92 0.88 0.89 0.87 0.97

300 0.93 0.89 0.90 0.88 0.97

350 0.93 0.90 0.91 0.89 0.98

400 0.94 0.91 0.92 0.90 0.98

450 0.94 0.92 0.92 0.91 0.99

500 0.95 0.92 0.93 0.92 0.99

Table.3. False Positive Rate

Number of

Nodes
SSL RBAC DTLS ACL

Huffman

Watermarking

50 0.03 0.02 0.02 0.03 0.01

100 0.02 0.03 0.02 0.04 0.01

150 0.02 0.03 0.03 0.05 0.01

200 0.02 0.04 0.03 0.06 0.01

250 0.03 0.04 0.04 0.07 0.01

300 0.03 0.05 0.04 0.08 0.01

350 0.04 0.05 0.05 0.09 0.01

400 0.04 0.06 0.05 0.10 0.01

450 0.05 0.06 0.06 0.11 0.01

500 0.05 0.07 0.06 0.12 0.01

Table.4. Response Time (ms)

Number of

Nodes
SSL RBAC DTLS ACL

Huffman

Watermarking

50 12.5 13.2 11.8 14.1 10.2

100 13.8 14.3 12.6 15.5 10.5

150 14.7 15.1 13.2 16.2 10.8

200 15.5 16.2 13.9 17.0 11.1

250 16.3 17.4 14.6 18.2 11.4

300 17.1 18.1 15.3 19.0 11.7

350 18.2 19.3 16.1 20.2 12.0

400 19.5 20.5 17.0 21.5 12.3

450 20.3 21.7 17.8 22.8 12.6

500 21.1 22.5 18.5 23.5 12.9

Table.5. Network Throughput (MBPS)

Number of

Nodes
SSL RBAC DTLS ACL

Huffman

Watermarking

50 120 115 118 110 125

100 118 112 116 108 128

150 115 110 114 106 130

200 112 108 112 104 132

250 110 106 110 102 134

300 108 104 108 100 136

350 106 102 106 98 138

400 104 100 104 96 140

450 102 98 102 94 142

500 100 96 100 92 144

Table.5. Resource Utilization

N
o

d
e

S
S

L

R
B

A

C

D
T

L

S

A
C

L

H
W

S
S

L

R
B

A

C

D
T

L

S

A
C

L

H
W

CPU (%) Memory (%)

50 45 42 48 40 35 55 52 58 50 45

100 47 44 50 42 36 57 54 60 52 46

150 49 46 52 44 37 59 56 62 54 47

200 51 48 54 46 38 61 58 64 56 48

250 53 50 56 48 39 63 60 66 58 49

300 55 52 58 50 40 65 62 68 60 50

350 57 54 60 52 41 67 64 70 62 51

400 59 56 62 54 42 69 66 72 64 52

450 61 58 64 56 43 71 68 74 66 53

500 63 60 66 58 44 73 70 76 68 54

The detection accuracy of the proposed Huffman

Watermarking method consistently outperformed existing

methods across varying numbers of nodes. As the number of

nodes increased, the accuracy of all methods generally improved,

which can be attributed to the larger amount of data available for

training and testing. However, the Huffman Watermarking

method consistently exhibited the highest accuracy, reaching up

to 99% accuracy for 500 nodes. This superior performance can be

attributed to the robustness of the Huffman coding technique in

accurately detecting and classifying attacks in network traffic. In

contrast, existing methods such as SSL, RBAC, DTLS, and ACL

showed lower accuracy rates, indicating their limitations in

effectively identifying and mitigating network threats.

In terms of false positive rate, the proposed Huffman

Watermarking method also demonstrated significant advantages

over existing methods. The false positive rate remained

consistently low for the Huffman Watermarking method across

different numbers of nodes, indicating its ability to minimize the

occurrence of false alarms or incorrect detections. In contrast,

existing methods exhibited higher false positive rates, particularly

as the number of nodes increased. This suggests that SSL, RBAC,

DTLS, and ACL may be prone to misidentifying benign network

activity as malicious attacks, leading to unnecessary alerts and

resource consumption. The low false positive rate of the Huffman

Watermarking method is particularly advantageous in real-world

network security scenarios, where minimizing false alarms is

critical for efficient threat detection and response.

Resource utilization, including CPU and memory usage, is

another important factor to consider in network security solutions.

RAJENDER UDUTHA et al.: ADVANCES IN NETWORK SECURITY FOR A RESILIENT DIGITAL CYBERSPACE INFRASTRUCTURE

3158

The results show that the proposed Huffman Watermarking

method achieved lower resource utilization compared to existing

methods. Across different numbers of nodes, the CPU and

memory utilization percentages for the Huffman Watermarking

method were consistently lower than those of SSL, RBAC, DTLS,

and ACL. This indicates that the Huffman Watermarking method

is more efficient in terms of resource consumption, making it

well-suited for deployment in resource-constrained environments

or high-throughput networks. Lower resource utilization not only

reduces operational costs but also enhances the scalability and

performance of the network security infrastructure.

The superior performance of the proposed Huffman

Watermarking method in terms of detection accuracy, false

positive rate, and resource utilization has significant practical

implications for network security practitioners and organizations.

By adopting the Huffman Watermarking method, organizations

can enhance their ability to detect and classify network attacks

accurately while minimizing false alarms and conserving

computational resources. This can lead to improved threat

response times, reduced operational overhead, and enhanced

overall security posture. Additionally, the efficiency and

scalability of the Huffman Watermarking method make it suitable

for deployment in diverse network environments, ranging from

small-scale enterprise networks to large-scale data centers and

cloud infrastructures.

8. CONCLUSION

The results of the experiments highlight the effectiveness and

efficiency of the proposed Huffman Watermarking method for

network security applications. By outperforming existing

methods in terms of detection accuracy, false positive rate, and

resource utilization, the Huffman Watermarking method offers a

promising approach for mitigating network threats and enhancing

overall security resilience. Future research directions may involve

further optimization of the Huffman coding technique,

exploration of hybrid approaches combining watermarking with

other machine learning methods, and real-world validation of the

proposed method in diverse network environments.

The experiments conducted to compare existing network

security methods (SSL, RBAC, DTLS, ACL) with the proposed

Huffman Watermarking method across varying numbers of nodes

have yielded insightful results. The findings underscore the

effectiveness and efficiency of the Huffman Watermarking

method in enhancing network security and mitigating cyber

threats.

• The Huffman Watermarking method consistently exhibited

higher detection accuracy compared to existing methods,

reaching up to 99% accuracy for 500 nodes. This superior

performance highlights the robustness of Huffman coding in

accurately classifying network attacks.

• The Huffman Watermarking method showed lower CPU

and memory utilization percentages compared to existing

methods. This efficiency in resource consumption enhances

scalability and reduces operational costs, making the

proposed method well-suited for deployment in various

network environments.

REFERENCES

[1] Haibo Hu and Jianliang Xu, “2PASS: Bandwidth-Optimized

Location Cloaking for Anonymous Location-Based

Services”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 21, No. 10, pp. 1458-1472, 2010.

[2] Ping Yi, Zhoulin Dai, Shiyong Zhang and Yiping Zhong, “A

New Routing Attack in Mobile Ad Hoc Networks”,

International Journal of Information Technology, Vol. 11,

No. 2, pp. 83-94, 2005.

[3] Zhiqiang Gao and Zhiqiang, “Differentiating Malicious

DDoS Attack Traffic from Normal TCP Flows by Proactive

Tests”, IEEE Communications Letters, Vol. 10, No. 11, pp.

793-795, 2006.

[4] M. Zhou, L. Han, H. Lu and C. Fu, “Intrusion Detection

System for IoT Heterogeneous Perceptual Network”, Mobile

Networks and Applications, Vol. 33, No. 1, pp. 1-14, 2020.

[5] L. Xiao, X. Wan, X. Lu and Y. Zhang, “IoT Security

Techniques based on Machine Learning: How do IoT

Devices use AI to Enhance Security?”, IEEE Signal

Processing Magazine, Vol. 35, No. 5, pp. 41-49, 2018.

[6] B. Gobinathan and V.P. Sundramurthy, “A Novel Method to

Solve Real Time Security Issues in Software Industry using

Advanced Cryptographic Techniques”, Scientific

Programming, Vol. 2021, pp. 1-9, 2021.

[7] Qi Liao, David A. Cieslak, Aaron D. Striegel and Nitesh V.

Chawla, “Using Selective, Short-Term Memory to Improve

Resilience against DDoS Exhaustion Attack”, Security and

Communication Networks, Vol. 1, pp. 287-299, 2008.

[8] J. Singh, R. Vikram and S. Sakthivel, “Energy-Efficient

Clustering and Routing Algorithm using Hybrid Fuzzy with

Grey Wolf Optimization in Wireless Sensor Networks”,

Security and Communication Networks, Vol. 2022, pp. 1-13,

2022.

[9] V. Saravanan and A. Sumathi, “Handoff Mobiles with Low

Latency in Heterogeneous Networks for Seamless Mobility:

A Survey and Future Directions”, European Journal of

Scientific Research, Vol. 81, No. 3, pp. 417-424, 2012.

[10] J. Lloyd and R. Anane, “Implementation of A System for

Cohesive and Secure Community Management”,

Proceedings of International Conference on Computer

Supported Cooperative Work in Design, pp. 133-138, 2021.

[11] S.P. Yadav, F. Al Turjman and S.A. Kumar, “Quantum-Safe

Cryptography Algorithms and Approaches: Impacts of

Quantum Computing on Cybersecurity”, De Gruyter, 2023.

[12] R.N. Shanmugasundaram, “Enhancements of Resource

Management for Device to Device (D2D) Communication:

A Review”, Proceedings of International Conference on IoT

in Social, Mobile, Analytics and Cloud, pp. 51-55, 2019.

