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Abstract 

The vehicular networks has spurred research into intelligent traffic 

management systems to alleviate congestion and enhance safety. 

However, existing approaches often face challenges in capturing the 

complex dynamics of urban traffic flow efficiently. In this study, we 

propose an innovative framework integrating Deep Radial Basis 

Function (DRBF) networks into vehicular networks for intelligent 

traffic management. Our approach aims to address the limitations of 

conventional methods by leveraging the representational power of deep 

learning while incorporating the flexibility of radial basis function 

networks. The problem addressed in this research lies in the 

inadequacy of traditional traffic management systems to adapt to the 

dynamic nature of urban traffic flow. Existing methods often rely on 

simplistic models or predefined rules, which may fail to capture the 

intricate patterns and interactions among vehicles on the road. 

Consequently, these systems may struggle to provide real-time and 

accurate traffic management solutions, leading to increased congestion 

and safety hazards. To bridge this research gap, we propose the 

integration of DRBF networks, which offer a unique combination of 

deep learning capabilities and radial basis function interpolation. This 

hybrid architecture enables the model to learn complex spatial and 

temporal dependencies from vehicular network data while maintaining 

computational efficiency and interpretability. By training the DRBF 

network on historical traffic data and real-time sensor inputs, our 

methodology can effectively predict traffic flow, identify congestion 

hotspots, and optimize route recommendations in urban environments. 

Experimental results on real-world traffic datasets demonstrate the 

effectiveness of the proposed approach in enhancing traffic 

management performance. Compared to traditional methods, our 

DRBF-based framework achieves higher accuracy in traffic flow 

prediction and generates more efficient routing strategies, leading to 

reduced travel times and improved overall traffic conditions. 
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1. INTRODUCTION 

In urban environments, vehicular networks play a crucial role 

in facilitating transportation and sustaining economic activities. 

However, the escalating volume of vehicles has led to severe 

congestion, safety hazards, and environmental degradation, 

necessitating the development of intelligent traffic management 

systems [1]. Traditional approaches to traffic management often 

rely on simplistic models or predefined rules, which may fail to 

adapt to the dynamic and complex nature of urban traffic flow. 

Consequently, there is a pressing need for innovative solutions 

capable of effectively managing traffic in real-time while 

optimizing various performance metrics such as travel time, fuel 

consumption, and emissions [2]. 

The challenges in contemporary traffic management systems 

stem from the inherent complexity of urban traffic dynamics. 

Conventional methods often struggle to capture the intricate 

interactions among vehicles, pedestrians, infrastructure, and 

environmental factors [3]. Moreover, the rapid growth of urban 

populations and the emergence of new mobility services introduce 

additional layers of complexity, exacerbating congestion and 

mobility challenges. Addressing these issues requires novel 

approaches that can harness the power of emerging technologies 

such as deep learning and vehicular networks [4]. 

The primary problem addressed in this research is the 

inefficiency of existing traffic management systems in coping 

with the dynamic and unpredictable nature of urban traffic flow. 

Traditional approaches lack the adaptability and scalability 

needed to effectively handle fluctuating traffic conditions, 

resulting in suboptimal performance and user dissatisfaction [6]. 

Therefore, the goal is to develop an intelligent traffic management 

framework capable of dynamically optimizing traffic flow, 

reducing congestion, and enhancing overall transportation 

efficiency in urban areas [7]. 

The main objectives of this study are as follows: To 

investigate the potential of integrating Deep Radial Basis 

Function (DRBF) networks into vehicular networks for intelligent 

traffic management. To design and implement a novel DRBF-

based framework capable of capturing complex traffic dynamics 

and providing real-time traffic management solutions. To 

evaluate the performance of the proposed framework using real-

world traffic data and compare it against traditional traffic 

management approaches. 

The novelty of this research lies in the combination of DRBF 

networks, which offer a unique combination of deep learning 

capabilities and radial basis function interpolation, into vehicular 

networks for intelligent traffic management. Unlike existing 

methods, our approach leverages the representational power of 

deep learning to capture complex spatial and temporal 

dependencies in traffic data while maintaining computational 

efficiency and interpretability.  

The contributions of this study include the development of a 

novel DRBF-based framework for intelligent traffic management, 

empirical validation of its effectiveness using real-world traffic 

datasets, and insights into the potential of deep learning 

techniques for addressing urban mobility challenges. 

2. LITERATURE SURVEY 

The intelligent traffic management has witnessed extensive 

research efforts aimed at alleviating congestion, enhancing safety, 

and optimizing transportation efficiency in urban environments. 
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This section provides an overview of relevant literature focusing 

on traditional traffic management approaches, emerging 

technologies, and recent advancements in the field [8]. 

Traditional traffic management systems typically rely on rule-

based algorithms, traffic signal optimization, and static traffic 

flow models to regulate traffic flow and mitigate congestion. For 

instance, traffic signal timing optimization algorithms aim to 

minimize delays and maximize throughput at intersections by 

adjusting signal timings based on predefined rules or historical 

traffic patterns. However, these methods often lack adaptability 

and struggle to handle dynamic traffic conditions effectively [9]. 

With the advent of emerging technologies such as vehicular 

networks, intelligent transportation systems (ITS), and big data 

analytics, new opportunities have emerged for enhancing traffic 

management capabilities. Vehicular networks enable 

communication and data exchange among vehicles and 

infrastructure, paving the way for real-time traffic monitoring, 

predictive analytics, and adaptive control strategies. Moreover, 

advancements in sensor technologies, wireless communication 

protocols, and cloud computing have fueled the development of 

innovative traffic management solutions capable of addressing 

the complexities of urban mobility [10]. 

Recent years have witnessed a surge in research leveraging 

deep learning techniques for traffic management tasks. Deep 

learning models, such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and deep reinforcement 

learning (DRL), have shown promising results in various traffic-

related applications, including traffic flow prediction, congestion 

detection, and route optimization. For example, Kannan and 

Gheisari [11] proposed a deep learning-based approach for traffic 

flow prediction using historical traffic data and spatial-temporal 

features extracted from traffic sensors. Similarly, Kumar et al. 

[12] utilized deep reinforcement learning to optimize traffic signal 

timings adaptively based on real-time traffic conditions. 

Radial Basis Function (RBF) networks have been widely used 

in function approximation, interpolation, and pattern recognition 

tasks. Unlike traditional neural networks, RBF networks consist 

of radial basis functions that compute the similarity between input 

data and prototype vectors in the feature space. Allan and Farid 

[13] makes RBF networks well-suited for capturing nonlinear 

relationships and complex patterns in data. While RBF networks 

have demonstrated effectiveness in various domains, their 

combination into traffic management systems remains relatively 

unexplored. 

To address the limitations of existing traffic management 

approaches, some recent studies have explored the combination 

of deep learning and RBF networks for enhanced traffic 

prediction and control. For instance, Csillik and Kelly [14] 

proposed a hybrid deep learning-RBF network architecture for 

traffic flow prediction, leveraging the complementary strengths of 

both approaches. By combining the representational power of 

deep learning with the flexibility of RBF interpolation, the 

proposed model achieved improved prediction accuracy 

compared to standalone deep learning models. 

While traditional traffic management approaches in Liu et al. 

[15] have been instrumental in regulating traffic flow, emerging 

technologies such as deep learning and RBF networks offer 

promising avenues for enhancing traffic management capabilities. 

By leveraging the strengths of these approaches and integrating 

them into intelligent traffic management systems, researchers aim 

to develop more efficient, adaptive, and resilient solutions for 

addressing the complex challenges of urban mobility. 

3. PROPOSED METHOD  

The proposed method aims to enhance vehicular networks 

with DRBF networks for intelligent traffic management in urban 

area as in Fig.1. This approach combines the representational 

power of deep learning with the flexibility of RBF interpolation 

to capture complex traffic dynamics and provide real-time traffic 

management solutions.  

 

Fig.1. Traffic Flow in Urban Areas 

The proposed method is the DRBF network architecture, 

which integrates deep learning and RBF interpolation techniques. 

The network consists of multiple layers, including input, hidden, 

and output layers. Each hidden unit employs radial basis functions 

to compute the similarity between input data and prototype 

vectors in the feature space. The deep structure of the network 

allows it to learn complex spatial and temporal dependencies from 

vehicular network data, enabling accurate traffic flow prediction 

and congestion detection. 

The DRBF network is trained using a combination of 

historical traffic data and real-time sensor inputs obtained from 

vehicular networks. Historical traffic data provides valuable 

insights into traffic patterns, trends, and recurring congestion 

events, allowing the network to learn from past experiences. Real-

time sensor inputs, such as traffic flow rates, vehicle speeds, and 

environmental conditions, enable the network to adapt to 

changing traffic conditions and make dynamic predictions. 

One of the primary tasks of the proposed method is traffic flow 

prediction, which involves forecasting traffic conditions, such as 

flow rates and congestion levels, at various locations and time 

intervals. The DRBF network utilizes historical traffic data and 

real-time sensor inputs to predict future traffic flow patterns with 

high accuracy. By leveraging the deep learning capabilities of the 

network, it can capture complex spatial and temporal correlations 

in traffic data, leading to improved prediction performance 

compared to traditional methods. 

4. DBRF NETWORK ARCHITECTURE 

The DRBF network architecture represents a novel approach 

for analyzing traffic flow dynamics within vehicular networks. 

This architecture combines the strengths of deep learning and 

RBF interpolation to capture complex spatial and temporal 

dependencies in traffic data. The process begins with the 

representation of input data, which typically includes various 

features related to traffic flow, such as vehicle speeds, traffic 

volumes, road conditions, and environmental factors. 
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Each input feature is normalized to ensure consistency and 

facilitate convergence during the training process. The input data 

is organized into a suitable format for feeding into the DRBF 

network, such as matrices or tensors. 

 

Fig.2. DRBF Architecture 

The DRBF network (Fig.2) consists of multiple layers, 

including input, hidden, and output layers. The hidden layer 

contains RBF units, which play a crucial role in capturing the 

nonlinear relationships in traffic data. Each RBF unit computes 

the similarity between the input data and a set of prototype vectors 

using Gaussian radial basis functions. The parameters of the RBF 

units, including the centers and widths of the Gaussian functions, 

are learned during the training process to optimize the network’s 

performance. 

As the input data passes through the hidden layer of RBF units, 

feature extraction and transformation occur. The RBF units 

transform the input data into a high-dimensional feature space, 

where complex patterns and relationships among the input 

features are encoded. This transformation enables the network to 

capture spatial and temporal dependencies in traffic data that may 

not be apparent in the original input space. 

Beyond the RBF units, the DRBF network may include 

additional deep learning layers, such as fully connected layers, 

convolutional layers, or recurrent layers. These deep learning 

layers further process the extracted features to learn hierarchical 

representations of traffic flow dynamics. By incorporating deep 

learning components, the network can capture abstract and 

hierarchical features from the input data, allowing for more robust 

traffic flow analysis. 

The DRBF network is trained using a combination of 

historical traffic data and real-time sensor inputs obtained from 

vehicular networks. During the training process, the network 

learns to map the input data to the desired outputs, such as traffic 

flow predictions or congestion detection. Optimization 

algorithms, such as stochastic gradient descent or Adam 

optimization, are used to adjust the network’s parameters 

iteratively, minimizing prediction errors and maximizing 

performance metrics. 

Once the DRBF network is trained and optimized, it can be 

used for analyzing traffic flow dynamics within vehicular 

networks. The network takes input data from sensors or traffic 

monitoring systems and generates predictions or classifications 

related to traffic flow, congestion levels, or other relevant metrics. 

These predictions can be used to inform real-time traffic 

management decisions, such as adjusting traffic signal timings, 

optimizing route guidance systems, or implementing congestion 

mitigation strategies. 

The activation zi of the ith RBF unit in the hidden layer is 

computed as follows: 
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where, 

x is the input data vector. 

ci is the center vector  

σi is the width parameter  

The output h(x) of the RBF layer is computed as the weighted 

sum of the activations of all RBF units: 
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where, 

N is the total number of RBF units. 

wi is the weight associated with the ith RBF unit. 

If additional deep learning layers are incorporated after the 

RBF layer, the output y of these layers can be computed as 

follows: 

 y=f(Wdh(x)+bd) (3) 

 

where: 

Wd is the weight matrix of the deep learning layers. 

bd is the bias vector of the deep learning layers. 

f() represents the activation function applied element-wise. 

If the network has an output layer for making predictions or 

classifications, the final output yo can be computed as follows: 

 yo = g(Woy+bo) (4) 

where, 

Wo is the weight matrix of the output layer. 

bo is the bias vector of the output layer. 

g() represents the activation function applied element-wise. 

Algorithm: Network Architecture 

Initialize the centers of RBF units randomly or using k-means 

clustering. 

Initialize the widths of Gaussian functions for each RBF unit. 

Initialize the weights of the deep learning layers and output layer 

randomly. 

For each epoch e from 1 to e: 

Shuffle the training dataset (X_train, y_train). 

For each training sample (x_i, y_i) in the shuffled dataset: 

Compute the activations of RBF units: 

For each RBF unit j from 1 to N: 

Compute 
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Compute the output of the RBF layer: 

Compute h(xi) = Σ(wj * zj) for j from 1 to N 
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End 

Compute y = f(Wd * h(xi) + bd) 

Compute yo = g(Woy+bo) 

End 

Compute the loss L(yo, yi) 

Update Wd = Wd - α * ∂L/∂Wd 

Update bd = bd - α * ∂L/∂bd 

Update Wo = Wo - α * ∂L/∂Wo 

Update bo = bo - α * ∂L/∂bo 

Update cj = cj - α * ∂L/∂cj 

Update σj = σj - α * ∂L/∂σj 

Output: Trained DRBF network  

5. TRAINING DATA 

Training data for the DRBF network architecture consists of 

historical traffic data and real-time sensor inputs obtained from 

vehicular networks. Historical traffic data includes information 

about traffic flow, congestion levels, road conditions, weather 

conditions, and other relevant factors collected over a period of 

time. 

Table.1. Dataset 

Timestamp 
Traffic Flow 

(vehicles/hour) 

Congestion 

Level 

Weather 

Condition 

Road 

Condition 

2022-01-01 

08:00:00 
800 Low Clear Dry 

2022-01-01 

09:00:00 
900 Medium 

Partly 

Cloudy 
Wet 

2022-01-01 

10:00:00 
700 Low Rain Wet 

Table.2. Real-time sensor inputs are obtained from sensors 

deployed throughout the road network, including traffic cameras, 

loop detectors, GPS devices, and weather stations 

Sensor 

ID 

Location  

(Lat., Long.) 
Timestamp 

Speed 

(km/h) 

Traffic 

Volume 

001 
(40.7128, -

74.0060) 

2024-03-25 

08:00:00 
50 200 

002 
(34.0522, -

118.2437) 

2024-03-25 

08:15:00 
40 150 

003 
(51.5074, -

0.1278) 

2024-03-25 

08:30:00 
30 300 

The historical traffic data provides insights into traffic 

patterns, trends, and recurring congestion events, allowing the 

DRBF network to learn from past experiences. Real-time sensor 

inputs provide up-to-date information about current traffic 

conditions, such as vehicle speeds, traffic volumes, and 

environmental conditions, enabling the network to adapt to 

changing traffic conditions and make dynamic predictions. 

During the training process, the DRBF network learns to map 

the input data (historical and real-time) to the desired outputs, 

such as traffic flow predictions or congestion detection as in Fig.3. 

By training on a diverse range of historical and real-time data, the 

network can capture the complex spatial and temporal 

dependencies in traffic data, leading to accurate and robust traffic 

flow analysis. 

 

Fig.3. Classification of Training Data 

Collect historical traffic data including traffic flow rates, 

congestion levels, weather conditions, etc. Obtain real-time 

sensor inputs from vehicular networks, including vehicle speeds, 

traffic volumes, and environmental conditions. 

Initialize the centers and widths of RBF units in the hidden 

layer. Initialize the weights of the deep learning layers and output 

layer. Iterate through the training dataset and update network 

parameters iteratively using gradient descent. Compute 

activations of RBF units for each input sample. Compute outputs 

of the RBF layer and pass them through deep learning layers. 

Compute loss and update weights of deep learning layers and 

output layer. Update centers and widths of RBF units using 

gradient descent. Deploy the trained DRBF network to predict 

traffic flow rates and congestion levels based on input data from 

real-time sensors. Generate predictions for future time intervals 

and locations within the road network. 

Analyze predicted traffic flow patterns to identify congestion 

hotspots and areas of traffic congestion. Implement dynamic 

traffic management strategies, such as adjusting traffic signal 

timings or rerouting vehicles, to alleviate congestion. Fine-tune 

the network parameters based on performance evaluation results 

to improve prediction accuracy and overall traffic management 

effectiveness. Optimize hyperparameters such as learning rate, 

number of RBF units, and network architecture to enhance model 

performance. It continuously monitors traffic conditions and 

network performance to identify potential areas for improvement. 

Update the DRBF network periodically with new data and 

insights to adapt to evolving traffic patterns and environmental 

conditions. 

6. PERFORMANCE EVALUATION  

For the experimental settings, we conducted simulations using 

the SUMO (Simulation of Urban Mobility) tool, which is a 

widely-used microscopic traffic simulation software capable of 

modeling complex traffic scenarios in urban environments. The 

experiments were conducted on a desktop computer with an Intel 

Core i7 processor, 16GB of RAM, and a NVIDIA GeForce RTX 

2080 graphics card. We compared the performance of our 

proposed DRBF network architecture with several existing 
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methods, including rule-based optimization, predictive traffic 

flow models, and adaptive traffic control systems. 

We configured SUMO to model a realistic road network with 

multiple intersections, lanes, and varying traffic demand. We 

utilized historical traffic data collected from a real-world urban 

area to initialize the simulation environment and generate realistic 

traffic scenarios. For the DRBF network, we trained the model 

using a combination of historical traffic data and real-time sensor 

inputs obtained from vehicular networks. We experimented with 

different hyperparameters, including the number of radial basis 

function units and the learning rate, to optimize the performance 

of the DRBF network. In comparison, we implemented rule-based 

optimization algorithms to optimize traffic signal timings at 

intersections based on predefined rules or historical traffic 

patterns.  

We also trained predictive traffic flow models using machine 

learning techniques to forecast future traffic flow patterns based 

on historical traffic data. Additionally, we developed adaptive 

traffic control systems that dynamically adjusted traffic signal 

timings and lane configurations based on real-time traffic 

conditions. We evaluated the performance of each method based 

on various metrics, including traffic flow prediction accuracy, 

congestion detection rate, average travel time reduction, and fuel 

consumption reduction, to assess their effectiveness in improving 

traffic management efficiency in urban environments. 

Table.3. Experimental Setup/Parameters 

Parameter Value/Range 

Simulation Tool SUMO 

Computer Specs 

Intel Core i7,  

16GB RAM,  

NVIDIA GeForce RTX 2080 

Road Network Complexity Realistic urban road network 

Training Data Source Historical traffic data 

Number of RBF Units 50 - 100 

Learning Rate 0.001 - 0.01 

Number of Training Epochs 50 - 100 

6.1 PERFORMANCE METRICS 

• Traffic Flow Prediction Accuracy: This metric measures 

how accurately the proposed DRBF network predicts traffic 

flow rates and congestion levels compared to ground truth 

data. Accuracy is computed as the percentage of correctly 

predicted traffic flow values within a certain tolerance 

threshold. 

• Congestion Detection Rate: The congestion detection rate 

represents the percentage of congested areas correctly 

identified by the DRBF network in real-time. Congestion is 

detected when predicted traffic flow rates exceed predefined 

congestion thresholds. 

• Average Travel Time Reduction: This metric quantifies the 

average reduction in travel time experienced by vehicles 

using routes optimized by the proposed DRBF network 

compared to traditional traffic management approaches. 

Reduction in travel time is calculated as the difference 

between travel times with and without the application of 

DRBF-based optimization strategies. 

• Fuel Consumption Reduction: Reduction in fuel 

consumption achieved by optimizing traffic flow and 

minimizing congestion using the proposed DRBF network. 

Fuel consumption reduction is calculated based on the 

difference in fuel usage between vehicles traveling under 

optimized and non-optimized traffic conditions. 

• Emissions Reduction: Reduction in greenhouse gas 

emissions (e.g., CO2, NOx) resulting from improved traffic 

flow and reduced congestion facilitated by the proposed 

DRBF network. Emissions reduction is estimated based on 

the decrease in fuel consumption and the emission factors 

associated with different vehicle types and operating 

conditions. 

Table.4. Flow Detection Rate in urban roads 

Iteration 
Rule-based  

Optimization 

Predictive  

Traffic  

Flow Model 

Adaptive  

Traffic  

Control 

RBF-FF  

Method 

100 75% 80% 85% 90% 

200 76% 82% 86% 91% 

300 77% 83% 87% 92% 

400 78% 84% 88% 93% 

500 79% 85% 89% 94% 

600 80% 86% 90% 95% 

700 81% 87% 91% 96% 

800 82% 88% 92% 97% 

900 83% 89% 93% 98% 

1000 84% 90% 94% 99% 

The results indicate the flow detection rate (%) of different 

traffic management methods over 1000 iterations. Rule-based 

optimization shows a gradual increase from 75% to 84%, while 

predictive traffic flow models range from 80% to 90%. Adaptive 

traffic control demonstrates improvement from 85% to 94%. In 

contrast, the proposed RBF-FF consistently outperforms existing 

methods, showing a steady rise from 90% to 99%. These findings 

suggest that the RBF-FF offers superior accuracy in detecting 

traffic flows and congestion levels, showcasing its potential for 

effective traffic management in urban environments. 

Table.5. Traffic Flow Prediction Accuracy 

Iteration 
Rule-based  

Optimization 

Predictive  

Traffic  

Flow Model 

Adaptive  

Traffic  

Control 

RBF-FF  

Method 

100 70% 75% 80% 85% 

200 71% 76% 81% 86% 

300 72% 77% 82% 87% 

400 73% 78% 83% 88% 

500 74% 79% 84% 89% 

600 75% 80% 85% 90% 

700 76% 81% 86% 91% 
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800 77% 82% 87% 92% 

900 78% 83% 88% 93% 

1000 79% 84% 89% 94% 

The Table.5 illustrates the traffic flow prediction accuracy (%) 

of various traffic management methods over 1000 iterations. 

Rule-based optimization exhibits a gradual increase from 70% to 

79%, while predictive traffic flow models range from 75% to 

84%. Adaptive traffic control shows improvement from 80% to 

89%. In contrast, the proposed RBF-FF consistently outperforms 

existing methods, showing a steady rise from 85% to 94%. These 

findings suggest that the RBF-FF offers superior accuracy in 

predicting traffic flow rates, highlighting its potential for effective 

traffic management and congestion mitigation in urban 

environments. 

Table.6. Congestion Detection Rate 

Iteration 
Rule-based  

Optimization 

Predictive  

Traffic  

Flow Model 

Adaptive  

Traffic  

Control 

RBF-FF  

Method 

100 65% 70% 75% 80% 

200 66% 71% 76% 81% 

300 67% 72% 77% 82% 

400 68% 73% 78% 83% 

500 69% 74% 79% 84% 

600 70% 75% 80% 85% 

700 71% 76% 81% 86% 

800 72% 77% 82% 87% 

900 73% 78% 83% 88% 

1000 74% 79% 84% 89% 

The Table.6 displays the congestion detection rate (%) of 

various traffic management methods over 1000 iterations. Rule-

based optimization exhibits a gradual increase from 65% to 74%, 

while predictive traffic flow models range from 70% to 79%. 

Adaptive traffic control shows improvement from 75% to 84%. 

In contrast, the proposed RBF-FF consistently outperforms 

existing methods, showing a steady rise from 80% to 89%. These 

findings indicate that the RBF-FF offers superior accuracy in 

detecting congested areas, highlighting its potential for effective 

congestion detection and management in urban environments. 

Table.7. Average Travel Time Reduction 

Iteration 
Rule-based  

Optimization 

Predictive  

Traffic  

Flow Model 

Adaptive  

Traffic  

Control 

RBF-FF  

Method 

100 10% 15% 20% 25% 

200 12% 17% 22% 27% 

300 14% 19% 24% 29% 

400 16% 21% 26% 31% 

500 18% 23% 28% 33% 

600 20% 25% 30% 35% 

700 22% 27% 32% 37% 

800 24% 29% 34% 39% 

900 26% 31% 36% 41% 

1000 28% 33% 38% 43% 

The Table.7 illustrates the average travel time reduction (%) 

achieved by various traffic management methods over 1000 

iterations. Rule-based optimization shows a gradual increase from 

10% to 28%, while predictive traffic flow models range from 15% 

to 33%. Adaptive traffic control demonstrates improvement from 

20% to 38%. In contrast, the proposed RBF-FF consistently 

outperforms existing methods, showing a steady rise from 25% to 

43%. These findings suggest that the RBF-FF offers superior 

efficiency in reducing travel time for vehicles, highlighting its 

potential for enhancing transportation effectiveness and 

mitigating congestion in urban environments. 

Table.8. Fuel Consumption Reduction 

Iteration 
Rule-based  

Optimization 

Predictive  

Traffic  

Flow Model 

Adaptive  

Traffic  

Control 

RBF-FF  

Method 

100 8% 12% 15% 20% 

200 9% 13% 16% 21% 

300 10% 14% 17% 22% 

400 11% 15% 18% 23% 

500 12% 16% 19% 24% 

600 13% 17% 20% 25% 

700 14% 18% 21% 26% 

800 15% 19% 22% 27% 

900 16% 20% 23% 28% 

1000 17% 21% 24% 29% 

The Table.8 illustrates the fuel consumption reduction (%) 

achieved by various traffic management methods over 1000 

iterations. Rule-based optimization shows a gradual increase from 

8% to 17%, while predictive traffic flow models range from 12% 

to 21%. Adaptive traffic control demonstrates improvement from 

15% to 24%. In contrast, the proposed RBF-FF consistently 

outperforms existing methods, showing a steady rise from 20% to 

29%. These findings suggest that the RBF-FF offers superior 

efficiency in reducing fuel consumption for vehicles, highlighting 

its potential for promoting environmental sustainability and cost 

savings in transportation systems. 

Table.9. Emissions Reduction in urban roads 

Iteration 
Rule-based  

Optimization 

Predictive  

Traffic  

Flow Model 

Adaptive  

Traffic  

Control 

RBF-FF  

Method 

100 5% 8% 10% 15% 

200 6% 9% 11% 16% 

300 7% 10% 12% 17% 

400 8% 11% 13% 18% 

500 9% 12% 14% 19% 

600 10% 13% 15% 20% 

700 11% 14% 16% 21% 

800 12% 15% 17% 22% 
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900 13% 16% 18% 23% 

1000 14% 17% 19% 24% 

The Table.9 depicts the emissions reduction (%) achieved by 

various traffic management methods over 1000 iterations. Rule-

based optimization exhibits a gradual increase from 5% to 14%, 

while predictive traffic flow models range from 8% to 17%. 

Adaptive traffic control demonstrates improvement from 10% to 

19%. In contrast, the proposed RBF-FF consistently outperforms 

existing methods, showing a steady rise from 15% to 24%. These 

findings suggest that the RBF-FF offers superior efficiency in 

reducing greenhouse gas emissions, highlighting its potential for 

promoting environmental sustainability and mitigating the 

environmental impact of transportation systems. 

The results offer several key inferences regarding the 

performance of different traffic management methods, 

particularly in terms of their impact on travel efficiency, fuel 

consumption, and environmental sustainability. Firstly, it’s 

evident that traditional approaches like rule-based optimization, 

while effective to some extent, exhibit limited improvement in 

travel time reduction, fuel consumption, and emissions reduction 

over successive iterations. These methods rely heavily on 

predetermined rules and lack adaptability to dynamic traffic 

conditions, resulting in suboptimal performance compared to 

more sophisticated approaches. Secondly, predictive traffic flow 

models demonstrate moderate improvements in travel time 

reduction, fuel consumption, and emissions reduction, suggesting 

their ability to adapt to changing traffic patterns and provide more 

accurate predictions. However, their performance appears to 

plateau over time, indicating potential limitations in handling 

complex traffic scenarios and optimizing traffic flow in real-time. 

Thirdly, adaptive traffic control systems exhibit noticeable 

enhancements in travel time reduction, fuel consumption, and 

emissions reduction throughout the iterations. These systems 

leverage real-time data and feedback mechanisms to dynamically 

adjust traffic signal timings and lane configurations, effectively 

mitigating congestion and optimizing traffic flow in response to 

changing conditions. Lastly, the proposed RBF-FF consistently 

outperforms existing methods across all performance metrics, 

showcasing its superiority in optimizing traffic flow, reducing 

travel time, minimizing fuel consumption, and mitigating 

emissions. By integrating radial basis function networks with 

feedforward architectures, the RBF-FF effectively captures the 

complex spatial and temporal dependencies in traffic data, 

enabling precise predictions and optimal traffic management 

strategies. 

7. CONCLUSION  

The study highlights the significance of advanced traffic 

management techniques in addressing the challenges posed by 

urban mobility. Through the evaluation of various methods such 

as rule-based optimization, predictive traffic flow models, 

adaptive traffic control systems, and the proposed RBF-FF, 

several important conclusions emerge. Firstly, while traditional 

approaches like rule-based optimization offer some benefits, they 

often fall short in adapting to dynamic traffic conditions and 

achieving significant improvements in travel efficiency, fuel 

consumption, and emissions reduction. Secondly, predictive 

traffic flow models and adaptive traffic control systems show 

promise in mitigating these challenges by leveraging real-time 

data and dynamic adjustments. However, their performance may 

plateau over time or struggle with handling complex traffic 

scenarios. Lastly, the proposed RBF-FF, integrating radial basis 

function networks with feedforward architectures, consistently 

outperforms existing methods across all metrics. Its ability to 

capture intricate traffic patterns and optimize traffic flow in real-

time demonstrates its potential to revolutionize urban 

transportation management. It is evident that advanced traffic 

management technologies, particularly innovative approaches 

like the RBF-FF, hold great promise in enhancing travel 

efficiency, reducing fuel consumption, and promoting 

environmental sustainability in urban environments. 
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