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Abstract 

The need for wireless communication in the present and the future is 

for green communication. The cognitive radio network must meet the 

requirements for green communication in order to be the next-

generation communication network. So improving energy efficiency is 

a must for the development of cognitive radio networks. However, 

sensor performance must be reduced in order to improve energy 

efficiency. In order to consider the two key indicators of sensing 

performance and energy efficiency, this research suggests a Chaotic 

Equilibrium Optimization (CEO) method that may effectively boost 

energy efficiency while enhancing spectrum sensing performance. The 

algorithm first learns the initial reliability value of the nodes by 

training, sorts them based on highest reliability, selects an even number 

of nodes with highest reliability, divides the chosen nodes into two 

groups, and then alternates the operation of the two groups of nodes. 

While they wait for additional instructions from the fusion center, the 

other nodes that are not now participating in cooperative spectrum 

sensing are in a state of silence. Experimental demonstrations are 

effectuated and analyzed the performances of the performances of the 

proposed work. The proposed work effectively senses the spectrum than 

the other approaches. 
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1. INTRODUCTION 

A cognitive radio (CR) [1] is a transmitter that may be 

continuously designed and adjusted to use the optimum nearby 

communication channels in order to reduce customer disruption 

and capacity. In order to support more connected devices in a 

specific frequency region at a single location, such a transmitter 

continuously discovers available frequencies in the range of 

wireless signals [2] and modifies its broadcast or received 

characteristics as necessary. The intellectual processor has the 

potential to set radio-system variables in accordance with the 

operator’s orders. Waveform, procedure, functioning frequency 

range, and connectivity are some of these factors.  

In its networked surroundings, this performs as an 

independent unit, sharing environmental data with the systems 

that it encounters and other cognitive radio waves [3]. In spite of 

decoding the transmitter’s outputs, a carrier receiver also monitors 

the device’s performance continuously.Using this data, it can 

identify the electromagnetic circumstances, channel ailments, link 

execution, etc., and adjust the broadcasting locations so as to 

provide the proper level of functionality dependent on a suitable 

blend of customer specifications, functional boundaries, and 

legislative constraints. Some suggestions connect software-

defined [4] broadcasting, intellectual airwaves, and electronic 

mesh networks, which constantly change the wavelength band 

used by statements transferred between successive nodes on a 

route and the communication protocol used by statements among 

two specific nodes employing collaborative inclusion.  

A newly developed sort of data connection for transmission of 

information called a cognitive network (CN) [5] employs the 

latest innovations from numerous academic fields such as 

predictive modelling, visualization of knowledge, internet 

connections, and resource administration to address several issues 

that exist in contemporary networks.A spectrum sensing [6] 

method known as power monitoring determines if the main 

consumer is present or not by determining the incoming 

communication’s strength and contrasting it to a preset criterion. 

The interference power affects how the tolerance expression is 

calculated. Based on the message intercepted on a specific tone 

band, spectrum measurement is used in psychological radio to 

identify whether the primary user is utilising the available 

spectrum and, consequently, whether another user can utilise the 

range of frequencies.  

An illustration of a range that is the most basic would be an 

array of colours. The three different types of spectra for atoms are 

reflection, acceptance, and uninterrupted wavelengths, and every 

spectrum contains a wide range of data. For instance, there are 

several other ways for a structure, like a glowing object, to emit 

radiation. A range of transmission magnitudes at various 

wavelengths is seen using an electromagnetic detector [7]. It 

allows for analysis to identify whether signals are within 

acceptable bounds. It shows erroneous communications, intricate 

patterns of waves, uncommon, brief occurrences, and distortion.A 

source’s optical density is quantified by an optical scanner as part 

of its fundamental operation.  

If one were analyzing the final result of a low-pass filtrate, an 

analyzer that measures the spectrum might use the frequency 

range [8] in order to assess the composition of the filtration’s 

resulting band. It offers greater efficacy and cost-effective 

spectrum use. It is more affordable, and it increases link 

trustworthiness. It employs cutting-edge topologies for network 

connectivity. Large volumes of knowledge are required for 

systems of thought to acquire knowledge from, as are long phases 

of creation, slow acceptance, and adverse environmental 

consequences. A cognition structure is an organism that makes 

selections depending on its perception of internal situations at the 

time and then learns from those selections. 

It is clear that the present literature is unable to address the 

issue of user equality among CU or to enhance sensing 

capabilities or energy efficiency on the basis of user equality. To 

solve the aforementioned concerns, this study proposes a new 

dynamic grouping-based energy-saving algorithm. Major 

Contributions are: 

• The algorithm divides the selected nodes into two groups 

and selects a small subset of nodes with the highest 

dependability to participate in cooperative spectrum sensing 

in a sensing cycle. 
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• In order to continually identify the target frequency band, 

the two sets of nodes each operate in turn, considering 

consideration the effectiveness of spectrum sensing and 

energy efficiency. 

• In line with research results, the clustering algorithm used in 

this paper has higher energy efficiency than the conventional 

technique. 

The rest of the work is organized as follows: in section 2 the 

literature survey of the relevant works is addressed. The system 

model is stated in section 3. Proposed CEO based interleaving 

clustering is explained in section 4. The experimental 

demonstration is explained in section 5. Finally, the work is 

concluded in section 6. 

2. LITERATURE SURVEY 

Kaschel et al. [9] have presented a dynamic Cognitive Radio 

Sensor Networks (CRSN) structure for collaborative spectrum 

measurement activities that take station movements into account 

while predicting the consumption of electricity. To accurately 

estimate the system utilisation of energy, it is imperative to use 

the proper detector configuration in wavelength monitoring. The 

statistical results support the obtained lowering of energy usage 

levels while meeting the requirements of the suggested solution 

but being less than ideal. However, it is inadequate to expand 

outcomes to bigger network configurations. 

Hu et al. [10] have described a sensing-based cognitive 

satellite-terrestrial network (SCSTN) that combines a 

decentralized collaborative spectrum monitoring network with 

the cognition satellite-terrestrial connection. The above 

description is connected to the total quantity of dispersed 

collaborative connections, the sensor time, the energy recognition 

minimum of the perceiving node, and the standard level of fusion. 

The foundation of this strategy is reliable monitoring of the status 

of the core terrestrial connection. Thus, the substantial bandwidth 

efficiency of the satellite transmission system is not taken into 

consideration. 

Wan et al. [11] have implemented an energy-efficient 

cooperative spectrum sensing scheme for the cognitive Internet of 

Things (CIoT), determined by spatial relationships. It can be 

divided into multiple clusters to reduce transmission costs and 

guarantee adequate detection reliability. The top of the cluster is 

close as the participating units’ complete shared spectrum 

monitoring jobs individually by twisting and sending a regional 

test value. The focal point of the cluster then aggregates the sensor 

information and uses the probability ratio test to get the group’s 

determination by using the geographic relationship of the 

elements. The system improves energy savings while 

simultaneously delivering superior detection effectiveness. Still, 

the likelihood of lacking identification can remain at a 

comparatively low level. 

Yin et al. [12] have evaluated a decision-driven time-adaptive 

spectrum sensing scheme to enhance wavelength effectiveness 

and conservation of energy through better utilisation of assets. 

The subsystem communicates information in the frame’s 

distribution period once the physical unit (PU) is found to be 

missing during the detection phase; alternatively, the subsystem 

uses each frame of time to conduct an additional detection of 

spectrum movement, where the full framework period consists of 

the standard period of time for the transfer of data in the present 

frame and the time allotted for bandwidth monitoring in the frame 

that follows. It can efficiently increase secondary performance, 

energy effectiveness, and bandwidth utilisation in certain settings. 

Furthermore, a professional signal generator with rapid 

connectivity rejects the time spent on physical processors for 

sensor decisions. 

Lin et al. [13] have implemented soft decision cooperative 

spectrum sensing with the entropy weight method for cognitive 

radio sensor networks. It is necessary to emphasise, nonetheless, 

that in minimal signal-to-noise situations, data gathered from sites 

that have inadequate route characteristics would have an impact 

on the fusion outcomes and decrease general detection efficiency. 

This would significantly enhance the efficacy of the highly 

reliable regional test findings and the efficiency of joint spectrum 

perception. Additionally, even if the overall number of nodes 

rises, the speed of the system won't change dramatically. 

Ding et al. [14] have developed an energy-efficient channel 

switch in networks of cognitive radios for additional users. It 

enables subordinates to take advantage of the information lag 

acceptance to halt communications and remain on the present 

pathways for bandwidth availability chances. The information is 

delay-tolerant; it could be more environmentally friendly for them 

to stand by on the present path once it is felt to be congested. 

Based on their findings, it is more accurate and efficient. 

However, channel flipping is not always preferable because it 

consumes a lot of energy. 

Awasthi et al. [15] highlighted a suboptimal iterative search 

algorithm to increase efficiency by making the most of the sensing 

and transmission times. According to the analysis of the training, 

under the restriction of the likelihood of persistent use impedance, 

the reduction in energy consumption can be optimised at one 

specific location for both detection and broadcast timeframes. The 

suggested algorithm beats both the comprehensive search 

technique and substandard strategies in terms of simplicity and 

performance. Nevertheless, it has a substantial statistical 

challenge. 

Bala Vishnu et al. [16] suggested a team-based hybrid sensing 

method for cognitive radio wireless sensor networks that employs 

a collaboration-oriented methodology and mixes reactive and 

proactive detection. The secondary channel allocation feature was 

developed to lengthen the time that may be used without 

negatively affecting physical activity interruption. Selecting only 

one sensing node restricts the variable bandwidth distribution 

when the physical unit is occupied. It results in less energy usage, 

greater data transfer, and effective channel management with no 

loss of frequency precision. Thus, a few unsolvable issues include 

channel connection, implementation, and processing. 

3. SYSTEM MODEL 

In the system model depicted in Fig.1, a cognitive radio router 

(CRR), multiple CU, and numerous PU are dispersed over the 

cognitive radio network region. The first user has priority, and the 

secondary user must wait until the first user’s free frequency band 

is available before using it. Below is a description of how these 

users interact with one another. While PU without any traffic to 

broadcast continues to be silent, PU with data to be transmitted 
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intends to send their data packets to CRR first to discover 

potential secondary relays. 

The second step is a CRR broadcasts inquiries it gets from the 

PU to all the CUs in its service region. According to the data they 

have access to and their personal data and power budget, CU that 

require a primary channel compute energy efficiency and report 

back to the CRR whether they intend to cooperate or not. 

Ultimately, the CRR alerts the relevant PU to setup a wireless link 

with the CU if feasible after receiving the CU’s decision.As a 

result the proportion of nodes participating in cooperative 

spectrum sensing possesses an unpredictable correlation with 

sensing effectiveness and remains unchanged linearly with an 

upsurge in nodes, the practical operation of a cognitive radio 

network does not require all nodes to be participating in 

cooperative spectrum sensing at the same time. As a result, the 

algorithm described in this article groups the nodes, and each 

group operates independently. The remaining groups are either 

transmitting data or resting while one group is at work [18]. 

It ought to be emphasized that in the structure of this paper, 

the PU can continue to be readily coupled with a particular CU to 

locate the secondary medium even though some CU might decline 

to take part because of the huge number of CU in the CRN. The 

CU that is effectively paired onto the PU continues to send out the 

data relay transmission of the PU to help the CU better grasp the 

numerous a priori elements of the PU and allow other CU to wait 

for opportunities to occupy the PU frequency band. The two 

groups that were chosen each contribute something to this paper 

[19]. The other group transmits data while the first group does the 

spectrum sensing operation. Even though the not chosen node has 

subpar sensing capabilities, it remains in a quiet condition and 

fails to play role in cooperative spectrum sensing. 

 

Fig.1. System model of proposed spectrum sensing Cognitive 

radio network 

4. FORMATION OF DYNAMIC 

INTERLEAVING CLUSTERING BASED ON 

NODE ENERGY CONSUMPTION AND 

SENSING PERFORMANCE 

All nodes learn to acquire the initial dependability value 

before the nodes are clustered. To represent each node’s 

effectiveness more accurately in providing a theoretical basis for 

choosing nodes, the beginning reliability values of each node will 

be determined, the learning intensities of each node will be the 

same, and they will all participate in the training under the same 

conditions. Each node has a comparable learning intensity, 

independent of its sensing capacity and transmission 

effectiveness. Since each node learns under identical 

circumstances, it is easier to assess its performance and get ready 

for choosing effective nodes. 

 

Fig.2. Time sharing concept of proposed work while clustering 

the nodes 

A node’s dependability value is determined by the fusion 

centre and kept there. The chance of no error and learning capacity 

are referred to as the node dependability in this context, and 

formula is used to determine its value using the following eqn. 

 

1

j

j

R

j M
R

j

e

e



=

=


 (1) 

The jth node’s corresponding learning intensity is Rj and M is 

the total number of nodes. It is not necessary to transmit the 

node’s reliability emphasis because it has been determined by the 

fusion center and retained there. For participation in cooperative 

sensing, the fusion center selects the highest reliability N (N, M, 

N is an even number) sites and interconnects the selected N nodes 

through two groups. While considering the time-sharing structure 

of clustering, let us assume the sensing interval is T with the 

sensing operation as 
1 0.5t T=  and the time required for the 

passage of data is 
2 1 0.5t T t T= − = . Hence the consumption of 

energy at the jth node while at the sensing interval is determined 

as, 

 ( )2

0 00.5j a j j je TF e m G l h= + +  (2) 

The sensing nodes’ adoption frequency is determined as
aF  

and the sampling frequency is similar for all the nodes. At one 

sampling the energy consumption by a single node is referred as 

e0. For the passage of data along the unit distance the power 

requited is implied as G0 and the channel gain is lj. The data 

transmission distance is implied as 2

jh . 

4.1 CHAOTIC EQUILIBRIUM OPTIMIZER (CEO) 

ALGORITHM BASED INTERLEAVE 

CLUSTERING 

The simple well-mixed fluid mass equilibrium on an initial 

quantity, which uses a mass balance equation to explain the level 

of an inert constituent in the control volume because of its many 

different origin and collapse processes, served as the basis for the 

Equilibrium Optimizer (EO) strategy [17]. The EO concept is 



PRAVEEN HIPPARGE AND SHIVKUMAR S JAWALIGI: CHAOTIC EQUILIBRIUM OPTIMIZATION ALGORITHM BASED COOPERATIVE SPECTRUM SENSING AND ENERGY  

    EFFICIENT COGNITIVE RADIO NETWORKS 

3060 

motivated on the management of volume fluid equilibrium of 

masses. Physics established the system of balancing mass for 

preserving mass entering. Additionally, Kent map of chaotic map 

to enhance the generation rate of EO model and the new algorithm 

is developed in the name of CEO algorithm. 

 
sim

dV
A qV qV F

dt
= − +  (3) 

The particle’s focus A, controlling volume V, and flow of 

volumetric rate is q. The volume under control within Vequi is 

particle concentration at the condition of equilibrium without 

generation and 0
dV

A
dt

=  attain an equilibrium (equi) stable state. 
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 ( )0exp 1G t= − −    (6) 

The 
0t initial start time and

0M  the concentration interval. 

4.1.1 Set the Candidate Solution and Exponential Term: 

Whenever the average supporting is being used, four of the 

most effective particles are utilized for exploring the search space, 

and the formula below is used to explain the equilibrium pool 

vectors.   

 
1 2 3 4, , , , ,

avergaeequi pool equi equi equi equi equiV V V V V V=  (7) 

Each particle is revised and adopted by the random selection 

at every cycle. The time has been modified as well for all 

candidate solutions. The exploration and utilization of the EO 

method are balanced utilizing the critical function of the term 

exponential (G). [0, 1] is the range for as random vectors. the 

quantity of iterations necessary to minimize iteration variable t. 
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where, the constant is a to control the exploitation and exploration 

stage.  

4.1.2 Rate of Generation: 

The exploitation stage is improved to demonstrate the accurate 

solutions enabled via generation rate (gr). The decay constant is k 

with the initial value is 0gr .   

 
( )0

0

k t t
gr gr e

− −
=  (11) 

At this stage, the movement of chaotic creates one-

dimensional chaotic maps that can be used in rudimentary 

systems. Kent map is chosen from a set of eight chaotic maps to 

improve the rate of generation efficiency of EO because chaotic 

maps have higher rates of converge and local optimum avoidance. 

The following is an illustration of the Kent of chaotic map with 

respect to EO generation rate: 
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where,  and 
mgr are the controlling parameters. The term of 

generation probability throughout the updating procedure is Q. 

The role of generating likelihood in the CEO rule update is used 

to improve exploitation and exploration. 

 ( ) ( )1equi equi

G
V V V V G G

A
= + − + −  (13) 

A is the unit that is under consideration. Global search is used 

to find the ideal position. Special guidelines: The detection chance 

results in this paper are not significantly affected by a substantial 

increase or reduction in the number of nodes since the likelihood 

of detection is established by the efficiency of the nodes, rather 

by the number of nodes. The increase in detection likelihood is 

not facilitated by cooperative sensing nodes whose node 

efficiency is below the threshold. The algorithm described in this 

paper only chooses good nodes that perform well is better than the 

threshold for joining cooperative spectrum sensing, rather than 

selecting all nodes to engage in cooperative spectrum sensing. 

Therefore, modifications to the number of nodes won't have a 

big effect on the outcomes of the detection likelihood. When the 

number of nodes varies, the technique described in this paper still 

performs quite well. Nevertheless, the fusion center’s calculation 

workload will rise when the number of nodes improves 

unexpectedly and noticeably. This is because the fusion centre 

must periodically assess the efficiency of all nodes; thus, The 

workload on the fusion center will decrease if the number of nodes 

is reduced, whereas it will increase if the number of nodes is 

abruptly increased. 

5. EXPERIMENTAL RESULT AND 

DISCUSSION 

A number of experiments have been set up to confirm the 

effectiveness of the method used in this article. The series of tests 

aims to confirm how well the combining algorithm performs 

properly. A parameter illustration for the recommended approach 

is shown in Table.1. During the experimental simulation, 36 

nodes are placed at random in a circle with a circumference of 

1000 m, and then the period optimization algorithm decides how 

long the next sensing interval will last. The system with x64-based 

Windows 10 Professional Edition machine with an Intel(R) 

Core(TM) i5-8500 CPU running at 3.00 GHz, 64-bit operating 

system, 8.00 GB of RAM is used. 

Table.1. Parameter illustration 

Parameters  Ranges  

Number of solution particles  50 

Number of iteration  100 

Number of nodes randomly distributed  36 
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Diameter 1000 m 

The percentage of PU’s working frequency 50% 

Node frequency  1 MHz 

Starting duration of spectrum sensing 1 ms 

5.1 EXPERIMENTAL INVESTIGATION 

ANALYSIS: 

The efficacy of the algorithm suggested in the present paper is 

compared to that of the equivalent develop conjunction method 

and the corresponding node choosing technique, and both of the 

primary metrics of recognizing performance—spectrum 

identification probabilities and false detection probability are 

utilized to demonstrate the superiority of the node selection 

algorithm.Fig.3 illustrates the current condition of detecting 

probabilities and demonstrates that if the SNR is less than 210 dB, 

it outperforms CRSN [9], SCSTN [10], EECSS [11] and SIS [15] 

method. The proposed technique splits the chosen CU into two 

distinct categories, and each group alternately conducts spectrum 

sensing activities not interfering with the PU’s security. As a 

result, its likelihood of being detected is higher than that of other 

algorithms such as CRSN [9], SCSTN [10], EECSS [11] and SIS 

[15]. 

 

Fig.3. State-of-Art result of detection probability 

The Fig.4 illustrates the state-of-the-art originate for energy 

efficiency. To demonstrate the better performance of the proposed 

algorithm commonly in case of efficiency in energy, it has been 

contrasted to the CRSN [9], SCSTN [10], EECSS [11], and SIS 

[15] algorithm. The assessment of the five methods is performed 

off according to the identical limitations. To demonstrate the 

superior accomplishment of proposed work, the SNR was altered 

to confirm the effectiveness of the technique used through the 

present paper.Fig.2 shows that the suggested method has greater 

energy efficiency than the CRSN [9], SCSTN [10], EECSS [11], 

and SIS [15]. It happens since the suggested approach for 

spectrum sensing operations, while the existing technique of 

nodes serves for data transfer operations, substantially raising the 

quantity of energy employed over data transmission and reducing 

the energy employing for spectrum that was sensing activities. 

 

Fig.4. State-of-art result of energy efficiency 

The Fig.5 provides the assessment of transmission power. The 

relationship between energy consumption and transmission power 

demonstrates that whenever the amount of increases, energy 

consumption (EC) follows suit. Yet, when the amount of power 

transmission is increased again after reaching an excessive level, 

consumption of energy gradually decreases. Because beneficial 

throughput increases in conjunction with transmitted power, and 

consequently EC is believed that it possesses a value that is 

directly proportional to speed and inverted with respect to power 

supply and demand, including the power of transmission. 

Following peaking, the rise in throughput is outweighed by the 

increase in power consumption, which causes the EC function to 

progressively deteriorate. Up to a particular, an increase in 

bandwidth outpaces an increase in power directly, which causes 

the EC functionality to expand. The suggested method may attain 

the maximum value for EC quicker than current methods like 

CRSN [9], SCSTN [10], EECSS [11], and SIS [15] because it has 

a better convergent frequency and can get a closer approximation 

to the optimal number or the actual ideal value. 

 

Fig.5. Comparison energy consumption based on transmission 

power 

The Fig.6 depicts a state-of-the-art examination of bandwidth 

sensing. A greater sensing bandwidth necessitates a smaller 

transmission capacity, which results in a low opportunity transit 

rating and, eventually, a reduced energy efficiency rating as 

detecting capacity grows. The maximum value attained via CRSN 

[9], SCSTN [10], EECSS [11], and SIS [15] has been reduced 

than that that was initially predicted due to an absence of crossings 
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in these networks and the resulting low subsystem utilization 

level. 

 

Fig.6. Comparison energy consumption based on sensing 

bandwidth 

6. CONCLUSION 

Energy efficiency is a crucial sign of how cognitive radio 

networks are progressing. The paper suggests a CEO based 

clustering algorithm to increase the energy effectiveness of 

cognitive radio networks. The method rejects nodes with 

unreliable behavior and only chooses an even percentage of 

reliable users to engage in cooperative sensing. It additionally 

significantly increases energy efficiency but also effectively 

enhances spectrum sensing capability. Due to the lack of 

crossings in these networks and the associated low subsystem 

utilization level, the highest value reached with minimum energy 

consumption via CRSN, SCSTN, EECSS, and SIS has been lower 

than that which was previously projected. 

REFERENCES 

[1] J. Yuan, and E.G. Larsson, “Intelligent Reflecting Surface-

Assisted Cognitive Radio System”, IEEE Transactions on 

Communications, Vol. 69, No. 1, pp. 675-687, 2020. 

[2] R. Alghamdi, A. Shams and N. Saeed, “Intelligent Surfaces 

for 6G Wireless Networks: A Survey of Optimization and 

Performance Analysis Techniques”, IEEE Access, Vol. 8, 

pp. 202795-202818, 2020. 

[3] M.M. Vijay and D. Shalini Punithavathani, “A Memory-

Efficient Adaptive Optimal Binary Search Tree Architecture 

for IPV6 Lookup Address”, Mobile Computing and 

Sustainable Informatics, Vol. 2022, pp. 749-764, 2022. 

[4] M. Singh, N. Kumar and A. Garg, “Deep-Learning-Based 

Blockchain Framework for Secure Software-Defined 

Industrial Networks”, IEEE Transactions on Industrial 

Informatics, Vol. 17, No. 1, pp. 606-616, 2020. 

[5] C. Saju and T. Jarin, “Modeling and Control of a Hybrid 

Electric Vehicle to Optimize System Performance for Fuel 

Efficiency”, Sustainable Energy Technologies and 

Assessments, Vol. 52, pp. 1-12, 2022.  

[6] B. Soni and M. Lopez Benítez, “Long Short-Term Memory 

based Spectrum Sensing Scheme for Cognitive Radio using 

Primary Activity Statistics”, IEEE Access, Vol. 8, pp. 

97437-97451, 2022. 

[7] W. Miao and H.V. Poor, “DC Arc-Fault Detection based on 

Empirical Mode Decomposition of Arc Signatures and 

Support Vector Machine”, IEEE Sensors Journal, Vol. 21, 

No. 5, pp. 7024-7033, 2020. 

[8] H. Golpira, B. Francois and H. Bevrani, “Optimal Energy 

Storage System-Based Virtual Inertia Placement: A 

Frequency Stability Point of View”, IEEE Transactions on 

Power Systems, Vol. 35, No. 6, pp. 4824-4835, 2020. 

[9] H. Kaschel and M.J.F.G. Garcia, “Energy-Efficient 

Cooperative Spectrum Sensing Based on Stochastic 

Programming in Dynamic Cognitive Radio Sensor 

Networks”, IEEE Access, Vol. 9, pp. 720-732, 2020. 

[10] J. Hu and L. Gou, “Energy-Efficient Cooperative Spectrum 

Sensing in Cognitive Satellite Terrestrial Networks”, IEEE 

Access, Vol. 8, pp. 161396-161405, 2020. 

[11] R. Wan, L. Hu and H. Wang, “Energy-Efficient Cooperative 

Spectrum Sensing Scheme based on Spatial Correlation for 

Cognitive Internet of Things”, IEEE Access, Vol. 8, pp. 

139501-139511, 2020. 

[12] W. Yin and H. Chen, “Decision-Driven Time-Adaptive 

Spectrum Sensing in Cognitive Radio Networks”, IEEE 

Transactions on Wireless Communications, Vol. 19, No. 4, 

pp. 2756-2769, 2020. 

[13] H. Lin and Y. Liu, “Soft Decision Cooperative Spectrum 

Sensing with Entropy Weight Method for cognitive radio 

sensor networks. IEEE Access, 8, pp.109000-109008, 2020. 

[14] H. Ding, Y. Ma and Y. Fang, “Energy-Efficient Channel 

Switching in Cognitive Radio Networks: A Reinforcement 

Learning Approach”, IEEE Transactions on Vehicular 

Technology, Vol. 69, No. 10, pp. 12359-12362, 2020. 

[15] M. Awasthi, M.J. Nigam and V. Kumar, “Optimal Sensing 

and Transmission of Energy Efficient Cognitive Radio 

Networks”, Wireless Personal Communications, Vol. 111, 

No. 2, pp. 1283-1294, 2020. 

[16] J. Bala Vishnu and M.A. Bhagyaveni, “Energy Efficient 

Cognitive Radio Sensor Networks with Team-based Hybrid 

Sensing”, Wireless Personal Communications, Vol. 111, 

No. 2, pp. 929-945, 2020. 

[17] A. Faramarzi, and Seyedali Mirjalili, “Equilibrium 

Optimizer: A Novel Optimization Algorithm”, Knowledge-

Based Systems, Vol. 191, pp. 1-14, 2020. 

[18] M.M. Vijay and D. Shalini Punithavathani, “Implementation 

of Memory-Efficient Linear Pipelined IPv6 Lookup and its 

Significance in Smart Cities”, Computers and Electrical 

Engineering, Vol. 67, pp. 1-14, 2018. 

[19] Tangsen Huang, Xiang Dong Yin and Xiao Wu Li, “Energy-

Efficient and Intelligent Cooperative Spectrum Sensing 

Algorithm in Cognitive Radio Networks”, International 

Journal of Distributed Sensor Networks, Vol. 18, No. 9, pp. 

1-12, 2022.

 


