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Abstract 

The escalating demand for efficient wireless communication systems 

has prompted researchers to explore innovative solutions to optimize 

traffic flow and routing. The existing wireless communication 

infrastructure faces challenges such as congestion, latency, and 

suboptimal routing, impeding the seamless transmission of data. 

Traditional optimization approaches fall short in adapting to dynamic 

network conditions, necessitating the exploration of advanced 

methodologies. Despite recent advancements in optimization 

techniques, a notable research gap exists in the integration of bio-

inspired algorithms like the Emperor Penguin Optimizer with machine 

learning models such as Conditional Generative Adversarial Nets for 

the purpose of wireless traffic and routing enhancement. Bridging this 

gap is crucial for achieving adaptive and robust wireless 

communication systems. This study addresses the challenges posed by 

the dynamic nature of wireless networks, aiming to enhance their 

performance through the synergistic application of the Emperor 

Penguin Optimizer (EPO) and Conditional Generative Adversarial 

Nets (CGANs). This research leverages the inherent strengths of the 

EPO, inspired by the collective foraging behavior of emperor penguins, 

to dynamically optimize the wireless network parameters. 

Concurrently, CGAN are employed to intelligently learn and adapt 

routing strategies based on real-time network conditions. The symbiotic 

integration of these two methodologies creates a powerful framework 

for adaptive wireless traffic and routing. The results indicate a 

significant improvement in traffic flow, reduced latency, and optimized 

routing paths in comparison to conventional methods. The EPO-CGAN 

framework demonstrates adaptability to varying network conditions, 

showcasing its potential to revolutionize wireless communication 

systems. 
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1. INTRODUCTION 

The proliferation of wireless communication systems is 

instrumental in shaping the modern digital landscape, facilitating 

seamless connectivity and data exchange [1]. However, the 

dynamic and complex nature of wireless networks introduces 

challenges that necessitate innovative solutions to optimize their 

performance [2]. Traditional optimization methods have shown 

limitations in adapting to the evolving demands of these networks, 

emphasizing the need for a novel approach [3]. 

Wireless networks grapple with challenges such as 

congestion, latency, and suboptimal routing, hindering the 

efficient flow of data [4]. The increasing diversity of devices, 

varying network loads, and the dynamic nature of user behavior 

compound these challenges, demanding a sophisticated 

optimization strategy [5]. 

The existing paradigm lacks a comprehensive solution that 

addresses the intricate interplay between wireless traffic 

management and routing adaptability [6]. This research identifies 

the need for a holistic approach to enhance the overall 

performance of wireless communication systems, considering 

both dynamic traffic conditions and evolving routing 

requirements [7]. 

The primary objective of this study is to develop a robust 

framework for wireless traffic and routing optimization. 

Specifically, the research aims to mitigate congestion, reduce 

latency, and optimize routing paths in real-time, ensuring adaptive 

responsiveness to the dynamic nature of wireless networks. 

This research introduces a groundbreaking synthesis of the 

Emperor Penguin Optimizer (EPO) and Conditional Generative 

Adversarial Nets (CGANs) to address the identified challenges. 

The novelty lies in the integration of bio-inspired optimization 

techniques with machine learning models, providing a 

comprehensive and adaptive solution. The contributions of this 

study extend beyond conventional approaches, promising 

advancements in wireless communication systems through the 

creation of a dynamic and intelligent framework for traffic and 

routing optimization. 

2. RELATED WORKS 

Several studies have explored diverse methodologies for 

optimizing wireless communication systems, each offering 

valuable insights into specific facets of the complex network 

dynamics. 

Research in bio-inspired optimization techniques has garnered 

attention for addressing wireless network challenges [9]. Swarm 

intelligence algorithms, such as Particle Swarm Optimization and 

Ant Colony Optimization, have demonstrated efficacy in 

optimizing routing paths and resource allocation [10]. 

The integration of machine learning in wireless networks has 

been a focus of recent investigations. Studies [11] employing 

neural networks, support vector machines, and reinforcement 

learning have shown promise in adapting to varying network 

conditions and predicting optimal routing strategies. 

Efforts have been made to enhance traffic management 

through dynamic resource allocation and load balancing. These 

studies [12] explore the impact of traffic shaping, Quality of 

Service (QoS) mechanisms, and dynamic spectrum allocation on 

the overall performance of wireless communication systems. 
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The application of Generative Adversarial Networks has 

gained traction in optimizing network parameters. GANs have 

been employed for anomaly detection, security enhancement, and 

adaptive routing in wireless networks, showcasing their versatility 

in addressing multifaceted challenges [13]. 

While bio-inspired algorithms have been widely studied, the 

Emperor Penguin Optimizer remains relatively unexplored in 

wireless communication systems [14]. Studies focusing on its 

unique characteristics, such as collective foraging behavior and 

adaptability, highlight the potential of EPO in optimizing network 

parameters [15]. 

This research aims to bridge gaps by integrating the Emperor 

Penguin Optimizer with Conditional Generative Adversarial 

Nets, creating a novel and comprehensive framework for wireless 

traffic and routing optimization. The synthesis of bio-inspired 

optimization and machine learning models is expected to 

contribute significantly to the advancement of adaptive and 

intelligent wireless communication systems. 

3. PROPOSED METHOD 

The proposed method presents a synergistic integration of the 

Emperor Penguin Optimizer (EPO) and Conditional Generative 

Adversarial Nets (CGANs) to address the intricate challenges 

associated with wireless traffic and routing optimization. 

• Emperor Penguin Optimizer (EPO): EPO, inspired by the 

collective foraging behavior of emperor penguins, serves as 

the dynamic optimization engine in our framework. 

Leveraging the principles of collective intelligence, EPO 

adapts to real-time changes in network conditions, 

optimizing parameters such as signal strength, bandwidth 

allocation, and node positioning. This adaptability ensures 

the system responsiveness to the evolving demands of 

wireless networks. 

• Conditional Generative Adversarial Nets (CGANs): The 

intelligence of CGANs is harnessed to dynamically learn 

and adapt routing strategies based on historical network 

data. Trained in an adversarial fashion, the generator 

component of CGANs refines routing policies, while the 

discriminator component evaluates their effectiveness. This 

iterative learning process enables the system to continuously 

refine and optimize routing decisions in response to 

changing traffic patterns. 

The EPO and CGANs operate in tandem within a closed-loop 

system. EPO continuously optimizes network parameters based 

on real-time feedback, feeding the refined information to the 

CGANs. Concurrently, CGANs intelligently adapt routing 

policies, ensuring that the system remains agile in responding to 

dynamic traffic conditions. A distinctive feature of our proposed 

method is its real-time adaptability. The EPO-CGAN framework 

continuously assesses and optimizes the wireless network in 

response to fluctuations in traffic load, device connectivity, and 

environmental conditions. This adaptability ensures that the 

system remains resilient and responsive, mitigating congestion, 

reducing latency, and optimizing routing paths on-the-fly. 

3.1 EMPEROR PENGUIN OPTIMIZER (EPO) 

The EPO is a bio-inspired optimization algorithm rooted in the 

collective foraging behavior of emperor penguins in their natural 

habitat. Developed to address complex optimization challenges, 

EPO draws inspiration from the cooperative and adaptive nature 

of these marine birds. Emperor penguins exhibit a remarkable 

ability to collectively optimize their foraging strategies in the 

harsh Antarctic environment. EPO translates this collective 

intelligence into an algorithmic framework that dynamically 

adapts to changing conditions, fostering robust optimization in the 

face of dynamic and unpredictable scenarios.  

 

Fig.1. Proposed EPO-CGAN 

EPO excels in adaptability, responding to variations in the 

optimization landscape by dynamically adjusting its search 

parameters. Through a combination of exploration and 

exploitation strategies, the algorithm navigates the solution space, 

seeking optimal configurations in a manner reminiscent of the 

collaborative foraging observed in emperor penguin colonies. The 

algorithm optimizes a set of parameters crucial for wireless 

communication systems, including signal strength, bandwidth 

allocation, and node positioning. By dynamically adjusting these 

parameters, EPO aims to enhance network performance, mitigate 

congestion, and improve overall efficiency. 

In wireless communication systems, EPO distinguishes itself 

by its ability to dynamically adapt to the evolving conditions of 

the network. It addresses challenges such as varying traffic loads, 

device mobility, and environmental changes, making it well-

suited for real-time optimization scenarios. EPO comprises key 

components such as emulated penguin agents, exploration 

operators, and adaptation mechanisms. The interplay of these 

components mimics the cooperative behavior observed in 

emperor penguin colonies, fostering a balance between individual 

exploration and collective optimization. 

The movement of each emulated penguin Pi in the search 

space is determined by a combination of its current position, 

personal best position, and the global best position. 

 Xi
t+1=Xi

t +Vi
t+1 (1) 

where: 

Xi
t+1 is the current position of penguin Pi at iteration t. 

Vi
t+1 is the velocity vector of penguin Pi at iteration t+1. 

The velocity Vi
t+1 is updated based on the inertia weight (w), 

cognitive component (c1), and social component (c2). 

 Vi
t+1 = w⋅Vi

t + c1⋅r1⋅(Pi
∗−X i

t)+c2⋅r2⋅(Pg
∗−X i

t) (2) 

where: 

Pi
∗ is the personal best position of penguin Pi. 

EPO 

CGAN 

Validation 

Input Data 
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Pg
∗ is the global best position among all penguins. 

r1 and r2 are random values in the range [0,1]. 

The adaptation mechanism introduces variability in the 

movement of penguins, simulating their exploration behavior. 

 Vi
t+1 = Vi

t+1⋅exp(−β⋅t) (3) 

where: 

β is a constant controlling the rate of exploration. 

t is the current iteration. 

Emperor Penguin Optimizer (EPO) Algorithm 

Input: 

N - Number of emulated penguins 

D - Dimensionality of the search space 

MaxI: Maximum number of iterations 

w - Inertia weight 

c1 - Cognitive component weight 

c2 - Social component weight 

β - Exploration constant 

Initialize emulated penguins' positions Xi randomly in the search 

space. 

Initialize velocities Vi randomly. 

Evaluate the fitness of each emulated penguin Pi. 

For t=1 to MaxI do: 

For each Pi do:  

Update velocity Vi using the velocity update equation. 

Update position Xi using the emulated penguin movement 

equation. 

Apply the adaptation mechanism to adjust the velocity 

magnitudes. 

For each Pi do:  

Update personal best Pi
∗ if the new position improves fitness. 

Update the global best position Pg
∗ based on the best fitness 

among all penguins. 

Return the best solution Pg
∗. 

3.2 CONDITIONAL GENERATIVE ADVERSARIAL 

NETS (CGANS) 

CGANs represent a class of generative models that extend the 

traditional GAN framework by introducing conditional 

information during the training process. Developed to enhance the 

flexibility and control of generated outputs, CGANs integrate 

both discriminative and generative networks in an adversarial 

learning framework. 

 

The CGAN architecture consists of a generator (G) and a 

discriminator (D), much like traditional GANs. However, CGANs 

incorporate additional conditional information, typically in the 

form of class labels or auxiliary data, which is provided to both 

the generator and the discriminator during training. The primary 

objective of CGANs is to generate data samples conditioned on 

specific information, allowing for targeted and controlled 

generation. This conditioning enables the generator to produce 

outputs that align with predefined criteria, enhancing the practical 

utility of the generative model in various applications. 

 

Fig.2. CGAN  

During training, the generator aims to produce realistic 

samples that not only fool the discriminator into accepting them 

as real but also adhere to the provided conditional information. 

Simultaneously, the discriminator task is to distinguish between 

real and generated samples while considering the conditional 

information. This adversarial process leads to the refinement of 

both the generator and discriminator, ultimately improving the 

quality of the generated samples. 

CGANs find application in a wide range of domains, including 

image synthesis, style transfer, data augmentation, and 

conditional data generation. In image synthesis, for instance, 

CGANs can generate images of a specific class or with certain 

attributes, providing fine-grained control over the generated 

content. The conditional information in CGANs can take various 

forms, such as class labels, attribute vectors, or any additional 

information that guides the generation process. This versatility 

makes CGANs suitable for diverse tasks where explicit control 

over generated outputs is essential. 

The generator (G) in a CGAN takes both random noise (z) and 

conditional information (c) as inputs to generate synthetic 

samples (x′). 

 x′=G(z,c) (4) 

The discriminator (D) is provided with both real samples (x) 

and their corresponding conditional information (c), as well as 

generated samples (x′) and the associated conditional information 

(c). 

 D(x,c) D(x′,c)  (5) 

The objective function for training the generator and 

discriminator in CGANs is modified to include the conditional 

information. 

For the generator:  

minGmaxD V(D,G)=Ex∼pdata(x)[logD(x,c)]+Ez∼pz(z) 

 [log(1−D(G(z,c),c))] (6) 

For the discriminator: 

minDmaxGV(D,G)=Ex∼pdata(x)[logD(x,c)]+Ez∼pz(z) 

 [log(1−D(G(z,c),c))] (7) 

where: 

pdata(x) is the distribution of real data samples. 

pz(z) is the distribution of random noise. 
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G(z,c) represents the generated sample given noise z and 

conditional information c. 

D(x,c) is the output of the discriminator for a real sample x with 

conditional information c. 

The objective is to minimize the log-likelihood of the 

discriminator making a mistake and maximize the likelihood of 

the generator producing realistic samples. 

CGAN Algorithm 

Input: Real data samples with corresponding conditional 

information: {(x1,c1),(x2,c2),...,(xm,cm)}; Random noise 

samples: {z1,z2,...,zm}; Generator (G) and discriminator (D) 

architecture; Learning rate (α); Number of training iterations 

(MaxI) 

Initialize the weights of the generator (WG) and discriminator (WD

). 

For t=1 to MaxI do: 

For i=1 to m do:  

Sample random noise zi and real data sample xi with 

corresponding conditional information ci. 

Generate a synthetic sample xi′ using the generator: xi′=G(zi,ci). 

Update the discriminator weights (WD) using the gradient descent 

step:  

 WD← WD−α⋅∇WD(-logD(xi,ci)-log(1−D(xi′,ci))) (9) 

For i=1 to m do:  

Sample random noise zi and real data sample xi with 

corresponding conditional information ci. 

Generate a synthetic sample xi′ using the generator: xi′=G(zi,ci). 

Update the generator weights (WG) using the gradient descent 

step:  

 WG←WG−α⋅∇WG(−logD(xi′,ci)) (10) 

Trained generator (G) and discriminator (D). 

4. EPO AND CGAN - CLOSED LOOP SYSTEM 

FOR TRAFFIC AND ROUTING 

OPTIMIZATION 

The EPO and CGANs forms a robust closed-loop system 

designed to revolutionize traffic and routing optimization in 

wireless communication networks. EPO, inspired by the 

collective foraging behavior of emperor penguins, operates as the 

dynamic optimization engine within the closed-loop system. It 

continuously adapts network parameters, including signal 

strength, bandwidth allocation, and node positioning, in response 

to real-time changes in the wireless environment. The collective 

intelligence inherent in EPO mirrors the adaptive nature observed 

in emperor penguin colonies, ensuring the system responsiveness 

to dynamic and evolving network conditions. 

In parallel, CGAN contribute their intelligence to the closed-

loop system. Trained in an adversarial fashion, CGANs 

dynamically learn and adapt routing strategies based on historical 

network data. The conditional nature of CGANs allows them to 

intelligently generate routing policies that respond to real-time 

traffic patterns and network demands. This adaptive learning 

process positions CGANs as a crucial component for intelligent 

and context-aware routing decisions. 

The closed-loop architecture tightly couples the 

functionalities of EPO and CGANs, creating a symbiotic 

relationship between dynamic parameter optimization and 

intelligent routing adaptation. EPO continually refines network 

parameters based on real-time feedback, while CGANs leverage 

this optimized environment to adapt routing policies. The 

seamless integration ensures a holistic and adaptive approach to 

traffic and routing optimization, addressing challenges posed by 

congestion, latency, and changing network conditions. The 

closed-loop system excels in real-time adaptability, a critical 

feature for wireless communication networks. EPO and CGANs 

collaboratively respond to variations in traffic loads, device 

connectivity, and environmental changes. The closed-loop 

architecture facilitates continuous optimization, mitigating 

congestion, reducing latency, and dynamically optimizing routing 

paths to ensure optimal network performance. 

The dynamics of EPO involve the optimization of network 

parameters. Let P represent the set of network parameters, and 

f(P) denote the objective function to be optimized (e.g., 

minimizing congestion or latency). The update equation for the 

network parameters in EPO can be expressed as: 

 Pt+1=EPO(Pt,f(Pt)) (11) 

where t represents the iteration, and EPO encapsulates the 

adaptive behavior inspired by the collective foraging of emperor 

penguins. 

CGANs contribute to the system by intelligently learning and 

adapting routing strategies. Let R represent the set of routing 

policies, and J(R) denote the objective function for routing 

optimization. The update equation for routing policies in CGANs 

can be expressed as: 

 Rt+1 = CGAN(Rt,J(Rt)) (12) 

where t represents the iteration, and CGANs captures the 

adversarial learning process to refine routing strategies based on 

historical network data. 

The closed-loop integration ensures a symbiotic relationship 

between EPO and CGANs. The network parameters optimized by 

EPO influence the learning process of CGANs, and the intelligent 

routing decisions from CGANs guide the adaptation of network 

parameters in EPO. This dynamic interaction can be expressed as: 

 Pt+1,Rt+1 = CLI(EPO(Pt,f(Pt)),CGANs(Rt,J(Rt))) (13) 

EPO and CGAN - Closed Loop System Algorithm 

Input: Real-time network data (traffic loads, connectivity status, 

etc.); Historical network data for CGAN training; Initial network 

parameters P0; Initial routing policies R0; Parameters for EPO and 

CGAN training 

Initialize network parameters P and routing policies R to P0 and 

R0 respectively. 

Train CGAN using historical data to learn initial routing 

strategies. 

For t=1 to MaxI do: 

Update network parameters using EPO 

Update routing policies using CGAN 

Apply the integrated closed-loop system 

Evaluate the overall system performance  

Check convergence criteria  
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Network parameters PMaxI  

Routing policies RMaxI. 

Closed Loop Integration 

End 

5. EXPERIMENTAL SETTINGS 

In our experimental setup, we conducted extensive 

simulations using the widely adopted network simulation tool, ns-

3 (Network Simulator 3), to evaluate the performance of the 

proposed EPO and CGAN closed-loop system for traffic and 

routing optimization. The simulations were executed on a high-

performance computing cluster, leveraging multiple nodes with 

Intel Xeon processors and sufficient memory capacity. The 

simulated wireless communication network consisted of a 

realistic topology with varying traffic loads, node mobility, and 

dynamic environmental conditions, ensuring a comprehensive 

evaluation of the system adaptability to real-world scenarios. 

To gauge the effectiveness of our proposed approach, we 

compared its performance against several existing optimization 

methods, namely, Genetic Algorithm with GAN (GA-GAN), Ant 

Colony Optimization with GAN (ACO-GAN), Particle Swarm 

Optimization with GAN (PSO-GAN), FireFly Algorithm with 

GAN (FireFly-GAN), and Bat Algorithm with GAN (BSO-

GAN). Key performance metrics included throughput, latency, 

packet loss, and overall network efficiency. The closed-loop 

system ability to dynamically adapt to changing network 

conditions, mitigate congestion, and optimize routing paths was 

rigorously evaluated and compared with these existing methods. 

The comparative analysis aimed to showcase the superiority of 

the proposed EPO and CGAN framework in achieving robust and 

adaptive wireless traffic and routing optimization. 

Table.1. Experimental Setup 

Parameter Value/Setting 

Simulation Tool ns-3 (Network Simulator 3) 

Number of Nodes 50 

Simulation Duration 1000 seconds 

Wireless Channel 

Model 
IEEE 802.11 

Propagation Model Friis Propagation Loss Model 

Mobility Model Random Waypoint Mobility Model 

GA Population Size 50 

ACO Ants 20 

PSO Particles 30 

Fireflies 40 

Bees 25 

5.1 PERFORMANCE METRICS 

Throughput: The rate at which data is successfully 

transmitted over the network. 

Throughput (bps) = Total Transmitted/Simulation Time  (14) 

Latency: The time taken for a packet to travel from the source 

node to the destination node. 

 Latency (ms) = Average End-to-End Delay of Packets (15) 

Packet Loss: The percentage of transmitted packets that are 

not successfully received at their destination. 

Packet Loss (%) = (Number of Lost Packets / Total Number of  

 Packets) * 100 (16) 

Network Efficiency: A composite metric representing the 

overall efficiency of the wireless network, considering 

throughput, latency, and packet loss. 

 Efficiency (%) = (Throughput/(Latency+Packet Loss))*100(17) 

6. RESULTS  

 

Fig.3. Throughput 

The proposed EPO and CGAN closed-loop system (Proposed 

BC method) consistently outperforms existing optimization 

methods, showcasing its superiority in enhancing wireless 

network throughput across varying node densities as in Fig.3. 

Across the spectrum of 50 to 500 nodes, the Proposed BC method 

exhibits an average throughput improvement of approximately 

20% compared to the closest competitor, FireFly-GAN. The 

proposed method effectively adapts to dynamic network 

conditions, mitigating congestion, and optimizing routing paths, 

resulting in a more efficient utilization of resources. 

Compared to Genetic Algorithm with GA-GAN, ACO-GAN, 

PSO-GAN, and BSO-GAN, the Proposed BC method 

consistently demonstrates a performance advantage, achieving a 

throughput improvement of around 15% on average. This 

improvement highlights the efficacy of the closed-loop system, 

which synergistically leverages the bio-inspired adaptability of 

EPO and the intelligent routing decisions of CGANs. 

The promising results affirm that the Proposed BC method is 

well-suited for dynamic and complex wireless communication 

environments. Its ability to dynamically adapt to varying node 

densities positions it as a robust solution for optimizing traffic and 

routing, showcasing its potential to significantly enhance the 

efficiency and performance of wireless networks. 

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Nodes

GA-GAN

ACO-GAN

PSO-GAN

FireFly-GAN

BSO-GAN

Proposed Method



K PRABHU CHANDRAN et al.: WIRELESS TRAFFIC AND ROUTING ENHANCEMENT USING EMPEROR PENGUIN OPTIMIZER GUIDED BY CONDITIONAL GENERATIVE  

                                ADVERSARIAL NETS 

 

3034 

 

Fig.4. Latency 

The proposed EPO and CGAN closed-loop system (Proposed 

BC method) consistently exhibits lower latency compared to 

existing optimization methods across varying node densities, 

underscoring its efficiency in minimizing communication delays. 

From 50 to 500 nodes, the Proposed BC method showcases an 

average latency reduction of approximately 15% when compared 

to the nearest competitor, FireFly-GAN. This improvement 

highlights the closed-loop system ability to adapt dynamically, 

reducing latency and enhancing the overall responsiveness of the 

wireless network (Fig.4). 

Compared to Genetic Algorithm with GA-GAN, ACO-GAN, 

PSO-GAN, and BSO-GAN, the Proposed BC method 

consistently outperforms, achieving an average latency reduction 

of around 10%. This reduction signifies the efficacy of the closed-

loop system in optimizing routing paths and mitigating 

communication delays, contributing to a more responsive and 

agile wireless network. 

The results suggest that the Proposed BC method is well-

suited for scenarios requiring low-latency communication, such 

as real-time applications. Its ability to outperform existing 

methods demonstrates its potential to enhance the overall quality 

of service in wireless networks, making it a promising solution for 

applications where minimizing communication delays is critical. 

 

Fig.5. Scalability 

The scalability analysis (Fig.5) reveals the robustness and 

efficiency of the proposed EPO and CGAN closed-loop system 

(Proposed BC method) in handling an increasing number of nodes 

in wireless networks. From 50 to 500 nodes, the Proposed BC 

method consistently exhibits higher scalability percentages 

compared to existing optimization methods, showcasing its ability 

to efficiently adapt and perform effectively as the network size 

grows. On average, the Proposed BC method demonstrates a 

scalability improvement of approximately 15% when compared 

to the nearest competitor, FireFly-GAN, emphasizing its superior 

ability to scale with network expansion. 

Compared to Genetic Algorithm with GA-GAN, ACO-GAN, 

PSO-GAN, and BSO-GAN, the Proposed BC method 

consistently outperforms, achieving an average scalability 

improvement of around 10%. This improvement highlights the 

closed-loop system adaptability and efficiency in dynamically 

optimizing network parameters and routing strategies, ensuring a 

smoother and more scalable performance as the network size 

increases. 

The results suggest that the Proposed BC method is well-

suited for large-scale wireless networks, where scalability is a 

critical factor. Its ability to outperform existing methods 

demonstrates its potential to provide reliable and efficient 

optimization solutions in diverse and expanding network 

environments. 

 

Fig.6. Execution Time 

The execution time analysis (Fig.6) demonstrates the 

efficiency of the proposed EPO and CGAN closed-loop system 

(Proposed BC method) in processing optimization tasks across 

varying node densities. From 50 to 500 nodes, the Proposed BC 

method consistently exhibits lower execution times compared to 

existing optimization methods, indicating its computational 

efficiency in dynamically adapting to changing network 

conditions. On average, the Proposed BC method showcases an 

execution time reduction of approximately 15% when compared 

to the nearest competitor, FireFly-GAN. This reduction highlights 

the closed-loop system ability to optimize network parameters 

and routing strategies swiftly, contributing to a more responsive 

and agile performance. 

Compared to GA-GAN, ACO-GAN, PSO-GAN, and BSO-

GAN, the proposed method consistently outperforms, achieving 

an average execution time reduction of around 10%. This 
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improvement highlights the computational efficiency of the 

closed-loop system, emphasizing its potential to provide faster 

and more effective optimization solutions for wireless networks. 

The results suggest that the Proposed BC method is well-

suited for scenarios where rapid decision-making and 

optimization are crucial. Its ability to outperform existing 

methods in terms of execution time positions it as a promising 

solution for real-time and resource-constrained wireless network 

environments. 

 

Fig.7. Energy Efficiency 

The energy efficiency analysis (Fig.7) highlights the 

sustainable and resource-conscious nature of the proposed EPO 

and CGAN closed-loop system (Proposed BC method) in wireless 

networks across varying node densities. From 50 to 500 nodes, 

the Proposed BC method consistently demonstrates higher energy 

efficiency compared to existing optimization methods, 

showcasing its ability to optimize network parameters and routing 

strategies with minimal energy consumption. On average, the 

Proposed BC method exhibits an energy efficiency improvement 

of approximately 20% compared to the nearest competitor, 

FireFly-GAN. This improvement emphasizes the closed-loop 

system capacity to achieve optimization goals while minimizing 

energy expenditure, contributing to a greener and more 

sustainable wireless network operation. 

Compared to Genetic Algorithm with GA-GAN, ACO-GAN, 

PSO-GAN, and BSO-GAN, the Proposed BC method 

consistently outperforms, achieving an average energy efficiency 

improvement of around 15%. This improvement reflects the 

closed-loop system ability to strike an optimal balance between 

achieving network objectives and conserving energy resources. 

The results suggest that the Proposed BC method is well-

suited for energy-conscious applications, such as IoT devices and 

battery-powered networks. Its superior energy efficiency 

positions it as a promising solution for enhancing the 

sustainability and longevity of wireless communication in 

resource-constrained environments. 

The packet loss rate (Fig.8) analysis reveals the reliability and 

robustness of the proposed EPO and CGAN closed-loop system 

(Proposed BC method) in wireless networks across varying node 

densities. From 50 to 500 nodes, the Proposed BC method 

consistently demonstrates lower packet loss rates compared to 

existing optimization methods, showcasing its efficacy in 

maintaining data integrity and reducing communication 

disruptions. On average, the Proposed BC method exhibits a 

packet loss rate reduction of approximately 30% compared to the 

nearest competitor, FireFly-GAN. This reduction highlights the 

closed-loop system ability to optimize routing decisions and 

mitigate packet loss, contributing to a more dependable and 

resilient wireless network. 

 

Fig.8. Packet loss rate 

Compared to Genetic Algorithm with GA-GAN, ACO-GAN, 

PSO-GAN, and BSO-GAN, the Proposed BC method 

consistently outperforms, achieving an average packet loss rate 

reduction of around 25%. This improvement reflects the closed-

loop system adeptness in dynamically adapting to network 

conditions, minimizing congestion, and enhancing the overall 

reliability of data transmission. 

The results suggest that the Proposed BC method is well-

suited for applications where data integrity is paramount. Its 

ability to significantly reduce packet loss rates positions it as a 

promising solution for communication scenarios where 

maintaining a high level of reliability is critical. 

7. DISCUSSION 

The results indicate that the proposed EPO and CGAN closed-

loop system, denoted as the Proposed BC method, consistently 

achieves lower packet loss rates across various node densities 

compared to existing optimization methods. This suggests that the 

closed-loop system effectively optimizes routing decisions and 

adapts to dynamic network conditions, ensuring a high level of 

reliability in wireless communication. 

The analysis reveals that the Proposed BC method 

outperforms existing methods in terms of energy efficiency, 

showcasing its capability to achieve optimization goals with 

minimal energy consumption. This highlights the potential of the 

closed-loop system to contribute to a more sustainable and 

resource-conscious operation of wireless networks. 

The Proposed BC method consistently demonstrates lower 

execution times, emphasizing its computational efficiency in 

dynamically adapting to changing network parameters. This 

suggests that the closed-loop system can provide faster and more 
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effective optimization solutions, making it suitable for real-time 

and resource-constrained wireless network environments. 

The scalability analysis indicates that the Proposed BC 

method exhibits higher scalability percentages compared to 

existing methods as the number of nodes increases. This suggests 

that the closed-loop system is well-suited for large-scale wireless 

networks, showcasing its adaptability to network expansion. 

The Proposed BC method offers a comprehensive 

performance improvement, excelling in reliability, energy 

efficiency, execution time, and scalability. These findings 

position the closed-loop system as a promising solution for 

optimizing wireless traffic and routing with implications for 

diverse applications, from IoT devices to large-scale network 

deployments. 

8. CONCLUSION  

The research highlights the efficacy of the proposed EPO 

guided by CGANs, forming the Closed Loop System denoted as 

Proposed BC method, in enhancing wireless traffic and routing 

optimization. The comprehensive evaluation across various 

performance metrics—reliability, energy efficiency, execution 

time, and scalability—reveals the superiority of the Proposed BC 

method over existing optimization techniques. The consistently 

lower packet loss rates exhibited by the Proposed BC method 

emphasize its reliability in maintaining data integrity, crucial for 

seamless wireless communication. Furthermore, the observed 

superior energy efficiency highlights its potential to contribute to 

sustainable and resource-conscious network operations. The 

efficiency in execution time positions the Proposed BC method as 

a swift and effective solution for real-time applications and 

resource-constrained environments. Additionally, its scalability 

advantage highlights its adaptability to growing network sizes, 

making it suitable for large-scale wireless deployments. 
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