
S BHAGGIARAJ et al.: NEXT-GENERATION INTRUSION DETECTION AND PREVENTION SYSTEMS FOR IT AND NETWORK SECURITY
DOI: 10.21917/ijct.2023.0445

2992

NEXT-GENERATION INTRUSION DETECTION AND PREVENTION SYSTEMS FOR

IT AND NETWORK SECURITY

S. Bhaggiaraj1, S. Shanthini2, S.S. Sugantha Mallika3 and R. Muthuram4
1,2,3Department of Information Technology, Sri Ramakrishna Engineering College, India

4Department of Computer Science and Engineering, Government College of Technology, Coimbatore, India

Abstract

In cybersecurity, the constant evolution of threats demands the

development of next-generation Intrusion Detection and Prevention

Systems (IDPS) to safeguard IT infrastructure and networks

effectively. This research embarks on the journey of designing an

innovative IDPS using a Dense VGG classifier, fueled by IoT data as

its primary input source. Our approach combines the robustness of the

Dense VGG architecture with the rich information generated by

Internet of Things (IoT) devices, enhancing the system ability to detect

and prevent intrusions. We gather diverse IoT data from sensors and

devices within the IT infrastructure, ensuring the availability of labeled

data that signifies known intrusion events. After meticulous

preprocessing and feature engineering, we adapt the Dense VGG

model, originally designed for image classification, to work with

tabular IoT data. Transfer learning techniques are applied, leveraging

pre-trained VGG models to expedite convergence and enhance

performance. Real-time data streaming mechanisms are established to

seamlessly integrate IoT data, making the system proactive in

identifying threats. Upon detection, the system can respond by isolating

affected devices, blocking suspicious network traffic, or initiating

incident response protocols. Continuous monitoring and evaluation

ensure the system reliability, with key metrics serving as indicators of

its efficacy. Deployment considerations, such as scalability and

redundancy, guarantee the system readiness to handle the influx of IoT

data. Furthermore, integration with other security tools and

compliance with regulatory standards strengthen the system overall

cybersecurity posture. The core of our system lies in its intrusion

detection logic, a set of rules and thresholds that trigger alerts or

preventive measures based on model predictions. In testing, our system

demonstrated an impressive intrusion detection accuracy of over 95%,

significantly reducing false positives.

Keywords:

Prevention Systems, Intrusion Detection, IoT Data, Dense VGG

Classifier, Intrusion Detection Accuracy, Cybersecurity

1. INTRODUCTION

In today interconnected and digitalized world, information

technology (IT) infrastructure and networks are vulnerable to an

ever-expanding array of cyber threats [1]. Ensuring the security

and integrity of these systems has become paramount [2].

Intrusion Detection and Prevention Systems (IDPS) serve as the

first line of defense, continuously monitoring network traffic and

system behavior to detect and mitigate potential intrusions [3,4].

However, as the complexity of attacks increases, traditional IDPS

solutions face challenges in effectively identifying and thwarting

these threats [5].

The rapid proliferation of Internet of Things (IoT) devices

within IT infrastructure has introduced new dimensions to the

challenge [6]. IoT devices generate vast amounts of data, often in

non-standard formats, making it difficult for conventional IDPS

to analyze and interpret [7]. Additionally, sophisticated

adversaries employ advanced evasion techniques, necessitating

the development of next-generation IDPS solutions that can adapt

and evolve to counter these threats [8].

The key challenges in modern IT and network security include

handling the diverse and high-volume IoT data, adapting existing

machine learning models to this context, and improving the

accuracy and speed of intrusion detection and prevention [9, 10].

Addressing these challenges requires innovative approaches that

harness the power of deep learning while also integrating real-

time analysis of IoT data [11].

This research addresses the critical problem of enhancing IT

and network security through the development of a next-

generation IDPS that leverages Dense VGG as a classifier and IoT

data as inputs [12]. The problem encompasses adapting deep

learning architectures to handle IoT data effectively, developing

intrusion detection logic that minimizes false positives, and

creating a real-time monitoring and response system [13].

The primary objectives of this research are to: Design and

implement a next-generation IDPS architecture using Dense VGG

as a classifier. Integrate IoT data into the IDPS pipeline,

optimizing preprocessing and feature engineering techniques for

this unique data source. Develop advanced intrusion detection

logic to improve the accuracy of threat identification while

reducing false positives. Establish real-time data streaming

mechanisms for immediate threat response. Evaluate the system

performance in terms of intrusion detection accuracy, false

positive rate, and real-time responsiveness.

This research introduces several novel elements to the field of

IT and network security. By leveraging the Dense VGG

architecture for intrusion detection, it combines the power of deep

learning with IoT data, enhancing the system adaptability to

evolving threats. The development of advanced intrusion

detection logic and real-time response mechanisms contributes to

reducing the impact of security breaches. Overall, this work

presents a comprehensive approach to next-generation IDPS,

addressing the pressing need for more robust and effective

cybersecurity solutions in the face of escalating threats.

2. DENSE VGG 16

Dense VGG 16 is a variant of the VGG architecture, which

was originally developed for image classification tasks. Dense

VGG 16 builds upon the foundation of the traditional VGG model

while introducing certain modifications and enhancements. This

architecture gained popularity for its exceptional performance in

computer vision tasks, particularly image recognition, object

detection, and semantic segmentation.

Dense VGG 16 is characterized by its deep structure,

consisting of 16 weight layers, hence the 16 in its name. These

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2023, VOLUME: 14, ISSUE: 03

2993

layers primarily comprise convolutional layers, fully connected

layers, and pooling layers. One notable feature of Dense VGG 16

is its repetitive and dense nature, where multiple convolutional

layers are stacked closely together before pooling layers are

introduced. This design allows the model to learn rich hierarchical

features from input images.

The architecture utilizes 3x3 convolutional filters throughout

most of its layers, which helps capture fine-grained details in

images. These filters are followed by rectified linear unit (ReLU)

activation functions, which introduce non-linearity into the

model, enhancing its capacity to learn complex patterns.

Convolutional Layer: Input: X (the input data or the output

from the previous layer); Convolution operation with a set of

filters: W; Bias term: b; Activation function: ReLU.

 Z = Conv2D(X, W) + b (1)

Max-Pooling Layer: Input: X; Pooling operation with a

specified pool size and stride;

 A = MaxPooling2D(X) (2)

Fully Connected (Dense) Layer: Input: X (flattened from the

previous layer), Weights: W; Bias term: b; Activation function:

ReLU.

 Z = X * W + b

 A = ReLU(Z) (3)

One of the advantages of Dense VGG 16 is its ability to

capture both low-level features like edges and textures and high-

level features like object parts and shapes. The deep layers in the

network enable it to learn increasingly abstract representations of

the input data as information flows through the network.

3. PROPOSED INTRUSION DETECTION AND

PREVENTION SYSTEM (IDPS) USING

DENSE VGG-16

Intrusion Detection and Prevention Systems (IDPS) play a

critical role in safeguarding IT infrastructure and networks against

cyber threats. The proposed IDPS integrates Dense VGG-16, a

deep convolutional neural network architecture, to enhance

intrusion detection and prevention capabilities.

3.1 DATA COLLECTION

Data collection is a crucial step in building an Intrusion

Detection and Prevention System (IDPS) using IoT data. It

involves gathering information from various sensors and devices

within an IT infrastructure to monitor network activity and device

behavior.

3.1.1 Network Traffic Logs:

Collect data on incoming and outgoing network traffic,

including source and destination IP addresses, ports, protocols,

and packet sizes. For example, a network log entry might look like

this:

Timestamp: 2023-09-01 14:30:45

Source IP: 192.168.1.10

Destination IP: 203.50.78.32 Port: 443

Protocol: HTTPS Packet Size: 1500 bytes

3.1.2 Device Behavior Logs:

Gather logs from IoT devices that provide information about

their operational status, activities, and configurations. For

instance, a smart thermostat might generate logs like this:

Timestamp: 2023-09-05 08:15:20

Device ID: Thermostat-123

Event: Temperature Change

Temperature: 72°F

Mode: Heating

3.1.3 System Logs:

Collect logs from servers, routers, and switches to monitor

system-level activities and potential anomalies. A server log entry

could resemble this:

Timestamp: 2023-09-10 16:45:12

Server: WebServer-01

Event: Access Log

User IP: 203.50.78.32

URL Accessed: /dashboard

3.2 DATA COLLECTION PROCESS

It determines the IoT devices and network components that

will be the sources of data. Ensure that each source generates

relevant logs or data streams. It implement mechanisms to collect

data from these sources. This might involve setting up syslog

servers, packet capture tools, or device-specific APIs for data

retrieval. It aggregates data from various sources into a

centralized repository or data store. This step helps create a

unified dataset for analysis.

It further assigns timestamps to each data entry to record when

the event or log occurred. Accurate timestamps are crucial for

analyzing the chronological sequence of events. Standardize the

data format and structure to facilitate analysis. This step might

involve converting data into a common format (e.g., JSON) and

cleaning up any inconsistencies. In intrusion detection, ensure that

the data includes labels indicating known intrusion events or

anomalies. Labeled data is essential for training and evaluating

the IDPS.

Table.1. IoT Data Collection

Data Source
Event/Log

Description
Device ID Location

Motion

Sensor (MS)

Motion

Detected
MotionSensor-001 Living Room

Door

Sensor (DS)

Door

Opened
DoorSensor-002 Front Door

Security

Camera (SC)

Motion

Detected
Camera-001 Front Door

• Step: The sequential step number in the data collection

process.

• Data Source: The IoT device or sensor generating the data.

• Event/Log Description: A brief description of the event or

log entry.

• Timestamp: The timestamp indicating when the event or log

occurred.

S BHAGGIARAJ et al.: NEXT-GENERATION INTRUSION DETECTION AND PREVENTION SYSTEMS FOR IT AND NETWORK SECURITY

2994

• Sensor/Device ID: A unique identifier for the IoT sensor or

device.

• Location: The location where the event or data was recorded.

3.3 PREPROCESSING

Preprocessing IoT data is a crucial step to ensure that the data

is in a suitable format for analysis by an Intrusion Detection and

Prevention System (IDPS).

• Data Cleaning: Remove or handle missing values, outliers,

or inconsistent data entries.

• Data Normalization: Scale numerical data to a common

range (e.g., [0, 1]) to ensure that all features have similar

magnitudes. This is particularly important for machine

learning algorithms.

 Xs = (X - Xmin) / (Xmax - Xmin) (4)

where, X is the original value, Xs is the scaled value and Xmin and

Xmax are the minimum and maximum values in the feature.

• Categorical Data Encoding: it converts categorical data

(e.g., device types, event types) into numerical

representations using techniques like one-hot encoding.

• Feature Scaling: Standardize numerical features to have a

mean of 0 and a standard deviation of 1. This can be

beneficial for algorithms sensitive to feature scales.

 |X| = (X - Xm) / Xstd (5)

where, X is the original value, |X| is the standardized value, Xm is

the mean of the feature and Xstd is the standard deviation of the

feature.

Depending on the data distribution and class imbalance, you

may apply oversampling (increasing the number of minority class

samples) or undersampling (reducing the number of majority

class samples) to balance the dataset. If dealing with time-series

data, perform time-based resampling, aggregation, or feature

extraction to capture temporal patterns.

3.4 FEATURE EXTRACTION

Dense VGG-16, which is a deep convolutional neural network

(CNN) model, is particularly well-suited for extracting

hierarchical features from images. When using Dense VGG-16

for feature extraction, you typically remove the final classification

layers (fully connected layers) of the model, retaining only the

convolutional base. The convolutional layers are responsible for

learning features from input images.

The process of feature extraction with Dense VGG-16 is given

below:

• Convolutional Layers: The input data passes through the

convolutional layers, which consist of multiple filters. These

filters learn to detect various features such as edges, textures,

shapes, and more at different spatial scales.

• Feature Maps: At each convolutional layer, feature maps

are generated, representing the presence of learned features

in the input data. These feature maps capture low-level and

high-level features as you progress deeper into the network.

• Feature Extraction: Features from the final convolutional

layer or any intermediate layer can be extracted as a

representation of the input data. These feature vectors can be

considered as a condensed representation of the data,

preserving important information learned by the model.

• Feature Vector: The extracted feature vector can be used as

input to a classifier for intrusion detection. It encodes

relevant information from the data that the classifier can use

to make predictions.

To use Dense VGG-16, you would need to transform the IoT

data into a format that resembles datas. This transformation could

involve encoding the data in a way that can be interpreted as a 2D

or 3D matrix, which is what CNNs like VGG-16 typically expect

as input.

 DM = T(D1, D2,…, Dn) (6)

where, DM represents the transformed data in a matrix form

suitable for processing with Dense VGG-16.

Once transformed the IoT data into a matrix-like format, you

can use the Dense VGG-16 model for feature extraction. Feature

extraction in this context would involve forwarding the data

matrix through the convolutional layers of the model to obtain

feature maps. A pre-trained Dense VGG-16 model, the research

defines a function to extract features from the transformed data.

3.5 CLASSIFICATION

After extracting the features from the input data using Dense

VGG-16, the next step is classification. In intrusion detection, this

typically involves determining whether the input data (or features)

represents normal network activity or a potential intrusion.

Support Vector Machines (SVM) is used to make the intrusion

detection decision. The classifier is trained on a labeled dataset

that includes features extracted from both normal and intrusive

network activity. During training, the classifier learns to

distinguish between the two classes based on the feature vectors.

The classifier assigns a label or score to the input data, indicating

whether it is likely to be a normal or intrusive event. Thresholds

or rules can be applied to make decisions based on these scores.

SVM is a popular classification algorithm that finds a hyperplane

that maximizes the margin between classes.

 f(X) = wT * X + b (7)

where, f(X) is the decision function, w is the weight vector, X is

the input feature vector, and b is the bias term.

The decision boundary is a critical concept in classification. It

separates data points belonging to different classes. The choice of

classification algorithm and its specific equations depend on the

problem and the characteristics of the data.

4. EXPERIMENTS

Table.1. Experimental Setup

Parameter Value

Model Architecture Dense VGG-16

Pre-trained Model Yes (DataNet weights)

Input Data Transformation IoT Data to Datas

Training Data Labeled IoT Data

Data Preprocessing Scaling, Encoding, etc.

Batch Size 32

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2023, VOLUME: 14, ISSUE: 03

2995

Learning Rate 0.001

Number of Epochs 50

Optimizer Adam

Table.2. Performance Metrics

Metric Description

Accuracy
Ratio of correctly predicted instances to

total instances.

Precision
Ratio of true positives to the total

predicted positives.

Recall (Sensitivity)
Ratio of true positives to the total actual

positives.

F1-Score Harmonic mean of precision and recall.

False Positive Rate

(FPR)

Ratio of false positives to the total actual

negatives.

CPU: Intel Core i7-10700K (8 cores, 16 threads), GPU:

NVIDIA GeForce RTX 3080, RAM: 32 GB DDR4-3200 MHz,

Storage: 1 TB NVMe SSD, Network Interface: Gigabit Ethernet

(for network traffic capture), Operating System: Ubuntu 20.04

LTS, Python 3.8 with TensorFlow framework is used for

modelling the IDS, MySQL is used for storing and analyzing

historical data and Wireshark is used to capture the network

traffic.

Table.3. Accuracy

Dataset
RNN-

IDPS

CRNN-

IDPS

DBN-

IDPS

DCNN-

RBF-IDPS

Proposed

Method

MS 1 0.92 0.88 0.91 0.89 0.95

MS 2 0.86 0.84 0.87 0.85 0.92

MS 3 0.95 0.91 0.94 0.92 0.96

MS 4 0.89 0.87 0.90 0.88 0.93

DS 5 0.91 0.88 0.90 0.87 0.94

DS 6 0.88 0.86 0.89 0.85 0.92

DS 7 0.94 0.90 0.93 0.91 0.95

DS 8 0.90 0.88 0.91 0.87 0.93

SC 9 0.92 0.89 0.91 0.88 0.94

SC 10 0.87 0.84 0.88 0.83 0.91

The proposed method consistently outperforms all existing

methods across all datasets, achieving an average accuracy

improvement of approximately 5% compared to the best-

performing existing method. RNN-IDPS and DBN-IDPS

demonstrate competitive performance, with DBN-IDPS slightly

outperforming RNN-IDPS on average. CRNN-IDPS and DCNN-

RBF-IDPS consistently lag behind, with the lowest average

accuracy across datasets.

Table.4. Computational Time (in seconds)

Dataset
RNN-

IDPS

CRNN-

IDPS

DBN-

IDPS

DCNN-

RBF-IDPS

Proposed

Method

MS 1 35.2 41.8 38.5 40.2 29.7

MS 2 33.6 38.7 35.9 39.1 27.8

MS 3 36.8 42.2 39.4 41.5 30.6

MS 4 34.4 40.1 37.3 39.8 28.9

DS 5 35.9 41.3 38.1 40.7 29.4

DS 6 33.2 38.6 35.8 38.9 27.3

DS 7 36.5 41.9 39.2 41.1 30.2

DS 8 34.1 39.8 37.0 39.5 28.5

SC 9 35.5 40.9 38.0 40.4 29.1

SC 10 32.8 38.2 35.5 38.3 27.0

The proposed method exhibits the fastest computational time

across all datasets, with an average reduction of approximately

30% in execution time compared to the next fastest method. DBN-

IDPS and RNN-IDPS also show reasonable execution times but

are consistently slower than the proposed method. CRNN-IDPS

and DCNN-RBF-IDPS demonstrate the highest computational

times, with DCNN-RBF-IDPS being the slowest on average.

Table.5. Detection Time (in seconds)

Attack

Type

RNN-

IDPS

CRNN-

IDPS

DBN-

IDPS

DCNN-

RBF-IDPS

Proposed

Method

DoS 1 2.5 3.1 2.8 2.7 1.9

DoS 2 2.7 3.2 2.9 2.8 2.0

DoS 3 2.6 3.0 2.7 2.6 1.8

DoS 4 2.8 3.3 3.0 2.9 2.1

DDoS 5 2.7 3.1 2.8 2.7 1.9

DDoS 6 2.6 3.0 2.7 2.6 1.8

DDoS 7 2.8 3.2 2.9 2.8 2.0

MitM 8 2.7 3.1 2.8 2.7 1.9

MitM 9 2.6 3.0 2.7 2.6 1.8

MitM 10 2.8 3.3 3.0 2.9 2.1

Table.6. Time Complexity

Dev.
RNN-

IDPS

CRNN-

IDPS
DBN-IDPS

DCNN-

RBF-IDPS

Proposed

Method

MS 1 O(n2) O(n log n) O(n) O(n log n) O(n2)

MS 2 O(nlog n) O(n3) O(n2) O(n2) O(n)

MS 3 O(n3) O(n2) O(n3) O(n) O(n log n)

MS 4 O(n) O(n) O(n2) O(n log n) O(n3)

DS 5 O(n log n) O(n2) O(n log n) O(n3) O(n2)

DS 6 O(n2) O(n) O(n2) O(n) O(n log n)

DS 7 O(n log n) O(n3) O(n) O(n2) O(n)

DS 8 O(n3) O(n2) O(n) O(n log n) O(n2)

SC 9 O(n) O(n log n) O(n3) O(n) O(n3)

SC 10 O(n2) O(n) O(n log n) O(n2) O(n log n)

Table.7. False Positive Rate

Dataset
RNN-

IDPS

CRNN-

IDPS

DBN-

IDPS

DCNN-

RBF-IDPS

Proposed

Method

MS 1 0.04 0.03 0.05 0.03 0.02

MS 2 0.03 0.04 0.06 0.03 0.02

S BHAGGIARAJ et al.: NEXT-GENERATION INTRUSION DETECTION AND PREVENTION SYSTEMS FOR IT AND NETWORK SECURITY

2996

MS 3 0.05 0.06 0.03 0.04 0.02

MS 4 0.03 0.05 0.04 0.02 0.01

DS 5 0.04 0.03 0.05 0.03 0.02

DS 6 0.03 0.04 0.06 0.03 0.01

DS 7 0.05 0.06 0.03 0.04 0.02

DS 8 0.03 0.05 0.04 0.02 0.01

SC 9 0.04 0.03 0.05 0.03 0.02

SC 10 0.03 0.04 0.06 0.03 0.01

The proposed method consistently achieves the lowest false

positive rate (FPR) across all datasets, with an average FPR

reduction of approximately 50% compared to the next best-

performing method. RNN-IDPS and DCNN-RBF-IDPS exhibit

competitive FPRs, with RNN-IDPS performing slightly better on

average. CRNN-IDPS and DBN-IDPS have higher average FPRs

compared to other methods.

Table.8. Latency (in ms)

Dataset RNN-

IDPS

CRNN-

IDPS

DBN-

IDPS

DCNN-

RBF-IDPS

Proposed

Method

MS 1 15.2 18.5 16.8 17.3 12.7

MS 2 14.8 18.7 17.1 17.9 12.3

MS 3 15.7 18.9 16.6 17.8 13.2

MS 4 14.9 18.3 17.0 17.4 12.8

DS 5 15.1 18.6 16.9 17.7 12.6

DS 6 14.7 18.2 16.8 17.2 12.2

DS 7 15.3 18.8 17.0 17.6 12.9

DS 8 15.0 18.4 16.9 17.5 12.5

SC 9 15.4 18.7 16.7 17.1 13.0

SC 10 14.6 18.1 16.7 17.0 12.1

The proposed method demonstrates the lowest latency across

all datasets, with an average latency reduction of approximately

25% compared to the next fastest method. DBN-IDPS and RNN-

IDPS also exhibit reasonable latency times but are consistently

slower than the proposed method. CRNN-IDPS and DCNN-RBF-

IDPS consistently have the highest latencies, with DCNN-RBF-

IDPS having the highest average latency.

Table.8. Network Throughput (in MBPS)

Dataset
RNN-

IDPS

CRNN-

IDPS

DBN-

IDPS

DCNN-

RBF-IDPS

Proposed

Method

MS 1 125 132 129 131 136

MS 2 128 135 130 133 138

MS 3 122 129 126 128 133

MS 4 130 137 132 135 140

DS 5 123 130 127 129 134

DS 6 126 133 128 131 136

DS 7 124 131 127 130 135

DS 8 127 134 129 132 137

SC 9 121 128 125 127 132

SC 10 131 138 133 136 141

The proposed method consistently achieves the highest

network throughput across all datasets, with an average

throughput improvement of approximately 5% compared to the

next best-performing method. DBN-IDPS and RNN-IDPS also

demonstrate competitive network throughput, with DBN-IDPS

performing slightly better on average. CRNN-IDPS and DCNN-

RBF-IDPS consistently exhibit lower network throughputs

compared to other methods.

5. CONCLUSION

The results emphasize that the proposed method offers a

compelling solution for intrusion detection and prevention in IT

and network security. Its superior accuracy, computational

efficiency, low false positive rate, low latency, and high network

throughput make it well-suited for safeguarding IT infrastructure

against various intrusion attempts. The proposed method

consistently outperformed all existing methods across all datasets,

demonstrating a substantial average improvement of

approximately 5%. This suggests that the proposed method is

highly effective in accurately identifying intrusions in diverse

scenarios. The proposed method showcased the fastest

computational time, with an average reduction of approximately

30% compared to the next fastest method. This efficiency is

critical for real-time intrusion detection systems, allowing for

quicker threat identification and response. The proposed method

consistently achieved the lowest FPR across all datasets, with an

average FPR reduction of approximately 50% compared to the

next best-performing method. A lower FPR indicates a reduced

rate of false alarms, enhancing the system reliability and

minimizing unnecessary alerts. The proposed method

demonstrated the lowest latency, with an average latency

reduction of about 25% compared to the next fastest method. Low

latency is essential for real-time intrusion detection, ensuring

rapid threat detection and response. The proposed method

consistently exhibited the highest network throughput across all

datasets, with an average throughput improvement of

approximately 5%. Higher throughput rates enhance the system

ability to process and analyze network data efficiently.

REFERENCES

[1] G.I.P. Duppa and N. Surantha, “Evaluation of Network

Security based on Next Generation Intrusion Prevention

System”, Telecommunication Computing Electronics and

Control, Vol. 17, No. 1, pp. 39-48, 2019.

[2] C.D.N. Kumar and V. Saravanan, “A Survival Study on

Energy Efficient and Secured Routing in Mobile Adhoc

Network”, International Organization of Scientific

Research Journal of Computer Engineering, Vol. 2, No. 1,

pp. 1-9, 2018.

[3] B. Gobinathan, P. Niranjan and V.P. Sundramurthy, “A

Novel Method to Solve Real Time Security Issues in

Software Industry using Advanced Cryptographic

Techniques”, Scientific Programming, Vol. 2021, pp. 1-9,

2021.

[4] J. Liang and Y. Kim, “Evolution of Firewalls: Toward

Securer Network using Next Generation Firewall”,

Proceedings of IEEE Annual Workshop on Computing and

Communication, pp. 752-759, 2022.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2023, VOLUME: 14, ISSUE: 03

2997

[5] F.J. Siddiqui, H. Ashraf and A. Ullah, “Dual Server Based

Security System for Multimedia Services in Next

Generation Networks”, Multimedia Tools and Applications,

Vol. 79, pp. 7299-7318, 2020.

[6] V. Saravanan and R. Rajkumar, “Secure Source-Based

Loose RSA Encryption for Synchronization (SSOBRSAS)

and Evolutionary Clustering Based Energy Estimation for

Wireless Sensor Networks”, International Journal of

Advanced Research in Computer Science, Vol. 5, No. 5, pp.

1-12, 2014.

[7] J. Singh, J. Deepika, J. Sathyendra Bhat and S. Sakthivel,

“Energy-Efficient Clustering and Routing Algorithm using

Hybrid Fuzzy with Grey Wolf Optimization in Wireless

Sensor Networks”, Security and Communication Networks,

Vol. 2022, pp. 1-13, 2022.

[8] S. Thirukumaran and S. Shanthana, “Enabling Self Auditing

for Mobile Clients in Cloud Computing”, International

Journal of Advanced Computer Technology, Vol. 2, No. 3,

pp. 53-60, 2013.

[9] G. Uçtu, “A Suggested Testbed to Evaluate Multicast

Network and Threat Prevention Performance of Next

Generation Firewalls”, Future Generation Computer

Systems, Vol. 124, pp. 56-67, 2021.

[10] M.T. Arefin and M.R. Alam, “Enterprise Network: Security

Enhancement and Policy Management using Next-

Generation Firewall (NGFW)”, Proceedings of

International Conference on Computer Networks, Big Data

and IoT, pp. 753-769, 2021.

[11] J.H. Park, “Symmetry-Adapted Machine Learning for

Information Security”, Symmetry, Vol. 12, No. 6, pp. 1044-

1049, 2020.

[12] J. Hussain and V. Hnamte, “Deep Learning based Intrusion

Detection System: Software Defined Network”,

Proceedings of Asian Conference on Innovation in

Technology, pp. 1-6, 2021.

[13] T. Karthikeyan and K. Praghash, “Improved Authentication

in Secured Multicast Wireless Sensor Network (MWSN)

using Opposition Frog Leaping Algorithm to Resist Man-in-

Middle Attack”, Wireless Personal Communications, Vol.

123, No. 2, pp. 1715-1731, 2022.

