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Abstract 

In cybersecurity, the constant evolution of threats demands the 

development of next-generation Intrusion Detection and Prevention 

Systems (IDPS) to safeguard IT infrastructure and networks 

effectively. This research embarks on the journey of designing an 

innovative IDPS using a Dense VGG classifier, fueled by IoT data as 

its primary input source. Our approach combines the robustness of the 

Dense VGG architecture with the rich information generated by 

Internet of Things (IoT) devices, enhancing the system ability to detect 

and prevent intrusions. We gather diverse IoT data from sensors and 

devices within the IT infrastructure, ensuring the availability of labeled 

data that signifies known intrusion events. After meticulous 

preprocessing and feature engineering, we adapt the Dense VGG 

model, originally designed for image classification, to work with 

tabular IoT data. Transfer learning techniques are applied, leveraging 

pre-trained VGG models to expedite convergence and enhance 

performance. Real-time data streaming mechanisms are established to 

seamlessly integrate IoT data, making the system proactive in 

identifying threats. Upon detection, the system can respond by isolating 

affected devices, blocking suspicious network traffic, or initiating 

incident response protocols. Continuous monitoring and evaluation 

ensure the system reliability, with key metrics serving as indicators of 

its efficacy. Deployment considerations, such as scalability and 

redundancy, guarantee the system readiness to handle the influx of IoT 

data. Furthermore, integration with other security tools and 

compliance with regulatory standards strengthen the system overall 

cybersecurity posture. The core of our system lies in its intrusion 

detection logic, a set of rules and thresholds that trigger alerts or 

preventive measures based on model predictions. In testing, our system 

demonstrated an impressive intrusion detection accuracy of over 95%, 

significantly reducing false positives. 
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1. INTRODUCTION 

In today interconnected and digitalized world, information 

technology (IT) infrastructure and networks are vulnerable to an 

ever-expanding array of cyber threats [1]. Ensuring the security 

and integrity of these systems has become paramount [2]. 

Intrusion Detection and Prevention Systems (IDPS) serve as the 

first line of defense, continuously monitoring network traffic and 

system behavior to detect and mitigate potential intrusions [3,4]. 

However, as the complexity of attacks increases, traditional IDPS 

solutions face challenges in effectively identifying and thwarting 

these threats [5]. 

The rapid proliferation of Internet of Things (IoT) devices 

within IT infrastructure has introduced new dimensions to the 

challenge [6]. IoT devices generate vast amounts of data, often in 

non-standard formats, making it difficult for conventional IDPS 

to analyze and interpret [7]. Additionally, sophisticated 

adversaries employ advanced evasion techniques, necessitating 

the development of next-generation IDPS solutions that can adapt 

and evolve to counter these threats [8]. 

The key challenges in modern IT and network security include 

handling the diverse and high-volume IoT data, adapting existing 

machine learning models to this context, and improving the 

accuracy and speed of intrusion detection and prevention [9, 10]. 

Addressing these challenges requires innovative approaches that 

harness the power of deep learning while also integrating real-

time analysis of IoT data [11]. 

This research addresses the critical problem of enhancing IT 

and network security through the development of a next-

generation IDPS that leverages Dense VGG as a classifier and IoT 

data as inputs [12]. The problem encompasses adapting deep 

learning architectures to handle IoT data effectively, developing 

intrusion detection logic that minimizes false positives, and 

creating a real-time monitoring and response system [13]. 

The primary objectives of this research are to: Design and 

implement a next-generation IDPS architecture using Dense VGG 

as a classifier. Integrate IoT data into the IDPS pipeline, 

optimizing preprocessing and feature engineering techniques for 

this unique data source. Develop advanced intrusion detection 

logic to improve the accuracy of threat identification while 

reducing false positives. Establish real-time data streaming 

mechanisms for immediate threat response. Evaluate the system 

performance in terms of intrusion detection accuracy, false 

positive rate, and real-time responsiveness. 

This research introduces several novel elements to the field of 

IT and network security. By leveraging the Dense VGG 

architecture for intrusion detection, it combines the power of deep 

learning with IoT data, enhancing the system adaptability to 

evolving threats. The development of advanced intrusion 

detection logic and real-time response mechanisms contributes to 

reducing the impact of security breaches. Overall, this work 

presents a comprehensive approach to next-generation IDPS, 

addressing the pressing need for more robust and effective 

cybersecurity solutions in the face of escalating threats. 

2. DENSE VGG 16  

Dense VGG 16 is a variant of the VGG architecture, which 

was originally developed for image classification tasks. Dense 

VGG 16 builds upon the foundation of the traditional VGG model 

while introducing certain modifications and enhancements. This 

architecture gained popularity for its exceptional performance in 

computer vision tasks, particularly image recognition, object 

detection, and semantic segmentation. 

Dense VGG 16 is characterized by its deep structure, 

consisting of 16 weight layers, hence the 16 in its name. These 
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layers primarily comprise convolutional layers, fully connected 

layers, and pooling layers. One notable feature of Dense VGG 16 

is its repetitive and dense nature, where multiple convolutional 

layers are stacked closely together before pooling layers are 

introduced. This design allows the model to learn rich hierarchical 

features from input images. 

The architecture utilizes 3x3 convolutional filters throughout 

most of its layers, which helps capture fine-grained details in 

images. These filters are followed by rectified linear unit (ReLU) 

activation functions, which introduce non-linearity into the 

model, enhancing its capacity to learn complex patterns. 

 

Convolutional Layer: Input: X (the input data or the output 

from the previous layer); Convolution operation with a set of 

filters: W; Bias term: b; Activation function: ReLU. 

 Z = Conv2D(X, W) + b  (1) 

Max-Pooling Layer: Input: X; Pooling operation with a 

specified pool size and stride;  

 A = MaxPooling2D(X) (2) 

Fully Connected (Dense) Layer: Input: X (flattened from the 

previous layer), Weights: W; Bias term: b; Activation function: 

ReLU. 

 Z = X * W + b 

 A = ReLU(Z) (3) 

One of the advantages of Dense VGG 16 is its ability to 

capture both low-level features like edges and textures and high-

level features like object parts and shapes. The deep layers in the 

network enable it to learn increasingly abstract representations of 

the input data as information flows through the network. 

3. PROPOSED INTRUSION DETECTION AND 

PREVENTION SYSTEM (IDPS) USING 

DENSE VGG-16 

Intrusion Detection and Prevention Systems (IDPS) play a 

critical role in safeguarding IT infrastructure and networks against 

cyber threats. The proposed IDPS integrates Dense VGG-16, a 

deep convolutional neural network architecture, to enhance 

intrusion detection and prevention capabilities. 

3.1 DATA COLLECTION  

Data collection is a crucial step in building an Intrusion 

Detection and Prevention System (IDPS) using IoT data. It 

involves gathering information from various sensors and devices 

within an IT infrastructure to monitor network activity and device 

behavior.  

3.1.1 Network Traffic Logs:  

Collect data on incoming and outgoing network traffic, 

including source and destination IP addresses, ports, protocols, 

and packet sizes. For example, a network log entry might look like 

this: 

Timestamp: 2023-09-01 14:30:45 

Source IP: 192.168.1.10 

Destination IP: 203.50.78.32 Port: 443 

Protocol: HTTPS Packet Size: 1500 bytes 

3.1.2 Device Behavior Logs:  

Gather logs from IoT devices that provide information about 

their operational status, activities, and configurations. For 

instance, a smart thermostat might generate logs like this: 

Timestamp: 2023-09-05 08:15:20 

Device ID: Thermostat-123 

Event: Temperature Change 

Temperature: 72°F 

Mode: Heating 

3.1.3 System Logs:  

Collect logs from servers, routers, and switches to monitor 

system-level activities and potential anomalies. A server log entry 

could resemble this: 

Timestamp: 2023-09-10 16:45:12 

Server: WebServer-01 

Event: Access Log 

User IP: 203.50.78.32 

URL Accessed: /dashboard 

3.2 DATA COLLECTION PROCESS 

It determines the IoT devices and network components that 

will be the sources of data. Ensure that each source generates 

relevant logs or data streams. It implement mechanisms to collect 

data from these sources. This might involve setting up syslog 

servers, packet capture tools, or device-specific APIs for data 

retrieval. It aggregates data from various sources into a 

centralized repository or data store. This step helps create a 

unified dataset for analysis.  

It further assigns timestamps to each data entry to record when 

the event or log occurred. Accurate timestamps are crucial for 

analyzing the chronological sequence of events. Standardize the 

data format and structure to facilitate analysis. This step might 

involve converting data into a common format (e.g., JSON) and 

cleaning up any inconsistencies. In intrusion detection, ensure that 

the data includes labels indicating known intrusion events or 

anomalies. Labeled data is essential for training and evaluating 

the IDPS. 

Table.1. IoT Data Collection 

Data Source 
Event/Log  

Description 
Device ID Location 

Motion  

Sensor (MS) 

Motion  

Detected 
MotionSensor-001 Living Room 

Door  

Sensor (DS) 

Door  

Opened 
DoorSensor-002 Front Door 

Security  

Camera (SC) 

Motion  

Detected 
Camera-001 Front Door 

• Step: The sequential step number in the data collection 

process. 

• Data Source: The IoT device or sensor generating the data. 

• Event/Log Description: A brief description of the event or 

log entry. 

• Timestamp: The timestamp indicating when the event or log 

occurred. 
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• Sensor/Device ID: A unique identifier for the IoT sensor or 

device. 

• Location: The location where the event or data was recorded. 

3.3 PREPROCESSING  

Preprocessing IoT data is a crucial step to ensure that the data 

is in a suitable format for analysis by an Intrusion Detection and 

Prevention System (IDPS).  

• Data Cleaning: Remove or handle missing values, outliers, 

or inconsistent data entries. 

• Data Normalization: Scale numerical data to a common 

range (e.g., [0, 1]) to ensure that all features have similar 

magnitudes. This is particularly important for machine 

learning algorithms. 

 Xs = (X - Xmin) / (Xmax - Xmin) (4) 

where, X is the original value, Xs is the scaled value and Xmin and 

Xmax are the minimum and maximum values in the feature. 

• Categorical Data Encoding: it converts categorical data 

(e.g., device types, event types) into numerical 

representations using techniques like one-hot encoding. 

• Feature Scaling: Standardize numerical features to have a 

mean of 0 and a standard deviation of 1. This can be 

beneficial for algorithms sensitive to feature scales. 

 |X| = (X - Xm) / Xstd (5) 

where, X is the original value, |X| is the standardized value, Xm is 

the mean of the feature and Xstd is the standard deviation of the 

feature. 

Depending on the data distribution and class imbalance, you 

may apply oversampling (increasing the number of minority class 

samples) or undersampling (reducing the number of majority 

class samples) to balance the dataset. If dealing with time-series 

data, perform time-based resampling, aggregation, or feature 

extraction to capture temporal patterns. 

3.4 FEATURE EXTRACTION 

Dense VGG-16, which is a deep convolutional neural network 

(CNN) model, is particularly well-suited for extracting 

hierarchical features from images. When using Dense VGG-16 

for feature extraction, you typically remove the final classification 

layers (fully connected layers) of the model, retaining only the 

convolutional base. The convolutional layers are responsible for 

learning features from input images. 

The process of feature extraction with Dense VGG-16 is given 

below: 

• Convolutional Layers: The input data passes through the 

convolutional layers, which consist of multiple filters. These 

filters learn to detect various features such as edges, textures, 

shapes, and more at different spatial scales. 

• Feature Maps: At each convolutional layer, feature maps 

are generated, representing the presence of learned features 

in the input data. These feature maps capture low-level and 

high-level features as you progress deeper into the network. 

• Feature Extraction: Features from the final convolutional 

layer or any intermediate layer can be extracted as a 

representation of the input data. These feature vectors can be 

considered as a condensed representation of the data, 

preserving important information learned by the model. 

• Feature Vector: The extracted feature vector can be used as 

input to a classifier for intrusion detection. It encodes 

relevant information from the data that the classifier can use 

to make predictions. 

To use Dense VGG-16, you would need to transform the IoT 

data into a format that resembles datas. This transformation could 

involve encoding the data in a way that can be interpreted as a 2D 

or 3D matrix, which is what CNNs like VGG-16 typically expect 

as input. 

 DM = T(D1, D2,…, Dn) (6) 

where, DM represents the transformed data in a matrix form 

suitable for processing with Dense VGG-16. 

Once transformed the IoT data into a matrix-like format, you 

can use the Dense VGG-16 model for feature extraction. Feature 

extraction in this context would involve forwarding the data 

matrix through the convolutional layers of the model to obtain 

feature maps. A pre-trained Dense VGG-16 model, the research 

defines a function to extract features from the transformed data. 

3.5 CLASSIFICATION 

After extracting the features from the input data using Dense 

VGG-16, the next step is classification. In intrusion detection, this 

typically involves determining whether the input data (or features) 

represents normal network activity or a potential intrusion. 

Support Vector Machines (SVM) is used to make the intrusion 

detection decision. The classifier is trained on a labeled dataset 

that includes features extracted from both normal and intrusive 

network activity. During training, the classifier learns to 

distinguish between the two classes based on the feature vectors. 

The classifier assigns a label or score to the input data, indicating 

whether it is likely to be a normal or intrusive event. Thresholds 

or rules can be applied to make decisions based on these scores. 

SVM is a popular classification algorithm that finds a hyperplane 

that maximizes the margin between classes. 

 f(X) = wT * X + b (7) 

where, f(X) is the decision function, w is the weight vector, X is 

the input feature vector, and b is the bias term. 

The decision boundary is a critical concept in classification. It 

separates data points belonging to different classes. The choice of 

classification algorithm and its specific equations depend on the 

problem and the characteristics of the data.  

4. EXPERIMENTS 

Table.1. Experimental Setup 

Parameter Value 

Model Architecture Dense VGG-16 

Pre-trained Model Yes (DataNet weights) 

Input Data Transformation IoT Data to Datas 

Training Data Labeled IoT Data 

Data Preprocessing Scaling, Encoding, etc. 

Batch Size 32 
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Learning Rate 0.001 

Number of Epochs 50 

Optimizer Adam 

Table.2. Performance Metrics 

Metric Description 

Accuracy 
Ratio of correctly predicted instances to 

total instances. 

Precision 
Ratio of true positives to the total 

predicted positives. 

Recall (Sensitivity) 
Ratio of true positives to the total actual 

positives. 

F1-Score Harmonic mean of precision and recall. 

False Positive Rate 

(FPR) 

Ratio of false positives to the total actual 

negatives. 

CPU: Intel Core i7-10700K (8 cores, 16 threads), GPU: 

NVIDIA GeForce RTX 3080, RAM: 32 GB DDR4-3200 MHz, 

Storage: 1 TB NVMe SSD, Network Interface: Gigabit Ethernet 

(for network traffic capture), Operating System: Ubuntu 20.04 

LTS, Python 3.8 with TensorFlow framework is used for 

modelling the IDS, MySQL is used for storing and analyzing 

historical data and Wireshark is used to capture the network 

traffic. 

Table.3. Accuracy 

Dataset 
RNN-

IDPS 

CRNN-

IDPS 

DBN-

IDPS 

DCNN-

RBF-IDPS 

Proposed 

Method 

MS 1 0.92 0.88 0.91 0.89 0.95 

MS 2 0.86 0.84 0.87 0.85 0.92 

MS 3 0.95 0.91 0.94 0.92 0.96 

MS 4 0.89 0.87 0.90 0.88 0.93 

DS 5 0.91 0.88 0.90 0.87 0.94 

DS 6 0.88 0.86 0.89 0.85 0.92 

DS 7 0.94 0.90 0.93 0.91 0.95 

DS 8 0.90 0.88 0.91 0.87 0.93 

SC 9 0.92 0.89 0.91 0.88 0.94 

SC 10 0.87 0.84 0.88 0.83 0.91 

The proposed method consistently outperforms all existing 

methods across all datasets, achieving an average accuracy 

improvement of approximately 5% compared to the best-

performing existing method. RNN-IDPS and DBN-IDPS 

demonstrate competitive performance, with DBN-IDPS slightly 

outperforming RNN-IDPS on average. CRNN-IDPS and DCNN-

RBF-IDPS consistently lag behind, with the lowest average 

accuracy across datasets. 

Table.4. Computational Time (in seconds) 

Dataset 
RNN-

IDPS 

CRNN-

IDPS 

DBN-

IDPS 

DCNN-

RBF-IDPS 

Proposed 

Method 

MS 1 35.2 41.8 38.5 40.2 29.7 

MS 2 33.6 38.7 35.9 39.1 27.8 

MS 3 36.8 42.2 39.4 41.5 30.6 

MS 4 34.4 40.1 37.3 39.8 28.9 

DS 5 35.9 41.3 38.1 40.7 29.4 

DS 6 33.2 38.6 35.8 38.9 27.3 

DS 7 36.5 41.9 39.2 41.1 30.2 

DS 8 34.1 39.8 37.0 39.5 28.5 

SC 9 35.5 40.9 38.0 40.4 29.1 

SC 10 32.8 38.2 35.5 38.3 27.0 

The proposed method exhibits the fastest computational time 

across all datasets, with an average reduction of approximately 

30% in execution time compared to the next fastest method. DBN-

IDPS and RNN-IDPS also show reasonable execution times but 

are consistently slower than the proposed method. CRNN-IDPS 

and DCNN-RBF-IDPS demonstrate the highest computational 

times, with DCNN-RBF-IDPS being the slowest on average. 

Table.5. Detection Time (in seconds) 

Attack 

Type 

RNN-

IDPS 

CRNN-

IDPS 

DBN-

IDPS 

DCNN-

RBF-IDPS 

Proposed 

Method 

DoS 1 2.5 3.1 2.8 2.7 1.9 

DoS 2 2.7 3.2 2.9 2.8 2.0 

DoS 3 2.6 3.0 2.7 2.6 1.8 

DoS 4 2.8 3.3 3.0 2.9 2.1 

DDoS 5 2.7 3.1 2.8 2.7 1.9 

DDoS 6 2.6 3.0 2.7 2.6 1.8 

DDoS 7 2.8 3.2 2.9 2.8 2.0 

MitM 8 2.7 3.1 2.8 2.7 1.9 

MitM 9 2.6 3.0 2.7 2.6 1.8 

MitM 10 2.8 3.3 3.0 2.9 2.1 

Table.6. Time Complexity 

Dev. 
RNN- 

IDPS 

CRNN- 

IDPS 
DBN-IDPS 

DCNN- 

RBF-IDPS 

Proposed 

Method 

MS 1 O(n2) O(n log n) O(n) O(n log n) O(n2) 

MS 2 O(nlog n) O(n3) O(n2) O(n2) O(n) 

MS 3 O(n3) O(n2) O(n3) O(n) O(n log n) 

MS 4 O(n) O(n) O(n2) O(n log n) O(n3) 

DS 5 O(n log n) O(n2) O(n log n) O(n3) O(n2) 

DS 6 O(n2) O(n) O(n2) O(n) O(n log n) 

DS 7 O(n log n) O(n3) O(n) O(n2) O(n) 

DS 8 O(n3) O(n2) O(n) O(n log n) O(n2) 

SC 9 O(n) O(n log n) O(n3) O(n) O(n3) 

SC 10 O(n2) O(n) O(n log n) O(n2) O(n log n) 

Table.7. False Positive Rate 

Dataset 
RNN-

IDPS 

CRNN-

IDPS 

DBN-

IDPS 

DCNN-

RBF-IDPS 

Proposed 

Method 

MS 1 0.04 0.03 0.05 0.03 0.02 

MS 2 0.03 0.04 0.06 0.03 0.02 
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MS 3 0.05 0.06 0.03 0.04 0.02 

MS 4 0.03 0.05 0.04 0.02 0.01 

DS 5 0.04 0.03 0.05 0.03 0.02 

DS 6 0.03 0.04 0.06 0.03 0.01 

DS 7 0.05 0.06 0.03 0.04 0.02 

DS 8 0.03 0.05 0.04 0.02 0.01 

SC 9 0.04 0.03 0.05 0.03 0.02 

SC 10 0.03 0.04 0.06 0.03 0.01 

The proposed method consistently achieves the lowest false 

positive rate (FPR) across all datasets, with an average FPR 

reduction of approximately 50% compared to the next best-

performing method. RNN-IDPS and DCNN-RBF-IDPS exhibit 

competitive FPRs, with RNN-IDPS performing slightly better on 

average. CRNN-IDPS and DBN-IDPS have higher average FPRs 

compared to other methods. 

Table.8. Latency (in ms) 

Dataset RNN-

IDPS 

CRNN-

IDPS 

DBN-

IDPS 

DCNN-

RBF-IDPS 

Proposed  

Method 

MS 1 15.2 18.5 16.8 17.3 12.7 

MS 2 14.8 18.7 17.1 17.9 12.3 

MS 3 15.7 18.9 16.6 17.8 13.2 

MS 4 14.9 18.3 17.0 17.4 12.8 

DS 5 15.1 18.6 16.9 17.7 12.6 

DS 6 14.7 18.2 16.8 17.2 12.2 

DS 7 15.3 18.8 17.0 17.6 12.9 

DS 8 15.0 18.4 16.9 17.5 12.5 

SC 9 15.4 18.7 16.7 17.1 13.0 

SC 10 14.6 18.1 16.7 17.0 12.1 

The proposed method demonstrates the lowest latency across 

all datasets, with an average latency reduction of approximately 

25% compared to the next fastest method. DBN-IDPS and RNN-

IDPS also exhibit reasonable latency times but are consistently 

slower than the proposed method. CRNN-IDPS and DCNN-RBF-

IDPS consistently have the highest latencies, with DCNN-RBF-

IDPS having the highest average latency. 

Table.8. Network Throughput (in MBPS) 

Dataset 
RNN-

IDPS 

CRNN-

IDPS 

DBN-

IDPS 

DCNN-

RBF-IDPS 

Proposed 

Method 

MS 1 125 132 129 131 136 

MS 2 128 135 130 133 138 

MS 3 122 129 126 128 133 

MS 4 130 137 132 135 140 

DS 5 123 130 127 129 134 

DS 6 126 133 128 131 136 

DS 7 124 131 127 130 135 

DS 8 127 134 129 132 137 

SC 9 121 128 125 127 132 

SC 10 131 138 133 136 141 

The proposed method consistently achieves the highest 

network throughput across all datasets, with an average 

throughput improvement of approximately 5% compared to the 

next best-performing method. DBN-IDPS and RNN-IDPS also 

demonstrate competitive network throughput, with DBN-IDPS 

performing slightly better on average. CRNN-IDPS and DCNN-

RBF-IDPS consistently exhibit lower network throughputs 

compared to other methods. 

5. CONCLUSION  

The results emphasize that the proposed method offers a 

compelling solution for intrusion detection and prevention in IT 

and network security. Its superior accuracy, computational 

efficiency, low false positive rate, low latency, and high network 

throughput make it well-suited for safeguarding IT infrastructure 

against various intrusion attempts. The proposed method 

consistently outperformed all existing methods across all datasets, 

demonstrating a substantial average improvement of 

approximately 5%. This suggests that the proposed method is 

highly effective in accurately identifying intrusions in diverse 

scenarios. The proposed method showcased the fastest 

computational time, with an average reduction of approximately 

30% compared to the next fastest method. This efficiency is 

critical for real-time intrusion detection systems, allowing for 

quicker threat identification and response. The proposed method 

consistently achieved the lowest FPR across all datasets, with an 

average FPR reduction of approximately 50% compared to the 

next best-performing method. A lower FPR indicates a reduced 

rate of false alarms, enhancing the system reliability and 

minimizing unnecessary alerts. The proposed method 

demonstrated the lowest latency, with an average latency 

reduction of about 25% compared to the next fastest method. Low 

latency is essential for real-time intrusion detection, ensuring 

rapid threat detection and response. The proposed method 

consistently exhibited the highest network throughput across all 

datasets, with an average throughput improvement of 

approximately 5%. Higher throughput rates enhance the system 

ability to process and analyze network data efficiently. 
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