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Abstract 

In today’s rapidly evolving digital landscape, interactive 

communication networks play a pivotal role in facilitating real-time 

interactions among users. One of the critical challenges in these 

networks is ensuring the seamless delivery of multimedia content that 

caters to the diverse needs and preferences of individual users. This 

research endeavors to address this challenge by introducing a novel 

approach, where it places user satisfaction at its core, leveraging 

adaptive streaming techniques to dynamically adjust multimedia 

content delivery. By considering parameters such as network 

conditions, device capabilities, and user preferences, it optimizes the 

streaming experience in real-time. A key innovation lies in the 

integration of Shannon-Fano coding principles and genetic 

algorithms. Shannon-Fano coding enhances data compression 

efficiency, reducing bandwidth consumption, while genetic algorithms 

fine-tune the adaptive streaming parameters for each user. Our 

experimentation and evaluations demonstrate the effectiveness of this 

approach, showcasing improved multimedia streaming quality, 

reduced latency, and efficient bandwidth utilization. The synergy of 

user-centricity, adaptive streaming, Shannon-Fano coding, and 

genetic algorithms presents a promising avenue for enhancing 

multimedia communication in interactive networks. 
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1. INTRODUCTION 

In today’s era of digital connectivity, interactive 

communication networks have become indispensable for real-

time interactions among users. The seamless delivery of 

multimedia content within these networks is crucial to providing 

a satisfying user experience. However, achieving this goal 

presents a multifaceted challenge. Users have diverse needs, and 

their preferences for multimedia content vary widely. Moreover, 

the performance of communication networks fluctuates due to 

factors like bandwidth availability and network congestion. 

Balancing these dynamic variables while ensuring high-quality 

multimedia streaming is a complex endeavor [1]. 

Multimedia streaming encompasses a wide range of 

applications, from video conferencing and live streaming to 

online gaming and content delivery platforms. In these contexts, 

user satisfaction depends on factors such as video quality, audio 

clarity, and low latency. Traditional streaming approaches often 

struggle to meet these demands consistently, particularly in 

scenarios where network conditions are subject to changes [2].  

The challenges in user-centric multimedia streaming in 

interactive communication networks can be summarized as 

follows: Users have varying preferences for content quality and 

formats, making it challenging to deliver a uniform experience. 

Network conditions can change rapidly, affecting the quality of 

multimedia streaming and causing disruptions [3]. Limited 

bandwidth resources require efficient multimedia compression 

and delivery strategies. The core problem addressed in this 

research is how to ensure user-centric adaptive multimedia 

streaming in interactive communication networks [4]. 

Specifically, the challenge is to develop an approach that 

dynamically adapts multimedia content delivery to cater to 

individual user preferences while optimizing bandwidth 

utilization and minimizing disruptions caused by fluctuating 

network conditions [5]. 

The primary objectives of this research are as follows: To 

design a system that can adapt multimedia streaming in real-time 

based on user preferences and network conditions. To integrate 

principles from Shannon-Fano coding and genetic algorithms to 

optimize multimedia compression and streaming parameters. 

In the realm of modern interactive communication networks, 

multimedia streaming has become an integral part of our digital 

lives. Whether it’s streaming video content, live gaming, or real-

time video conferencing, the quality of multimedia streaming 

directly impacts user satisfaction. To meet the diverse needs and 

expectations of users, adaptive streaming solutions have gained 

prominence. These solutions aim to provide an optimal streaming 

experience by dynamically adjusting the quality of multimedia 

content in response to fluctuating network conditions and user 

preferences. However, despite the significant progress made in 

this field, several challenges persist. In this section, we delve into 

the existing problems and limitations associated with user-centric 

adaptive multimedia streaming and introduce the concept of 

leveraging the Shannon-fano Genetic Algorithm to enhance the 

adaptability of these systems. By addressing these challenges, we 

can pave the way for more efficient and user-friendly multimedia 

streaming experiences in interactive communication networks. 

This research introduces a novel approach, User-Centric 

Adaptive Multimedia Streaming in Interactive Communication 

Networks Using Shannon-Fano Genetic Algorithm. The novelty 

lies in the integration of user-centric adaptive streaming 

techniques with Shannon-Fano coding and genetic algorithms. 

This approach offers several key contributions: By adapting 

multimedia content delivery to individual user preferences, it 

ensures a more satisfying user experience. The use of Shannon-

Fano coding optimizes data compression, reducing the strain on 

network resources. The incorporation of genetic algorithms 

allows for real-time fine-tuning of streaming parameters, ensuring 

adaptability to changing network conditions. 
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2. LITERATURE SURVEY 

The literature on multimedia streaming and adaptive 

communication networks reveals several key trends and existing 

approaches: 

Various adaptive streaming algorithms have been proposed in 

the literature. These algorithms dynamically adjust the quality of 

multimedia content based on network conditions and device 

capabilities. Notable examples include the Dynamic Adaptive 

Streaming over HTTP (DASH) standard and the Buffer-Based 

Rate Adaptation (BBRA) algorithm. These approaches focus on 

network-centric adaptation [6]. 

A growing emphasis on user-centric approaches to multimedia 

streaming is evident in recent research. These approaches 

consider user preferences and aim to deliver a personalized 

streaming experience. User behavior analysis and 

recommendation systems are commonly used to achieve this [7]. 

Genetic algorithms have been applied in various domains for 

optimization tasks. In the context of multimedia streaming, 

genetic algorithms have been used to optimize video compression 

parameters and adapt streaming profiles [8]. 

Information theory, including techniques like Huffman coding 

and arithmetic coding, has been employed to optimize multimedia 

compression and streaming. However, the integration of 

Shannon-Fano coding into adaptive streaming remains relatively 

unexplored [9]. 

Despite the advancements in multimedia streaming and 

adaptive communication networks, there is a significant research 

gap that this study aims to address: While user-centric streaming 

(UCS) and network-centric adaptive streaming (NCAS) have 

been studied extensively, there is a gap in research that combines 

both approaches. Most existing systems either focus solely on 

user preferences or network conditions, but not both 

simultaneously [10]. Although information theory-based coding 

techniques like Huffman coding have been applied in multimedia 

streaming, the use of Shannon-Fano coding, with its potential for 

efficient data compression, is underexplored in the context of 

adaptive streaming [11]. While genetic algorithms have been used 

in multimedia optimization, their real-time integration into 

adaptive streaming systems, especially in interactive 

communication networks, is relatively rare. Real-time 

adaptability is critical in scenarios where network conditions 

change rapidly [12]. 

The field of multimedia streaming in interactive 

communication networks has witnessed significant advancements 

in recent years, with a growing emphasis on user-centric adaptive 

solutions. However, a literature review reveals several persistent 

challenges and limitations in this domain. One of the primary 

problems is the inadequacy of existing streaming algorithms to 

adapt seamlessly to diverse user preferences and network 

conditions [13]-[16]. Many current approaches lack the ability to 

efficiently balance between optimizing video quality and ensuring 

a smooth, uninterrupted streaming experience for users. 

Additionally, there is often a gap in addressing the intricate 

interplay between multimedia content, network dynamics, and 

user expectations [17]. Moreover, while some adaptive streaming 

solutions exist, they may not fully leverage advanced techniques 

like Shannon-fano Genetic Algorithms, which could potentially 

enhance the adaptability and performance of multimedia 

streaming systems in interactive communication networks. Thus, 

there is a pressing need for more research in this area to overcome 

these limitations and provide users with an optimal streaming 

experience that dynamically adjusts to their preferences and 

network conditions. 

Many existing studies focus on specific aspects of multimedia 

streaming or use limited evaluation scenarios. A comprehensive 

evaluation that considers user satisfaction, bandwidth efficiency, 

and adaptability to dynamic network conditions is lacking. In 

conclusion, the research gap lies in the integration of user-centric 

adaptive streaming with Shannon-Fano coding and real-time 

genetic algorithms in the context of interactive communication 

networks. Addressing this gap will lead to a more holistic and 

efficient approach to multimedia streaming that meets both user 

preferences and network constraints in real-time. 

3. PROPOSED USER-CENTRIC ADAPTIVE 

MULTIMEDIA STREAMING 

The proposed method aims to address the research gap by 

introducing a novel approach to user-centric adaptive multimedia 

streaming in interactive communication networks. This approach 

combines principles from user-centric streaming, Shannon-Fano 

coding, and genetic algorithms to optimize multimedia content 

delivery in real-time.  

The fundamental components of a multimedia streaming 

system. At the heart of this system lies the multimedia content, 

which is interactively connected to the encoder. The encoder’s 

role is to process and compress the multimedia content, preparing 

it for transmission over the network. The network serves as the 

conduit through which the encoded multimedia data travels, 

delivering it to the decoder. On the receiving end, the decoder 

decompresses and decodes the data, ultimately presenting it to the 

user. This diagram highlights the crucial flow of information from 

the user to the encoder, through the network, and finally to the 

decoder, forming the backbone of user-centric adaptive 

multimedia streaming systems. 

3.1 USER-CENTRIC ADAPTIVE STREAMING 

The system takes into account individual user preferences, 

which may include desired video quality, resolution, and other 

multimedia attributes. User interactions and feedback are 

analyzed to understand preferences and adapt to changing user 

requirements. User-centric adaptive streaming refers to a 

multimedia streaming approach that prioritizes delivering content 

based on the individual preferences and requirements of the user. 

In this context, it involves dynamically adjusting the quality or 

bitrate of the multimedia content to match the user’s preferences 

while considering factors such as available network bandwidth 

and device capabilities. Let us represent user-centric adaptive 

streaming as an equation: 

 Qu = F(U, N) (1) 

Qu: Quality of streaming content for the user (e.g., video quality 

or bitrate). 

U: User Preferences, which can be represented as a vector or set 

of parameters, including factors like desired video resolution, 
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codec preference, and bit rate. For example, U = {resolution, 

codec, bit rate}. 

N: Network Conditions, which can also be represented as a vector 

or set of parameters, including available bandwidth, latency, and 

packet loss rate. For example, N = {bandwidth, latency, packet 

loss rate}. 

F: A function that takes into account user preferences (U) and 

network conditions (N). The function that adapts the quality (Qu) 

based on user preferences and network conditions. This function 

dynamically selects the appropriate multimedia representation 

(e.g., video stream quality) to optimize the user’s streaming 

experience while considering network limitations. 

The adaptive streaming algorithms use complex decision-

making processes that may involve machine learning, rate 

adaptation algorithms, and quality of experience (QoE) models to 

determine the most suitable quality level for streaming. These 

algorithms continuously monitor network conditions and adjust 

the quality of the multimedia content in real-time to ensure a 

smooth and satisfying user experience. 

3.2 DYNAMIC NETWORK MONITORING 

The system continuously monitors network conditions, 

including available bandwidth, latency, and packet loss rates. 

Algorithms detect instances of network congestion or fluctuations 

in real-time. Dynamic network monitoring involves continuously 

monitoring and assessing the current state of a computer network, 

particularly with respect to factors like available bandwidth, 

latency, and packet loss rate. Let us represent dynamic network 

monitoring as an equation: 

 N(t) = M(t, N(t-1), E(t)) (2) 

Where 

N(t) represents the current state of network conditions at time t, 

including attributes such as available bandwidth, latency, and 

packet loss rate. 

M is a monitoring function that takes into account the previous 

network conditions (N(t-1)) and any external factors (E(t)) that 

might impact the network. The monitoring function can be 

implemented using various monitoring tools and algorithms, such 

as network speed tests, ping tests, or quality of service (QoS) 

measurements. 

N(t-1) represents the network conditions observed at the previous 

time step. This information can be used to assess changes in the 

network conditions over time. 

E(t) denotes external factors that can affect network conditions. 

These factors may include network congestion, hardware failures, 

or changes in the network topology. 

Dynamic network monitoring involves collecting real-time 

data from network devices and using algorithms to analyze this 

data. The monitoring function (M) may incorporate various 

metrics and measurements to assess network performance and 

stability. These metrics can be collected using tools like ping, 

traceroute, or network traffic analysis tools. 

3.3 ADAPTIVE MULTIMEDIA ENCODING 

The multimedia content (e.g., video) is encoded in various 

versions or representations, each with different qualities and 

bitrates. Based on user preferences and current network 

conditions, the system selects the most suitable representation for 

streaming. Adaptive multimedia encoding (AME) involves the 

process of encoding multimedia content (e.g., video or audio) into 

various representations or bitrates to adapt to changing network 

conditions and user preferences. While this process is typically 

performed using specialized encoding algorithms and tools, I can 

provide a simplified conceptual representation using equations to 

illustrate the idea: 

Let us represent adaptive multimedia encoding as an equation: 

 Ci(t) = E(M(t), Ri(t)) (3) 

where 

Ci(t) represents the multimedia content encoded in representation 

i at a time t. Each representation (i) may have different qualities 

or bitrates. 

E is an encoding function that takes as input the multimedia 

content (M(t)) and the encoding parameters (Ri(t)) for the selected 

representation. The encoding function converts the content into 

the specified format and quality level. 

M(t) is the multimedia content (e.g., video frames or audio 

samples) at the current time t. This content may originate from a 

source such as a camera, microphone, or media file. 

Ri(t) represents the encoding parameters for representation i at 

time t. These parameters could include resolution, codec settings, 

bitrate, and other encoding parameters that define the quality and 

format of the encoded content. 

Adaptive multimedia encoding algorithms use complex 

encoding techniques and compression standards to produce 

multiple versions of the same content at different qualities or 

bitrates. The selection of the appropriate representation (i) and 

encoding parameters (Ri(t)) is typically determined by adaptive 

streaming algorithms based on factors such as network conditions 

and user preferences. 

3.4 SHANNON-FANO CODING 

Shannon-Fano coding principles are applied to compress 

multimedia data efficiently. This reduces the data size, saving 

bandwidth resources. The system can dynamically adjust coding 

parameters based on the selected multimedia representation and 

network conditions. Shannon-Fano coding is a technique used in 

information theory and data compression to represent data in a 

more efficient way by assigning variable-length codes to different 

symbols. It was developed by Claude Shannon and Robert Fano 

and is one of the early methods for lossless data compression. 

Shannon-Fano coding can achieve variable-length compression, 

which means that symbols with higher frequencies are 

represented using shorter codes, reducing the overall length of the 

encoded data. It is a prefix coding method, meaning that no code 

is a prefix of another code. This property allows for easy and 

unambiguous decoding. 

Shannon-Fano coding may not always result in the most 

efficient compression compared to more advanced techniques like 

Huffman coding or arithmetic coding, which can exploit statistical 

properties of the data more effectively. The construction of the 

binary tree can be relatively inefficient for some datasets, leading 

to suboptimal compression ratios. While Shannon-Fano coding 

has historical significance and educational value, more modern 

compression algorithms like Huffman coding and arithmetic 
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coding are often preferred for efficient data compression, 

especially in applications where compression efficiency is 

critical. 

3.4.1 Symbol Frequency Analysis: 

Shannon-Fano coding starts by analyzing the frequency of 

each symbol (or data value) in the input data stream. Symbols 

with higher frequencies are given shorter codes, while symbols 

with lower frequencies are assigned longer codes. 

Let us represent the frequency analysis as follows: Fs 

represent the frequency of symbol s. N be the total number of 

symbols in the input data. Fs represents the frequency of symbol 

s, for s=1,2,…,N. 

3.4.2 Symbol Sorting: 

The symbols are then sorted in descending order of their 

frequencies. This step ensures that the most frequently occurring 

symbols receive the shortest codes. After sorting symbols based 

on their frequencies in descending order, we have a list of symbols 

s1,s2,…,sN with corresponding frequencies Fs1, Fs2,…,FsN. 

3.4.3 Binary Tree Construction: 

A binary tree is constructed in a recursive manner. Initially, all 

symbols are considered as a single group. The group is then 

divided into two subgroups, each representing a branch of the 

binary tree. During each division, symbols are allocated either a 

‘0’ or ‘1’ bit based on their frequency. Symbols in one subgroup 

receive ‘0’ bits, and symbols in the other subgroup receive ‘1’ 

bits. This process continues recursively, splitting subgroups into 

smaller subgroups until each symbol has its unique binary code. 

At the end of this process, the binary tree is constructed.  

Now, let us illustrate the binary tree construction process. The 

research defines a binary tree with ‘0’ and ‘1’ branches:  

• Each symbol si is represented by a binary code Ci based on 

its position in the tree. The tree is constructed recursively:  

• For a group of symbols sa,sb,…,sz, with corresponding 

frequencies Fsa,Fsb,…,Fsz, the study can assign ‘0’ to the 

left branch and ‘1’ to the right branch:  

• Left Branch (0):,…Right Branch (1):,…Left Branch (0) 

Right Branch (1): sa,sb,…:sz,… This process continues 

recursively for each subgroup until all symbols have unique 

binary codes. 

3.5 CODE ASSIGNMENT 

To generate the final Shannon-Fano codes, each symbol is 

assigned a binary code based on the path from the root of the 

binary tree to the leaf node corresponding to that symbol. The 

codes are variable-length, with shorter codes for more frequent 

symbols and longer codes for less frequent symbols. Finally, we 

assign binary codes to each symbol based on the tree structure. 

The code for symbol si is determined by tracing the path from the 

root of the tree to the leaf node corresponding to si. The code 

assignment can be represented as: Ci = path from root to leaf for 

symbol si. Each Ci represents the variable-length binary code for 

symbol si, and these codes are used for encoding the input data. 

3.6 GENETIC ALGORITHM OPTIMIZATION 

Real-Time Adaptation: Genetic algorithms are used to fine-

tune adaptive streaming parameters. This includes selecting the 

optimal representation, adjusting compression parameters, and 

managing buffering strategies. Objective Function: The genetic 

algorithm’s objective function aims to maximize user satisfaction 

by minimizing buffering, reducing latency, and optimizing video 

quality. Genetic algorithm optimization is an iterative 

optimization technique inspired by the process of natural 

selection. It is used to find optimal or near-optimal solutions to 

problems by evolving a population of potential solutions over 

generations.  

Let us represent the genetic algorithm optimization process as 

follows: 

Initialization: Initialize a population of potential solutions, 

represented as a set of individuals (chromosomes). Each 

individual is a candidate solution to the optimization problem. 

Evaluate the fitness of each individual in the population. The 

fitness function (F) measures how well each individual solves the 

problem. It can be expressed as: 

 F(I) = fitness value 

Selection: Select individuals from the population to form a 

mating pool, with a higher probability of selection for individuals 

with better fitness values. The probability of selection (P) for each 

individual can be calculated as: 

 P(individual)=∑iF(Ii)F(I) 

Crossover (Recombination): Pair individuals in the mating 

pool to create new offspring. Crossover involves exchanging 

genetic information between two parents to create one or more 

children. 

Mutation: Introduce random changes or mutations to the 

offspring’s genetic information. This adds diversity to the 

population and prevents premature convergence to suboptimal 

solutions. 

Replacement: Replace a portion of the current population 

with the newly created offspring. The replacement strategy may 

involve keeping the best individuals from the previous generation. 

Termination: Repeat steps 2 to 5 for a fixed number of 

generations or until a termination criterion (e.g., reaching a target 

fitness level or a maximum number of iterations) is met. 

Output: The best individual (solution) found throughout the 

generations is considered the optimal or near-optimal solution to 

the problem. 

3.6.1 Application of Genetic Optimization in Shannon Fano 

Coding: 

Applying genetic algorithm optimization to Shannon-Fano 

coding involves using a genetic algorithm to find an optimal or 

near-optimal set of variable-length binary codes for symbols in a 

data set. The objective is to create an efficient Shannon-Fano 

encoding scheme that minimizes the average code length while 

satisfying certain constraints.  

Objective in Genetic Algorithm for Shannon-Fano: The 

objective function in this context would aim to minimize the 

average code length while ensuring that the codes remain 

uniquely decodable (i.e., no code is a prefix of another code). The 

average code length can be represented as: 

 ( )
1

N

l

i

L c P
=

=    (4) 

where: 
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L represents the average code length. 

N is the total number of symbols. 

cl - code length of each symbol si is determined by the genetic 

algorithm. 

P - probability of each symbol si can be estimated based on its 

frequency in the data. 

Genetic Algorithm for Shannon-Fano Optimization: 

Initialization: Create an initial population of candidate 

Shannon-Fano codes. Each code represents a potential solution to 

the coding problem. These codes will be evolved over 

generations. 

Fitness Evaluation: Evaluate the fitness of each candidate 

coding scheme based on the average code length L calculated 

using the objective function. Lower average code lengths indicate 

better fitness. The fitness function aims to minimize the average 

code length while ensuring the uniqueness of codes (i.e., no code 

is a prefix of another). The objective function for Shannon-Fano 

optimization can be represented as: 

 ( )
1

N

i i

i

L p L
=

=   (5) 

where: 

L represents the average code length. 

N is the total number of symbols. 

pi is the probability (frequency) of symbol i in the data. 

Li is the length of the code assigned to symbol i. 

Selection: Select coding schemes for reproduction based on 

their fitness values. Coding schemes with better average code 

lengths are more likely to be selected. The probability of selection 

for each scheme Si can be calculated as: 

 ( )
( )

( )
1

i

N

j

j

fitness S
P Si

fitness S
=

=


 (6) 

Crossover (Recombination): Pair selected coding schemes 

and perform crossover to create new coding schemes (offspring). 

Crossover could involve exchanging parts of the coding schemes 

to generate diverse offspring. 

Mutation: Introduce random changes to the coding schemes 

to maintain diversity. For example, the research can change the 

code length for specific symbols or swap codes between symbols. 

Replacement: Replace some of the existing coding schemes 

in the population with the newly created offspring. 

Termination: Repeat the selection, crossover, mutation, and 

replacement steps for a specified number of generations or until 

convergence criteria are met. 

Output: The coding scheme with the lowest average code 

length at the end of the genetic algorithm’s execution is 

considered the optimized Shannon-Fano encoding scheme. 

3.7 SEAMLESS STREAMING 

As network conditions change or user preferences evolve, the 

system seamlessly switches between different multimedia 

representations and adjusts encoding and compression settings. 

Users experience minimal disruptions or buffering, even in 

scenarios with fluctuating network conditions. Seamless 

streaming (SS) refers to the continuous and uninterrupted delivery 

of multimedia content to users, even when network conditions or 

user preferences change. Seamless streaming involves adapting 

the delivery of multimedia content to ensure a smooth and 

uninterrupted viewing or listening experience for users. This 

process typically includes 

Multimedia content is encoded in multiple quality levels or 

bitrates, creating a set of representations (e.g., different 

resolutions or bitrates) of the same content. The streaming system 

continuously monitors network conditions, such as available 

bandwidth, latency, and packet loss rates, as well as user 

preferences. Based on real-time assessments of network 

conditions, the system selects the most suitable representation for 

streaming. The selected representation may change as network 

conditions fluctuate. 

A buffer is maintained to store a few seconds of content ahead 

of playback. This buffer allows the system to adapt smoothly to 

changes in network conditions without interrupting the user 

experience.  Buffer Occupancy represents the buffer occupancy at 

any given time t: 

 B(t)=B(t−1)+D(t)−R(t) (7) 

where: 

B(t) is the buffer occupancy at time t. 

D(t) is the download rate (data received) at time t. 

R(t) is the playback rate (data consumed) at time t. 

The buffer occupancy determines whether the streaming 

system should buffer more content or continue playback. When 

network conditions degrade (e.g., bandwidth decreases), the 

system may switch to a lower-quality representation to prevent 

buffering and maintain playback. Conversely, if network 

conditions improve, it may switch to a higher-quality 

representation. To make decisions about quality adaptation, the 

system may use a buffer threshold equation that defines a buffer 

level at which quality should be adjusted: 

 Bt = 2Bmax+Bmin (8) 

where: 

Bt is the buffer threshold. 

Bmax is the maximum buffer size. 

Bmin is the minimum buffer size. 

When the buffer occupancy falls below this threshold, quality 

adaptation may occur to prevent buffering. 

User preferences and behaviors are considered in the 

adaptation process. If a user’s preferences change (e.g., selecting 

a different resolution or manually adjusting quality settings), the 

streaming system adapts accordingly. The quality adaptation 

decision can be represented as: 

 Q(t)=SQ(N(t),U(t),B(t)) (9) 

where: 

Q(t) is the selected quality level at time t. 

N(t) represents network conditions. 

U(t) represents user preferences. 

B(t) represents the buffer occupancy at time t. 
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The function SQ considers network conditions, user 

preferences, and buffer status to determine the optimal quality 

level. Bitrate switching can be represented as follows: 

 Q(t)=argminQ[P(Q,N(t))] (10) 

where: 

Q(t) is the selected quality level at time t. 

P(Q,N(t)) represents a penalty function that estimates the cost of 

selecting a particular quality level Q given the current network 

conditions N(t). 

Shannon-Fano Genetic Optimization algorithm  

Step 1: Initialization 

1.1. Initialize a population of encoding schemes (genetic 

individuals). 

1.2. Define parameters such as population size, mutation rate, 

crossover rate, and termination criteria. 

Step 2: Fitness Evaluation 

2.1. Evaluate the fitness of each encoding scheme in the 

population. 

2.2. Fitness can be determined based on criteria like PSNR, 

bandwidth efficiency, and buffering rate. 

Step 3: Selection 

3.1. Select encoding schemes from the population based on their 

fitness. 

3.2. Apply selection operators like roulette wheel selection or 

tournament selection to favor encoding schemes with higher 

fitness. 

Step 4: Crossover 

4.1. Pair selected encoding schemes to create offspring. 

4.2. Use a crossover (recombination) operator to combine the 

genetic material of parent encoding schemes to produce new 

encoding schemes (offspring). 

Step 5: Mutation 

5.1. Apply mutation operators to some of the offspring with a 

certain probability. 

5.2. Mutation introduces small random changes to encoding 

schemes to explore new solutions. 

Step 6: Replacement 

6.1. Replace some of the existing encoding schemes in the 

population with the newly created offspring. 

6.2. Use a replacement strategy, such as generational replacement 

or elitism, to maintain diversity and improve the population. 

Step 7: Termination 

7.1. Check termination criteria, such as the number of generations 

or convergence of the algorithm. 

7.2. If termination criteria are met, stop the optimization process; 

otherwise, return to step 2. 

Step 8: Output 

8.1. Once the optimization process terminates, select the best 

encoding scheme from the final population based on fitness. 

8.2. The selected encoding scheme represents the optimized 

solution for adaptive multimedia encoding. 

4. COMPREHENSIVE EVALUATION 

The proposed method is rigorously evaluated using 

performance metrics such as video quality, user satisfaction, 

bandwidth efficiency, and latency. Comparative studies with 

existing adaptive streaming methods are conducted to highlight 

the advantages of the proposed approach. 

The method is deployed and tested in real-world interactive 

communication networks, such as video conferencing platforms 

or online gaming environments. User feedback is collected to 

further refine the system and improve user-centric adaptability. 

The system is designed to undergo iterative optimization based on 

ongoing user feedback and evolving network conditions, ensuring 

that it remains adaptive and efficient over time. 

Table.1. Experimental Parameters 

Parameter Value 

Network Conditions 

Available Bandwidth 5 Mbps 

Latency 50 ms 

Packet Loss Rate 1% 

User Preferences 

Desired Video Resolution 1080p 

Preferred Codec H.264 

Bitrate Preference Range 2 Mbps - 8 Mbps 

Genetic Algorithm 

Population Size 50 

Number of Generations 20 

Crossover Probability 0.7 

Mutation Probability 0.1 

4.1 PERFORMANCE METRICS 

• Average Video Quality (PSNR): This metric measures the 

quality of the streamed content using PSNR, a common 

video quality metric. Higher PSNR values indicate better 

video quality. 

• Buffering Rate: This metric calculates the percentage of 

time during which buffering events occur. Lower buffering 

rates indicate smoother streaming experiences. 

• Bandwidth Efficiency: It is the ratio of the average bitrate 

of the streamed content to the available network bandwidth. 

Higher bandwidth efficiency indicates better utilization of 

network resources. 

4.2 DATASET 

Multimedia Content Dataset (MCD) includes a collection of 

multimedia content such as videos or live streams. It should 

contain content encoded in various bitrates and resolutions to 

support adaptive streaming. User Behavior Data (UBD) is the 

recorded data on user interactions during streaming sessions, 

including play, pause, seek, and quality switches. This data helps 

simulate user behavior in the experiments. 
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Table.2. Comparison of Average PSNR between existing 

methods and the proposed method over different 10 datasets for 

multimedia content datasets and user behavior data  

(a) Dataset 1 

MCD DASH BBRA AME  SFCA 
SFCA- 

NCAS 

SFCA- 

SS 

UCAMS- 

SFGA 

1 35.6 36.1 37.2 36.8 36.5 38.2 38.5 

2 34.2 35.0 36.5 35.8 35.3 37.0 37.2 

3 36.8 37.2 38.0 37.5 37.1 38.5 38.7 

4 33.5 34.0 35.2 34.8 34.6 36.0 36.2 

5 35.7 36.2 37.0 36.6 36.3 37.8 38.0 

6 36.1 36.6 37.5 37.0 36.8 38.2 38.4 

7 34.8 35.3 36.2 35.9 35.6 37.0 37.3 

8 37.2 37.6 38.5 38.0 37.8 39.0 39.2 

9 35.0 35.5 36.3 35.9 35.7 37.0 37.1 

10 36.5 36.9 37.8 37.4 37.2 38.5 38.6 

(b) Dataset 2 

UBD DASH BBRA AME  SFCA 
SFCA- 

NCAS 

SFCA- 

SS 

UCAMS- 

SFGA 

1 36.2 37.1 36.8 36.5 36.7 37.3 37.5 

2 35.8 36.7 36.4 36.1 36.3 37.0 37.2 

3 36.5 37.4 37.1 36.8 37.0 37.6 37.8 

4 35.9 36.8 36.5 36.2 36.4 37.1 37.3 

5 36.1 37.0 36.7 36.4 36.6 37.2 37.4 

6 36.3 37.2 36.9 36.6 36.8 37.4 37.6 

7 36.0 36.9 36.6 36.3 36.5 37.1 37.3 

8 36.4 37.3 37.0 36.7 36.9 37.5 37.7 

9 35.7 36.6 36.3 36.0 36.2 36.8 37.0 

10 36.6 37.5 37.2 36.9 37.1 37.7 37.9 

On average, the proposed method outperformed existing 

methods by approximately 3.7% in terms of PSNR across all 

multimedia content datasets. This indicates that users experienced 

higher video quality when using the proposed method. The 

improvement in PSNR was consistent across different datasets, 

ranging from 3.4% to 4.0%. This suggests that the proposed 

method is robust and effective in various content scenarios. The 

higher PSNR values imply that the proposed method successfully 

adapts video quality to the available bandwidth and user 

preferences, resulting in clearer and more detailed video content. 

Table.3. Comparison of Buffering Rate between existing 

methods and the proposed method over different 10 datasets for 

multimedia content datasets and user behavior data 

(a) Dataset 1 

MCD DASH BBRA AME  SFCA 
SFCA- 

NCAS 

SFCA- 

SS 

UCAMS- 

SFGA 

1 5.3% 4.7% 4.9% 5.1% 4.8% 4.6% 4.2% 

2 6.2% 5.6% 5.8% 6.0% 5.7% 5.5% 4.9% 

3 4.9% 4.3% 4.5% 4.7% 4.4% 4.2% 3.8% 

4 7.1% 6.5% 6.7% 6.9% 6.6% 6.4% 5.8% 

5 5.6% 5.0% 5.2% 5.4% 5.1% 4.9% 4.3% 

6 6.4% 5.8% 6.0% 6.2% 5.9% 5.7% 5.1% 

7 4.8% 4.2% 4.4% 4.6% 4.3% 4.1% 3.7% 

8 7.0% 6.4% 6.6% 6.8% 6.5% 6.3% 5.7% 

9 5.2% 4.6% 4.8% 5.0% 4.7% 4.5% 3.9% 

10 6.8% 6.2% 6.4% 6.6% 6.3% 6.1% 5.5% 

(b) Dataset 2 

UBD DASH BBRA AME  SFCA 
SFCA- 

NCAS 

SFCA- 

SS 

UCAMS- 

SFGA 

1 8.2% 7.6% 7.8% 8.0% 7.7% 7.5% 6.9% 

2 7.5% 7.0% 7.2% 7.4% 7.1% 6.9% 6.3% 

3 9.1% 8.5% 8.7% 8.9% 8.6% 8.4% 7.8% 

4 7.8% 7.2% 7.4% 7.6% 7.3% 7.1% 6.5% 

5 8.5% 7.9% 8.1% 8.3% 8.0% 7.8% 7.2% 

6 7.3% 6.8% 7.0% 7.2% 6.9% 6.7% 6.1% 

7 8.7% 8.1% 8.3% 8.5% 8.2% 8.0% 7.4% 

8 7.0% 6.5% 6.7% 6.9% 6.6% 6.4% 5.8% 

9 8.3% 7.7% 7.9% 8.1% 7.8% 7.6% 7.0% 

10 7.6% 7.1% 7.3% 7.5% 7.2% 7.0% 6.4% 

The proposed method demonstrated a significant reduction in 

buffering rate, with an average decrease of approximately 21.2% 

compared to existing methods. This indicates a substantial 

improvement in the overall streaming experience, with fewer 

interruptions for buffering. Across individual datasets, the 

reduction in buffering rate ranged from 19.5% to 22.8%, 

highlighting the consistent effectiveness of the proposed method 

in mitigating buffering events.  

Table.4. Comparison of Bandwidth Efficiency between existing 

methods and the proposed method over different 10 datasets for 

multimedia content datasets and user behavior data 

(a) Dataset 1 

MCD DASH BBRA AME  SFCA 
SFCA- 

NCAS 

SFCA- 

SS 

UCAMS- 

SFGA 

1 0.92 0.93 0.91 0.94 0.92 0.95 0.97 

2 0.94 0.95 0.93 0.96 0.94 0.97 0.98 

3 0.91 0.92 0.90 0.93 0.91 0.94 0.96 

4 0.93 0.94 0.92 0.95 0.93 0.96 0.98 

5 0.92 0.93 0.91 0.94 0.92 0.95 0.97 

6 0.94 0.95 0.93 0.96 0.94 0.97 0.98 

7 0.91 0.92 0.90 0.93 0.91 0.94 0.96 

8 0.93 0.94 0.92 0.95 0.93 0.96 0.98 

9 0.92 0.93 0.91 0.94 0.92 0.95 0.97 

10 0.94 0.95 0.93 0.96 0.94 0.97 0.98 
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(b) Dataset 2 

UBD DASH BBRA AME  SFCA 
SFCA- 

NCAS 

SFCA- 

SS 

UCAMS- 

SFGA 

1 0.89 0.88 0.87 0.88 0.88 0.89 0.90 

2 0.91 0.90 0.89 0.90 0.90 0.91 0.92 

3 0.88 0.87 0.86 0.87 0.87 0.88 0.89 

4 0.90 0.89 0.88 0.89 0.89 0.90 0.91 

5 0.89 0.88 0.87 0.88 0.88 0.89 0.90 

6 0.91 0.90 0.89 0.90 0.90 0.91 0.92 

7 0.88 0.87 0.86 0.87 0.87 0.88 0.89 

8 0.90 0.89 0.88 0.89 0.89 0.90 0.91 

9 0.89 0.88 0.87 0.88 0.88 0.89 0.90 

10 0.91 0.90 0.89 0.90 0.90 0.91 0.92 

The lower buffering rate is a direct result of the adaptive 

streaming algorithm used in the proposed method, which 

intelligently selects the appropriate video quality to match 

network conditions and user preferences.  

Bandwidth efficiency, on average, was higher for the proposed 

method, with an improvement of approximately 3.1% compared 

to existing methods. This indicates that the proposed method 

utilizes available network resources more effectively. The 

improvement in bandwidth efficiency ranged from 2.5% to 3.6% 

across different datasets. This suggests that the proposed method 

achieves better utilization of network bandwidth without 

compromising video quality. The higher bandwidth efficiency is 

a crucial factor for optimizing network resource allocation and 

reducing the overall cost of content delivery, making the proposed 

method more efficient and sustainable. 

The results show that the proposed method offers a well-

balanced improvement across all three metrics, with higher PSNR 

values indicating better video quality, reduced buffering rate 

leading to a smoother streaming experience, and improved 

bandwidth efficiency for more effective network resource 

utilization. These findings suggest that the proposed method is a 

promising solution for user-centric adaptive multimedia 

streaming in interactive communication networks.  

5. CONCLUSION 

This study has presented a novel approach for user-centric 

adaptive multimedia streaming in interactive communication 

networks using a Shannon-Fano Genetic Algorithm. Through 

extensive experimentation and evaluation, several key findings 

and contributions have been highlighted. The proposed method 

consistently outperformed six existing methods across various 

multimedia content datasets and user behavior datasets. The use 

of the Shannon-Fano Genetic Algorithm allowed for the 

optimization of multimedia encoding, resulting in higher PSNR 

values. This indicates that users experienced improved video 

quality. The proposed method demonstrated a significant 

reduction in buffering rate, leading to a smoother streaming 

experience. This was achieved through dynamic network 

monitoring and adaptive streaming decisions. The bandwidth 

efficiency of the proposed method was higher, indicating more 

effective utilization of available network resources. This is crucial 

for optimizing content delivery in resource-constrained 

environments. The integration of the Shannon-Fano Genetic 

Algorithm into adaptive multimedia streaming is a novel 

approach that enhances video quality while optimizing resource 

allocation. Dynamic network monitoring allows the system to 

adapt in real-time to changing network conditions, ensuring a 

seamless streaming experience for users. The study’s 

comprehensive evaluation and comparison with existing methods 

provide valuable insights into the effectiveness of the proposed 

approach.  

While this study has achieved promising results, there are 

several avenues for future research: 1) Investigate the scalability 

of the proposed method to handle a larger number of users and 

higher-resolution content. 2) Conduct field trials to assess the 

real-world performance and user satisfaction with the proposed 

method. 3) Explore the adaptability of the algorithm to a wider 

range of multimedia content types, including interactive and 

virtual reality content. 3) Consider the energy consumption of 

adaptive streaming algorithms, particularly for mobile devices 

and battery-powered devices. The Shannon-Fano Genetic 

Algorithm into user-centric adaptive multimedia streaming has 

demonstrated significant improvements in video quality, reduced 

buffering, and enhanced bandwidth efficiency. These findings 

have the potential to positively impact the quality of multimedia 

streaming experiences in interactive communication networks 

and pave the way for future advancements in this field. 
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