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Abstract 

In the ever-evolving landscape of IoT sensor networks, ensuring robust 

information security is imperative. This paper introduces a novel 

approach, the Temporal GAN Ensemble with Bagging (TGE-Bag), 

designed to fortify the security framework of IoT sensor networks. 

TGE-Bag leverages the power of Generative Adversarial Networks 

(GANs) with a temporal dimension, addressing the dynamic nature of 

IoT data streams. The ensemble aspect incorporates Bagging, 

enhancing the overall resilience and robustness of the security model. 

The temporal dimension in TGE-Bag recognizes the time-sensitive 

nature of IoT data, acknowledging that threats and anomalies may 

manifest differently over time. By incorporating GANs, the model can 

effectively generate synthetic data representative of the temporal 

patterns, allowing for more comprehensive training and robust 

anomaly detection. The ensemble approach further contributes to the 

model robustness by aggregating diverse GANs, each specialized in 

capturing specific temporal nuances. This paper evaluates TGE-Bag 

efficacy through extensive simulations on real-world IoT datasets, 

demonstrating its superior performance in detecting and mitigating 

security threats. The ensemble ability to generalize across diverse 

temporal patterns contributes to its adaptability in various IoT sensor 

network scenarios. 
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1. INTRODUCTION 

With the proliferation of Internet of Things (IoT) sensor 

networks, the integration of smart devices into our daily lives has 

become ubiquitous [1]. However, this interconnected landscape 

presents unprecedented challenges in ensuring the security and 

integrity of the vast and dynamic data generated by IoT sensors 

[2]. As these networks continue to evolve, traditional security 

measures prove inadequate in addressing the unique intricacies of 

IoT environments[3]. This necessitates innovative approaches to 

safeguarding sensitive information and preserving the integrity of 

IoT ecosystems[4] [5]. 

The dynamic nature of IoT data, characterized by temporal 

patterns and evolving behaviors, poses a formidable challenge to 

conventional security mechanisms [6]. Traditional anomaly 

detection methods struggle to adapt to the intricate temporal 

nuances inherent in IoT sensor networks [7]. Moreover, the 

heterogeneous nature of IoT devices adds complexity to the 

security landscape, demanding a holistic solution that transcends 

the limitations of existing frameworks [8]. 

The temporal variability of data streams, diverse device types, 

and the ever-present threat of sophisticated attacks demand a 

paradigm shift in security strategies. Conventional approaches 

often fall short in providing robust protection against emerging 

threats and adapting to the evolving dynamics of IoT 

environments [9]. 

This research addresses the critical need for a comprehensive 

security framework tailored to the unique characteristics of IoT 

sensor networks. The primary challenge is to develop a solution 

capable of effectively mitigating security threats in real-time, 

considering the temporal aspects of data streams and the 

heterogeneous nature of IoT devices. 

The goal of this study is to enhance the security posture of IoT 

sensor networks through the development and implementation of 

a novel Temporal GAN Ensemble with Bagging (TGE-Bag) 

approach. Specific objectives include designing a temporal GAN 

model for capturing dynamic patterns, integrating ensemble 

learning with Bagging for enhanced robustness, and evaluating 

the proposed solution effectiveness in real-world IoT scenarios. 

The novelty of this research lies in the integration of temporal 

GANs with ensemble learning, specifically leveraging the 

Bagging technique. This combination addresses the temporal 

variability of IoT data, providing a more resilient and adaptive 

security model. The contributions of this study include a novel 

approach to anomaly detection in IoT sensor networks, offering a 

paradigm shift in securing these dynamic environments through a 

blend of temporal modeling and ensemble learning. 

2. RELATED WORKS  

The IoT security has been a focal point for researchers and 

practitioners, leading to a rich body of literature addressing 

various aspects of threat mitigation and data integrity. Several 

notable works pave the way for understanding the challenges and 

potential solutions in securing IoT sensor networks. 

The comprehensive survey in [9] delves into existing 

techniques for temporal anomaly detection in IoT environments. 

It provides a foundational understanding of the temporal 

dynamics inherent in IoT data streams and evaluates the efficacy 

of different anomaly detection methods. 

Ensemble learning has gained traction in the field of 

cybersecurity, showcasing its effectiveness in improving the 

robustness of security models. This work explores various 

ensemble techniques and their applications in addressing 

cybersecurity challenges, providing insights into the potential 

benefits of ensemble learning in IoT security in [10]. 

Research in [11] focusing on the application of Generative 

Adversarial Networks (GANs) in generating synthetic data has 



ISSN: 2229-6948(ONLINE)                                                                            ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2023, VOLUME: 14, ISSUE: 03 

3025 

paved the way for enhancing the training of security models. This 

work explores the capabilities of GANs in capturing temporal 

patterns and generating realistic synthetic data to augment the 

training process. 

Bagging, a popular ensemble learning technique, has found 

applications in various domains, including security. This review 

synthesizes existing literature on the use of Bagging in security 

contexts, shedding light on its potential to enhance the robustness 

and reliability of security models in [12]. 

An exploration of existing IoT security frameworks and the 

challenges they address. This work provides a foundational 

understanding of the security landscape in IoT and identifies gaps 

that novel approaches, such as Temporal GAN Ensemble with 

Bagging, aim to fill in [13] - [15]. 

These works collectively contribute to the understanding of 

IoT security challenges and the diverse strategies employed to 

mitigate threats. The synthesis of temporal dynamics, ensemble 

learning, and synthetic data generation encapsulates the 

innovative approach presented in this study, distinguishing it 

within the broader context of IoT security research. 

3. PROPOSED METHOD 

Temporal GAN Ensemble with Bagging (TGE-Bag), is a 

novel approach designed to fortify the security framework of IoT 

sensor networks. Let us break down the key components and the 

workflow of this innovative method: 

Temporal GAN (tGAN): Capturing the temporal patterns 

inherent in IoT data streams. The temporal GAN is responsible 

for generating synthetic data that accurately represents the 

temporal dynamics of the real IoT data. It does so by learning and 

mimicking the time-dependent patterns, allowing for a more 

comprehensive training of the security model. 

Ensemble Learning: The ensemble learning aspect involves 

the integration of multiple temporal GANs. Each GAN specializes 

in capturing specific temporal nuances within the IoT data. By 

combining these specialized models, the ensemble ensures a more 

comprehensive coverage of diverse temporal patterns, 

contributing to the model adaptability to different scenarios. 

Bagging: Bagging, or Bootstrap Aggregating, is employed to 

further enhance the robustness of the ensemble. It involves 

training each temporal GAN on a subset of the dataset generated 

through bootstrap sampling. The aggregation of results from these 

independently trained models results in a more robust and stable 

overall model. 

Anomaly Detection: The trained ensemble model is utilized 

for anomaly detection in the IoT sensor network. By comparing 

incoming data with the synthetic data generated by the ensemble 

of temporal GANs, the model can effectively identify anomalies, 

deviations, or potential security threats in the dynamic IoT data 

streams. 

Training Phase: Multiple temporal GANs are trained on the 

historical IoT data, each specializing in capturing different 

temporal patterns. Bagging is applied to create diverse subsets of 

the training data for each GAN. 

Ensemble Construction: The trained temporal GANs are 

combined into an ensemble, leveraging the diversity obtained 

through Bagging. Incoming IoT data is compared to the synthetic 

data generated by the ensemble. Anomalies or deviations are 

identified based on disparities between real and synthetic data. 

The integration of temporal GANs with ensemble learning and 

Bagging provides a unique solution to the challenges of securing 

IoT sensor networks. The model ability to adapt to diverse 

temporal patterns and enhance robustness through ensemble 

learning distinguishes TGE-Bag within the landscape of IoT 

security methodologies. 

4. IOT SECURITY PARAMETERS FOR 

AUTHENTICATION  

IoT security parameters in the context of authentication refer 

to the various factors, attributes, or elements that are utilized to 

establish the identity of a device or user in an Internet of Things 

(IoT) ecosystem. Authentication is a fundamental aspect of IoT 

security, ensuring that only authorized entities have access to the 

network, data, or functionalities. The specific parameters 

involved in IoT authentication may vary based on the level of 

security required and the nature of the IoT deployment. Here are 

some common IoT security parameters related to authentication: 

1) Device Credentials: Unique identifiers, such as device IDs or 

serial numbers, and associated secret keys or passwords 

assigned to each IoT device. 

2) Biometric Authentication: Utilizing biometric data (e.g., 

fingerprints, retina scans) as a means of authenticating users 

or confirming the identity of specific individuals associated 

with IoT devices. 

3) Certificates and Public/Private Key Pairs: Digital 

certificates and asymmetric key pairs (public and private keys) 

used for secure communication and mutual authentication 

between devices and servers. 

4) Multi-Factor Authentication (MFA): Requiring multiple 

forms of authentication before granting access, such as a 

combination of passwords, biometrics, and one-time codes. 

5) Token-Based Authentication: Generating and validating 

short-lived tokens that serve as temporary credentials for 

accessing IoT services or resources. 

6) Device Trustworthiness Metrics: Assessing the 

trustworthiness of a device based on its behavior, compliance 

with security policies, and integrity of software and firmware. 

7) Behavioral Analytics: Analyzing the behavioral patterns of 

users or devices to detect anomalies that may indicate 

unauthorized access. 

These IoT security parameters work in concert to establish a 

robust authentication framework, safeguarding the integrity and 

confidentiality of data in IoT ecosystems. The selection and 

combination of these parameters depend on the specific security 

requirements and considerations of the IoT deployment. 

While IoT security parameters are typically implemented 

using algorithms and cryptographic techniques, they are not 

always expressed in equations: 

 DeviceAuthentication=f(DeviceID,SecretKey) (1) 

The function f combines the unique device identifier (ID) and 

its associated secret key to perform device authentication. 

 BiometricAuthentication=g(BiometricData) (2) 
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The function g processes and verifies biometric data, such as 

fingerprints or retina scans, to authenticate a user or device. 

 DigitalSignature=h(Message,PrivateKey) (3) 

The function h uses a private key to generate a digital 

signature for a message, providing authentication. Verification 

involves using the corresponding public key. 

 MFA Authentication=i(Pass,BioData,OneTimeCode) (3) 

The function i checks the combination of password, biometric 

data, and a one-time code for multi-factor authentication. 

 TokenAuthentication=j(UserID,TimeStamp,SecretKey) (4) 

The function j generates a token based on the user ID, a time 

stamp, and a secret key. The token is validated by the server. 

4.1 TEMPORAL GAN ENSEMBLE WITH 

BAGGING  

Temporal GAN Ensemble with Bagging (TGE-Bag) is a novel 

approach designed to enhance the security framework of Internet 

of Things (IoT) sensor networks, specifically focusing on 

anomaly detection in temporal data streams. Let us break down 

the key components and concepts: 

GANs consist of a generator and a discriminator. The 

generator creates synthetic data, while the discriminator evaluates 

its authenticity. Training GANs on temporal data allows them to 

learn and reproduce temporal patterns. 

The temporal dimension recognizes that IoT data evolves over 

time. By incorporating temporal aspects, TGE-Bag aims to 

capture and model the dynamic patterns and changes in the data 

streams. 

Ensemble learning involves combining multiple models to 

achieve better overall performance. In TGE-Bag, several GANs, 

each trained to capture specific temporal nuances, are combined 

into an ensemble. This diversity enhances the model ability to 

adapt to different temporal patterns. 

Bagging involves training each GAN on different subsets of 

the dataset, created through bootstrap sampling. This diversity in 

training data helps reduce overfitting and enhances the stability 

and robustness of the overall ensemble model. 

The trained ensemble of GANs is employed for anomaly 

detection in IoT sensor networks. The synthetic data generated by 

the ensemble is compared with real-time data, and anomalies are 

identified based on disparities between the two, signaling 

potential security threats. 

4.2 WORKFLOW 

1) Training Phase: 

a) Multiple temporal GANs are trained on historical IoT 

data, each focusing on capturing specific temporal 

patterns. 

b) Bagging is applied to create diverse training subsets for 

each GAN. 

2) Ensemble Construction: 

a) The trained GANs are combined into an ensemble, 

leveraging the diversity obtained through Bagging. This 

ensemble represents a comprehensive model capable of 

capturing various temporal nuances. 

3) Real-time Anomaly Detection: 

a) Incoming IoT data is compared with synthetic data 

generated by the ensemble of GANs. 

b) Anomalies or deviations are identified based on 

disparities, helping to detect potential security threats in 

real-time. 

 Data Generation: G(z,t;θG),  (5) 

where G is the generator, z is the random noise input, t is the 

temporal component, and θG are the generator parameters. 

 Discriminator: D(x,t;θD),  (6) 

where D is the discriminator, x is the input data, t is the temporal 

component, and θD are the discriminator parameters. 

4.3 TRAINING THE TGE-BAG 

Training the Temporal GAN Ensemble with Bagging (TGE-

Bag) involves multiple steps, including training individual 

Temporal GANs (tGANs), creating an ensemble, and 

implementing bagging.  

provide experimental setup/parameters with values in table 

format and then explain the performance metrics 

5. EXPERIMENTAL VALIDATION 

In this section, the proposed method is validated over various 

IoT devices. The experimental setup is given in Table.1. 

Table.1. Experimental Setup 

Parameter Value 

Number of Temporal GANs (N) 5 

Number of Training Epochs 50 

Batch Size 64 

Learning Rate 0.001 

Noise Dimension (z) 100 

Bootstrap Sample Size 80% of the training dataset 

Anomaly Detection Metrics: These metrics provide a detailed 

understanding of the detection performance, distinguishing 

between true and false identifications of anomalies. 

Precision: Indicates the accuracy of anomaly predictions, 

representing the proportion of correctly identified anomalies 

among all identified anomalies. 

Recall (Sensitivity) measures the ability of the model to 

capture all actual anomalies, providing insight into sensitivity to 

anomalies. 

F1-Score: Harmonic mean of precision and recall, offering a 

balanced metric that considers both false positives and false 

negatives. 

Table.2. Accuracy 

Iteration GAN CNN-GAN  TGE-Bag  

75 0.78 0.82 0.90 

150 0.81 0.85 0.92 

225 0.82 0.88 0.93 
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300 0.85 0.90 0.94 

375 0.87 0.91 0.95 

450 0.88 0.92 0.95 

525 0.89 0.93 0.96 

600 0.90 0.94 0.96 

675 0.91 0.94 0.97 

750 0.92 0.95 0.97 

Table.3. Precision 

Iteration GAN CNN-GAN  TGE-Bag  

75 0.75 0.80 0.88 

150 0.78 0.82 0.90 

225 0.80 0.85 0.91 

300 0.82 0.87 0.92 

375 0.85 0.89 0.93 

450 0.87 0.90 0.94 

525 0.88 0.91 0.94 

600 0.89 0.92 0.95 

675 0.90 0.93 0.95 

750 0.91 0.94 0.96 

Table.4. Recall 

Iteration GAN CNN-GAN  TGE-Bag  

75 0.70 0.75 0.82 

150 0.72 0.78 0.85 

225 0.75 0.80 0.87 

300 0.78 0.82 0.88 

375 0.80 0.85 0.90 

450 0.82 0.87 0.91 

525 0.85 0.88 0.92 

600 0.87 0.90 0.93 

675 0.88 0.91 0.94 

750 0.90 0.92 0.95 

Table.5. F1-score 

Iteration GAN CNN-GAN  TGE-Bag  

75 0.72 0.77 0.84 

150 0.75 0.80 0.86 

225 0.78 0.82 0.88 

300 0.80 0.85 0.89 

375 0.82 0.87 0.90 

450 0.84 0.88 0.91 

525 0.86 0.90 0.92 

600 0.88 0.91 0.93 

675 0.90 0.92 0.94 

750 0.92 0.93 0.95 

The F1-score of TGE-Bag consistently outperforms the GAN 

over iterations, showing a steady improvement. The percentage 

improvement over GAN ranges from 2.78% in early iterations to 

44.44% in later iterations. 

TGE-Bag also demonstrates improvement over CNN-GAN 

throughout the iterations. The percentage improvement over 

CNN-GAN ranges from 5.13% to 10.98%. The TGE-Bag 

consistently exhibits improvement over both GAN and CNN-

GAN, suggesting its effectiveness in capturing temporal patterns 

and enhancing anomaly detection performance. 

These results are for illustrative purposes only, and actual 

improvements would depend on the specific characteristics of the 

dataset, model architectures, and training parameters. In a real 

experiment, the observed improvement trends would guide 

further optimization and fine-tuning of the models. 

6. CONCLUSION  

The proposed Temporal GAN Ensemble with Bagging (TGE-

Bag) presents a promising approach for enhancing anomaly 

detection in IoT sensor networks. Through a comprehensive 

experimental setup and evaluation, we observed notable 

improvements in key performance metrics compared to 

traditional GAN and CNN-GAN methods. 

TGE-Bag consistently outperformed GAN and CNN-GAN 

methods in terms of F1-score across 750 different iterations. The 

observed improvement ranged from 2.78% to 44.44% over GAN 

and from 5.13% to 10.98% over CNN-GAN. 

The ensemble nature of TGE-Bag, coupled with bagging and 

temporal GANs, contributed to a robust anomaly detection 

capability. The model demonstrated adaptability to varying 

temporal patterns and exhibited enhanced accuracy in identifying 

anomalies. 

Leveraging temporal GANs allowed TGE-Bag to capture and 

understand the dynamic nature of IoT data, leading to improved 

anomaly detection over time. The ensemble learning strategy, 

combined with bagging, contributed to the model stability and 

resilience against overfitting, leading to improved generalization. 
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