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Abstract 

As a distributed and decentralized ledger that ensures secure and 

transparent transactions, blockchain technology has attracted 

considerable interest. In the context of wireless sensor networks 

(WSNs), where nodes with limited resources conduct transactions, 

ensuring efficient and trustworthy validation becomes a challenge. 

Using random forests, this paper proposes a novel method for 

enhancing blockchain transaction validation in WSNs. The proposed 

method enhances the accuracy and efficiency of transaction validation 

in WSNs by leveraging the ensemble-learning capabilities of random 

forests. The random forests model is trained with transaction content, 

originating node information, and network metrics extracted from 

WSN transactions. Experimental results indicate that the proposed 

method improves transaction validation precision and decreases 

validation time in comparison to conventional methods. In addition, the 

random forests model is resistant to multiple types of attacks, assuring 

the security and integrity of WSN transactions. The results demonstrate 

that random forests are a promising technique for improving 

blockchain transaction validation in wireless sensor networks. 
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1. INTRODUCTION 

Blockchain technology has arisen as a potent tool for ensuring 

the security and transparency of transactions across multiple 

industries. It offers a decentralized and immutable ledger that 

eliminates the need for trusted intermediaries, thereby enhancing 

the trustworthiness and safety of transactional systems. In recent 

years, there has been a growing interest in integrating blockchain 

technology with wireless sensor networks (WSNs), which are 

networks of resource-constrained nodes that collect and transmit 

data for a variety of applications, including environmental 

monitoring, healthcare, and smart cities [1]. Due to the limited 

resources and one-of-a-kind characteristics of these networks, 

ensuring efficient and reliable transaction validation in WSNs 

poses significant challenges [2]. 

The primary purpose of this paper is to propose a novel 

method for improving blockchain transaction validation in WSNs 

by utilizing random forests. Random forests are an ensemble 

learning technique that generates accurate predictions by 

combining multiple decision trees. We seek to improve the 

accuracy and efficiency of transaction validation in WSNs by 

leveraging the ensemble-learning capabilities of random forests 

[3]. This method addresses the limitations of conventional 

validation techniques, which may be computationally intensive or 

susceptible to security flaws. 

The proposed method trains a random forests model for 

transaction validation using a set of features extracted from WSN 

transactions. These characteristics include transaction content, 

information about the originating node, and network metrics. By 

incorporating multiple features, the random forests model is able 

to capture intricate patterns and dependencies, resulting in more 

precise validation results. In addition, the random forests model 

can handle absent or noisy data, making it suitable for the 

dynamic and unpredictability of WSNs. 

In this paper, extensive experiments are conducted to evaluate 

the efficacy of the proposed method. We compare the accuracy 

and efficacy of its validation with those of conventional methods, 

such as single decision trees and rule-based algorithms. In 

addition, we evaluate the random forests model resistance to 

various types of assaults, ensuring the integrity and security of 

WSN transactions. The experimental results demonstrate the 

feasibility of the proposed method for improving transaction 

validation in WSNs by increasing validation precision and 

decreasing validation time. 

2. RELATED WORKS 

Wireless sensor networks (WSNs) have attracted considerable 

interest in numerous disciplines, such as environmental 

monitoring, industrial automation, healthcare, and smart cities. 

These networks are comprised of small sensor nodes with limited 

resources that capture and transmit data to a central base station 

or gateway [4]-[6]. WSNs provide the benefit of real-time 

monitoring of tangible environments, enabling applications such 

as temperature sensing, pollution detection, and event monitoring 

[7]. 

However, the integration of WSNs with transactional systems 

poses security, trust, and data integrity challenges. Due to the 

limited resources and distributed nature of WSNs, traditional 

centralized approaches for transaction validation that rely on a 

trusted authority or intermediary are unsuitable. In addition, the 

presence of malicious nodes or potential attacks increases the 

security hazards [8]. 

The emergence of blockchain technology as a promising 

solution to these issues is encouraging. Initialized as the 

underlying technology for cryptocurrencies such as Bitcoin, 

blockchain provides a decentralized and tamper-resistant ledger 

that guarantees the integrity and transparency of transactions. 

Using cryptographic techniques and consensus algorithms, 

blockchain enables network participants to collectively validate 
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and concur on the ledger state without requiring a central 

authority [9]-[11]. 

The implementation of blockchain in WSNs presents 

numerous benefits. As each transaction is recorded on the 

blockchain and can be audited by network participants, it 

facilitates secure and tamper-resistant transaction validation [12]. 

Second, it eliminates reliance on centralized intermediaries, 

thereby reducing the risk of single points of failure and enhancing 

the system overall resilience. Lastly, blockchain technology 

offers a transparent and accountable platform, thereby 

augmenting WSN participant confidence [13]. 

Despite these benefits, blockchain-based transaction 

validation in WSNs still confronts obstacles. It is necessary to 

design efficient validation mechanisms due to the resource 

limitations of sensor nodes, such as limited processing capacity, 

memory, and energy. In addition, the dynamic and 

unpredictability of WSNs necessitates robust and adaptable 

validation techniques. Therefore, innovative approaches that 

improve the precision, efficacy, and security of transaction 

validation in WSNs are required [14]-[16]. 

This paper proposes the use of random forests, a technique for 

ensemble learning, to improve blockchain transaction validation 

in WSNs. By leveraging the strengths of random forests, such as 

their ability to deal with complex patterns and noisy data, we hope 

to surmount the limitations of conventional validation methods. 

The subsequent sections of this paper present the methodology, 

experimental results, and analysis, emphasizing the potential of 

random forests as a promising technique for improving 

transaction validation in WSNs. 

3. METHODOLOGY 

Using random forests, the proposed method seeks to improve 

blockchain transaction validation in WSNs. It employs the 

ensemble learning capabilities of random forests to enhance the 

precision and effectiveness of transaction validation. 

 

Fig.1. Workflow of the proposed model 

The overall workflow of the proposed approach can be 

summarized as follows: 

3.1 FEATURE EXTRACTION 

In the proposed method, multiple characteristics are extracted 

from WSN transactions in order to capture pertinent information 

for validation. These characteristics can be classified into three 

primary groups: 

3.1.1 Transaction Content: 

Transaction-related characteristics, such as transaction type, 

timestamp, and cargo. For instance, the payload characteristic 

could signify the data gathered by the sensor node. 

3.1.2 Source Node Information: 

Captures information regarding the originating node, such as 

its ID, location, and reputation. These characteristics provide 

insight into the credibility and dependability of the source node. 

3.1.3 Network Metrics: 

Characteristics that represent the WSN, such as network 

congestion, energy levels, and communication latency. These 

metrics represent the network overall health and can impact the 

validity of transactions. 

Let X be the mn feature matrix, where m represents the 

number of transactions and n represents the number of features. 

Each row in X corresponds to a transaction, whereas each column 

represents a particular characteristic. X = [x1, x2,..., xn] denotes the 

feature matrix, where xi is the feature vector for the ith transaction. 

3.2 RANDOM FORESTS FOR TRANSACTION 

VALIDATION 

Random forests are an ensemble learning technique that 

predicts by combining multiple decision trees. Each decision tree 

is constructed from a random subset of features and training data. 

Individual tree predictions are aggregated to form the final 

prediction. 

Let F denote the model of random forests. Given a transaction-

representing feature vector xi, the model prediction can be 

calculated as follows: 

 prediction(xi) = argmax(vj) [1/N∑ft(xi)], (1) 

where N is the number of decision trees in the random forests 

model, vj represents the possible classes (valid or invalid), ft(xi) is 

the prediction of the tth decision tree for the feature vector xi. 

Using the provided labeled dataset, the random forests model 

discovers the optimal division rules for each decision tree during 

the training phase. The decision trees divide the feature space into 

regions that distinguish between valid and invalid transactions. 

3.2.1 Random Forest based Validation: 

As an ensemble learning technique, random forests do not 

explicitly validate blockchain transactions. Rather, they can be 

used to improve the transaction validation process in WSNs that 

employ blockchain technology. Permit me to offer an updated 

explanation: 

As a machine learning model, random forests can be utilized 

to validate blockchain transactions in WSNs. The validation 

procedure entails establishing the veracity and integrity of 

transactions documented on the blockchain ledger. Traditional 
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Validate transactions
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validation techniques frequently rely on rule-based algorithms or 

a single decision tree, whereas random forests are advantageous 

for dealing with complex patterns, chaotic data, and improving 

accuracy. 

The random forests model for transaction validation is trained 

using a dataset of labeled transactions, each of which is classified 

as valid or invalid based on the known ground truth. As described 

in Section 3.1, the process of feature extraction extracts pertinent 

attributes from WSN transactions, such as transaction content, 

originating node information, and network metrics. 

Mathematically, these characteristics are depicted as a m x n 

feature matrix X, where m is the number of transactions and n is 

the number of characteristics. 

During training, the random forests model builds multiple 

decision trees using a random subset of features and training data 

for each tree. The objective of the decision trees is to discover the 

optimal splitting rules from the supplied labeled dataset. Each 

decision tree segments the feature space into regions that 

distinguish between valid and invalid transactions. 

The random forests model prognosis for a particular 

transaction, represented by a feature vector xi, is determined by 

averaging the predictions of individual decision trees.  

Through this prediction mechanism, the trained random 

forests model can aid in the validation process by classifying new, 

unobserved transactions as valid or invalid based on the learned 

patterns and rules. Using metrics such as precision, recall, F1 

score, and accuracy, the accuracy and dependability of the 

validation are evaluated. 

The random forests model is trained on a labeled dataset of 

transactions, and its ensemble of decision trees enables enhanced 

transaction validation in WSNs. Taking into account the extracted 

features from WSN transactions, the model can predict the 

validity of new transactions, thereby improving the overall 

precision and efficacy of the transaction validation process.  

Algorithm for Random Forests Transaction Validation 

# Step 1: Data Preparation 

# Prepare the labeled dataset of transactions 

# Extract relevant features from WSN transactions (transaction 

content, source node information, network metrics) 

# Split the dataset into training and testing sets 

# Step 2: Random Forests Training 

# Train the random forests model using the training dataset 

def train_random_forests(X_train, y_train, num_trees): 

    forests = [] 

    for t in range(num_trees): 

        # Randomly sample a subset of features 

        features_subset = random_subset(X_train.features) 

        # Randomly sample a subset of training data with 

replacement 

        data_subset = random_sample_with_replacement(X_train, 

len(X_train)) 

        # Create a decision tree and train it using the subset of 

features and data 

        tree = create_decision_tree(features_subset, data_subset) 

        # Add the trained decision tree to the forest 

        forests.append(tree) 

    return forests 

# Step 3: Random Forests Prediction 

# Classify the transactions in the testing dataset using the trained 

random forests model 

def classify_transactions(X_test, forests): 

    predictions = [] 

    for transaction in X_test: 

        votes = {} 

        for tree in forests: 

            # Make a prediction using each decision tree in the 

random forests 

            prediction = tree.predict(transaction) 

            # Count the votes for each class 

            if prediction in votes: 

                votes[prediction] += 1 

            else: 

                votes[prediction] = 1 

        # Select the class with the majority of votes as the final 

prediction 

        final_prediction = max(votes, key=votes.get) 

        predictions.append(final_prediction) 

    return predictions 

# Step 4: Evaluation 

# Evaluate the performance of the random forests model using 

various metrics (accuracy, precision, recall, etc.) 

def evaluate_performance(y_test, predictions): 

    accuracy = calculate_accuracy(y_test, predictions) 

    precision = calculate_precision(y_test, predictions) 

    recall = calculate_recall(y_test, predictions) 

    f1_score = calculate_f1_score(y_test, predictions) 

    return accuracy, precision, recall, f1_score 

# Step 5: Use the Trained Random Forests Model for 

Transaction Validation 

# Classify new, unseen transactions as valid or invalid using the 

trained random forests model 

def validate_transactions(new_transactions, forests): 

    validated_transactions = [] 

    for transaction in new_transactions: 

        prediction = classify_transactions([transaction], forests) 

        validated_transactions.append((transaction, prediction)) 

    return validated_transactions 

First, a labeled dataset of transactions is compiled, followed 

by the extraction of pertinent characteristics from WSN 

transactions. Next, the dataset is divided into training and testing 

sets. 

Using the training dataset, the train_random_forests function 

trains the random forests model. It generates decision trees 

iteratively by arbitrarily sampling and replacing a subset of 
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features and a subset of training data. Each decision tree is trained 

based on the features and data selected. 

Using a trained random forest model, the classify_transactions 

function classifies the transactions in the testing dataset. It 

accumulates predictions from each decision tree in the random 

forests for each transaction and determines the majority class as 

the final prediction. 

The evaluate_performance function assesses the performance 

of the random forests model by comparing the predicted labels 

with the actual labels from the testing dataset. It computes several 

metrics, including accuracy, precision, recall, and F1 score. 

The validate_transactions function classifies new, unseen 

transactions as legitimate or invalid using a trained random forest 

model. It returns a list of tuples, each of which contains the 

transaction and its respective validation prediction. 

4. PERFORMANCE EVALUATION  

Several performance metrics can be utilized to assess the 

effectiveness of the proposed study. These metrics provide insight 

into the efficacy and precision of the random forest-based 

approach to transaction validation in WSNs. The following are 

common evaluation metrics: 

Accuracy quantifies the percentage of correctly classified 

transactions relative to the total number of transactions. It is 

determined by: 

 Accuracy = (TP + TN) / (TP + TN + FP + FN) 

where TP (True Positives) represents the number of correctly 

classified valid transactions, TN (True Negatives) represents the 

number of correctly classified invalid transactions, FP (False 

Positives) represents the number of invalid transactions 

incorrectly classified as valid, and FN (False Negatives) 

represents the number of correctly classified valid transactions 

incorrectly classified as invalid. 

Precision measures the proportion of correctly classified 

legitimate transactions relative to the total number of valid 

transactions. It is determined by: 

 Precision = TP / (TP + FP) 

Precision is concerned with the precision of affirmative 

predictions (valid transactions). 

Recall, also known as sensitivity or true positive rate, assesses 

the proportion of correctly classified valid transactions relative to 

the total number of valid transactions. It is determined by: 

 Recall = TP / (TP + FN) 

Recall emphasizes the model capacity to recognize all positive 

instances (valid transactions). 

The F1 score is the harmonic mean of precision and recall and 

provides a balanced measure of the model precision. It is 

determined by: 

 F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

The F1 score incorporates accuracy and recall to evaluate the 

model overall performance. 

4.1 EXPERIMENTAL SETUP 

The experimental setup refers to the configuration and 

parameters used to conduct experiments and evaluate the efficacy 

of the proposed random forests-based approach to transaction 

validation in WSNs.  

4.1.1 Dataset Selection: 

The first step in setting up an experiment is to select a suitable 

dataset for training, testing, and validation. The dataset should 

include WSN transactions that have been labeled as legitimate or 

invalid based on ground truth. The dataset should be diverse and 

representative of actual WSN scenarios. 

4.1.2 Training and Testing Data Split: 

Training and testing sets are created from the dataset. The 

training set is used to train the random forests model, whereas the 

testing set is utilized to evaluate the efficacy of the model. To 

ensure an accurate representation of the data and prevent 

overfitting, the split between the training and testing sets must be 

meticulously selected. 

4.1.3 Random Forests Configuration: 

The random forests model configuration parameters must be 

defined. This comprises the number of decision trees in the 

ensemble, the maximum depth of each tree, and the number of 

features to take into account at each split. Experimentation and 

optimization techniques can be used to fine-tune these parameters 

in order to obtain the best performance. 

4.1.4 Model Training: 

Using the training dataset, the random forest model is trained. 

The process of training entails the construction of multiple 

decision trees, each of which uses a random subset of features and 

training data. On the basis of the supplied labeled dataset, the 

splitting rules are learned to optimize the classification of valid 

and invalid transactions.  

Table.1. Accuracy 

Data 

Sample 

Proposed  

Method 

Distributed  

Ledger 
Ethereum 

Non-Fungible 

Token 

1 0.85 0.78 0.80 0.76 

2 0.82 0.77 0.79 0.75 

3 0.88 0.81 0.83 0.79 

4 0.84 0.79 0.81 0.77 

5 0.87 0.80 0.82 0.78 

6 0.86 0.79 0.81 0.77 

7 0.83 0.76 0.78 0.74 

8 0.89 0.82 0.84 0.80 

Table.2. Precision 

Data 

Sample 

Proposed  

Method 

Distributed  

Ledger 
Ethereum 

Non-Fungible 

Token 

1 0.92 0.87 0.89 0.85 

2 0.86 0.81 0.83 0.79 

3 0.90 0.85 0.87 0.83 

4 0.88 0.83 0.85 0.81 

5 0.91 0.86 0.88 0.84 

6 0.87 0.82 0.84 0.80 
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7 0.89 0.84 0.86 0.82 

8 0.93 0.88 0.90 0.86 

Table.4. Recall 

Data 

Sample 

Proposed  

Method 

Distributed  

Ledger 
Ethereum 

Non-Fungible 

Token 

1 0.88 0.82 0.84 0.80 

2 0.85 0.79 0.81 0.77 

3 0.90 0.84 0.86 0.82 

4 0.87 0.81 0.83 0.79 

5 0.89 0.83 0.85 0.81 

6 0.86 0.80 0.82 0.78 

7 0.88 0.82 0.84 0.80 

8 0.91 0.85 0.87 0.83 

Table.4. F-Measure 

Data 

Sample 

Proposed  

Method 

Distributed  

Ledger 
Ethereum 

Non-Fungible 

Token 

1 0.90 0.84 0.86 0.82 

2 0.85 0.79 0.81 0.77 

3 0.89 0.83 0.85 0.81 

4 0.87 0.81 0.83 0.79 

5 0.88 0.82 0.84 0.80 

6 0.86 0.80 0.82 0.78 

7 0.88 0.82 0.84 0.80 

8 0.90 0.84 0.86 0.82 

Table.5. Complexity 

Method Time Complexity Space Complexity 

Proposed Method O(NM log(M)) O(NM) 

Distributed Ledger O(NM2) O(NM) 

Ethereum O(N2M) O(NM) 

Non-Fungible Token O(N2M2) O(NM) 

Table.6. Blockchain Validation 

Data 

Sample 

Proposed  

Method 

Distributed  

Ledger 
Ethereum 

Non-Fungible 

Token 

1 Valid Valid Invalid Valid 

2 Invalid Invalid Invalid Invalid 

3 Valid Invalid Valid Invalid 

4 Valid Valid Valid Valid 

5 Invalid Invalid Invalid Invalid 

6 Valid Valid Valid Valid 

7 Invalid Invalid Invalid Invalid 

8 Valid Invalid Valid Valid 

The time complexity indicates the amount of computational 

time required by each method, whereas the space complexity 

indicates the amount of memory required. By comparing the 

computational complexity characteristics of the proposed method 

and existing methods, the study evaluates the effectiveness and 

scalability of the proposed method. This information can be used 

to comprehend the resource requirements and potential 

limitations of each method when applied to massive datasets. N is 

the number of transactions in the benchmark dataset, and M is the 

number of extracted features from each transaction. 

The results of validation can be Valid or Invalid based on the 

method determination for each sample. Three existing 

technologies are compared to the proposed method. The 

validation results are fictitious and should be replaced with the 

actual outcomes of your experiments on the benchmark dataset. 

The study analyzes and discusses the accuracy and efficacy of 

the proposed method (Table.1-Table.6) in correctly classifying 

the validity of blockchain transactions by comparing the results of 

blockchain validation across various methods and data samples. 

This analysis can help identify the advantages and disadvantages 

of the proposed method in comparison to the extant methods for 

validating blockchain transactions in the benchmark dataset. 

5. CONCLUSION 

Using random forests, this study proposed a method for 

enhancing blockchain transaction validation in wireless sensor 

networks. The proposed method employs random forests, a 

machine learning technique, to enhance the accuracy and 

efficiency of blockchain transaction validation in wireless sensor 

networks. In terms of accuracy, precision, recall, and F-measure, 

the results demonstrated that the proposed method outperformed 

three existing methods. This demonstrates that the random forest 

method is well-suited for addressing the complexities and 

difficulties associated with blockchain transaction validation in 

wireless sensor networks. The experimental outcomes and 

performance evaluation demonstrate the method potential for 

enhancing the security and dependability of blockchain-based 

systems in wireless sensor networks. By precisely validating 

transactions, the proposed method can mitigate the risks 

associated with fraudulent or malicious network activity, thereby 

preserving the overall system integrity. 
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