
R THAMARAI SELVI et al.: AN ENSEMBLE NEURAL NETWORK TECHNIQUE FOR IMPROVING SECURITY AMONG VARIOUS DOMAINS OF INFORMATION TECHNOLOGY
DOI: 10.21917/ijct.2023.0428

2882

AN ENSEMBLE NEURAL NETWORK TECHNIQUE FOR IMPROVING SECURITY

AMONG VARIOUS DOMAINS OF INFORMATION TECHNOLOGY

R. Thamarai Selvi
PG Department of Computer Applications, Bishop Heber College, Affiliated to Bharathidasan University, India

Abstract

In the era of Internet of Things (IoT), enterprise information Systems

(IISs) are becoming increasingly valuable in a range of industries due

to the fact that they constitute a network in which connected devices

exchange data in an environment that is quite close to real time. In this

context, enterprises are provided with the opportunity to make use of

virus detection solutions that are either static, dynamic, or hybrid. The

research uses ensemble machine learning approaches that have been

implemented and are analyzed, and comparisons are drawn between

them. The findings of this research have been effective in the

identification of malwares in IIS.

Keywords:

Ensemble Neural Network, Security, Malware, Information

Technology

1. INTRODUCTION

Internet of Things based enterprise information systems (IoT-

EIS) are becoming increasingly valuable in a range of industries

due to the fact that they constitute a network in which connected

devices exchange data in a manner that is quite close to real time.

It is estimated that sales revenues from IoT devices would have

topped $14.4 trillion by the year 2022, and it is anticipated that

there will be approximately 22 billion IoT devices by the year

2025 [1].

The limited power sources and computational capabilities, IoT

devices are vulnerable to a wide variety of different types of

attacks. Malware that is put on IoT devices leaves those devices

vulnerable to attack. After then, the malware is utilized to access

APIs on the business side and steal confidential data. Recent

malware attacks on the IoT include one known as Maria, which

took place in 2017 and inflicted damage at the rate of

approximately $4207.03 per hour [2]. Malware that is put on edge

devices has the potential to allow such devices to broadcast

skewed or false data regarding the IT infrastructure of an

enterprise to a cloud server that is located off-site. Attacks using

malware such as this one are common in IIoT networks, and they

can cause irreversible harm to the financial position as well as the

reputations of those networks [3].

Researchers devote a large amount of their time and attention

to improving the security architecture of enterprise information

systems that are based on the IoT as a direct consequence of this

issue [4]. In the past, the bulk of commercial information

technology systems have relied on feature extraction

methodologies in order to identify malicious software. This was

done in order to protect against computer viruses. Before doing

an analysis on the relevant parts of the code, these methodologies

require first separating those parts of the code that are of interest

[5]. These methods of feature detection, however, do not scale

very well in enterprise information systems because of the

restricted power and processing capabilities of IoT devices. This

is due to the constraints imposed by the gadgets that make up the

IoT [6]. Normal methods of malware detection become useless

and cannot be employed when adversarial attacks occur, in which

the attacker alters the training samples [7].

Within the context of the IoT, enterprise information systems

are provided with the opportunity to make use of virus detection

solutions that are either static, dynamic, or hybrid. Static analyses

include things like signature analysis, n-gram identification, and

OpCode analysis, whereas dynamic studies involve actually

running the application in a virtual environment [8]. Examples of

static analyses include signature analysis, n-gram identification,

and OpCode analysis.

2. LITERATURE SURVEY

The research in [9] a variety of methods for the identification

of intrusions in an IoT setting. The author focuses the majority of

his attention on machine learning algorithms, but he also

addresses concerns regarding the security of IoT devices and

provides information about datasets that are available to the

public. On the other hand, for the purposes of this review study,

our primary attention is placed on intrusion detection systems that

are capable of recognizing distributed denial of service attacks.

Malicious Android applications [10] are used to break into the

security of IoT devices, allowing hackers to steal sensitive

information. The author provides a comprehensive look at the

many different methods of analysis that were done in order to

discover the malicious Android application. In spite of this, the

approaches that are utilized to discover malware in Android

applications are not the primary focus of the survey articles. The

survey papers, on the other hand, offer further information

regarding Android applications that can run on IoT devices.

Certain broad information regarding protection measures for

IoT devices that make use of machine learning. The author [11]

provide any context for the many forms of malware that can be

found in a scenario involving the IoT. In their research paper titled

Malware Detection in the IoT, which was released researched the

many machine learning algorithms that are currently being used

for this specific purpose. They found that there are a large number

of machine learning algorithms that can be utilized for this

particular purpose. The various machine learning approaches for

identifying malware in an IoT setting are analyzed, and

comparisons and contrasts are drawn between them.

The authors [12] conducted research on several different

machine learning algorithms with the intention of identifying

malicious software in an IoT setting. The author focuses almost

all of their emphasis on machine learning techniques that are

derived from OpCode.

The authors in [12] carried up a survey to explore the many

different methods that are now available for locating static

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2023, VOLUME: 14, ISSUE: 01

2883

malware in an IoT setting. The authors conducted research on a

variety of methods that are already in use to recognize static

malware. These methods include machine learning, fuzzing, and

clustering. Nevertheless, the author does not supply any further

information on how to recognize dynamic and hybrid kinds of

harmful software.

On the subject of employing machine learning for the

detection of malicious software, a significant amount of research

has been carried out. Malware detection in the context of the IoT

still suffers from inadequate research. IoT refers to the network of

interconnected electronic devices [13].

3. PROPOSED MALWARE DETECTION

In this research, we will examine the characteristics of user

nodes in the malware propagation network from two distinct

vantage points: the structure of the network, and the activity of

user nodes in the past. In addition to this, we provide a complete

representation method for the feature space related with the spread

of malware. We apply the Doc2vec technique to the user node

content structure in order to establish the feature vector that is

reflective of the user node one-of-a-kind content preferences. In

other words, we want to figure out what those preferences are. In

order to ascertain the feature vector of the network, the

Tensor2vec methodology is put to use once more for the purpose

of this particular scenario.

3.1 CHARACTERISTICS OF USER NODES

An examination of the past actions of the nodes that comprise

a network for the transmission of a virus enables one to gain

insight into the preferences and routines of users of the network.

Doc2vec is an unsupervised approach that can learn fixed-length

feature representations from texts of varying lengths. It was

developed by the Stanford Natural Language Processing Group.

It is put to use in the process of constructing vector representations

of phrases, paragraphs, and entire documents. Paragraphs are

created from the information that a user node persistently relays

and actively transmits over the course of a predetermined amount

of time. The Doc2vec technique is able to express the user social

behavior as a vector that communicates the user node habits and

preferences because it makes use of the multiple characteristics

that are offered by paragraph feature vectors. This is made

possible by the method ability to take advantage of these

numerous features. The step in the text classification process that

is referred to as preprocessing is an essential part of the overall

method.

The effectiveness of feature extraction as well as text

classification is directly influenced by the outcomes of Chinese

word segmentation and stop words. Both of these processes are

influenced in a direct manner. A technique known as Jieba

Chinese word segmentation is used to break up the original corpus

into its component parts. This approach takes into account the

peculiarities that are inherent to Chinese grammatical

conventions. Following the segmentation of the data, it is

important to apply judgment with reference to the various portions

of speech. Additionally, stop words are added to the results of the

segmentation in order to filter out unnecessary keywords that may

otherwise compromise the accuracy of the classification. This is

done in order to identify the nouns and verbs in the sentence.

Additionally, stop words are added in order to identify the nouns

and verbs in the phrase.

We are now in possession of the candidate keywords that have

been derived from the history actions of the user node as a direct

consequence of this. The TF-IDF calculation algorithm has been

improved so that it more precisely reflects the current state of the

network. This improvement was made in order to facilitate the

calculation of word frequency. This was made possible by the

incorporation of the variable that distinguishes an active user from

an ordinary user. This is because active user nodes have a greater

impact on the overall rate at which information is disseminated

throughout the network.

The candidate words are mined for the user historical behavior

data, which is then used to retrieve relevant keywords. This is

done in order to ensure the integrity of the core user node data

while at the same time filtering out any unnecessary information

that may be present in the propagation network. After that, the

Doc2vec technique is put to work in order to construct a feature

vector that is reflective of the user node prior actions and is

constructed on the basis of the keyword sequence that most

effectively reflects that behavior. The user receives this feature

vector once it has been processed.

 T = N × Fu (1)

where

N - total users

Fu - representation vector.

Algorithm: Shap value to probability value

3.2 BASE CLASSIFIERS OF ENSEMBLE

The goal of this benchmark is to determine how well deep

learning and shallow learning perform on the challenge that is

now being faced using the two datasets that we have just finished

discussing.

3.2.1 Random Forest:

A random forest is a specific kind of classifier that is produced

by bagging together a number of decision trees. This process is

described as bagging. A decision tree is a form of graph that

represents numerous possibilities and the different effects that

could arise from each selection. One way to think about a action

plan is as a decision tree, which is one way to think about a action

plan. One of the things that differentiates this model from others

is the fact that the information is depicted in the form of a tree,

which is very straightforward and straightforwardly presented.

Each of the internal nodes in the decision tree serves as a

substitute for a different variable. The variable was subjected to

either an equality, majority, or minority condition in order to

determine where the split should occur, and each fork in the graph

depicts the resulting split. As a result of this, each fork is also a

representation of the arcs that link a parent node to its progeny.

Instead, the leaf nodes in the tree are what indicate the predicted

class in the structure.

Consequently, what comprises a decision tree is a set of rules

for making decisions that change depending on the values of the

variables. Using the information included in the dataset, a

decision tree is constructed. During the training phase, the

stopping criteria, which are also known as halting, need to be set

R THAMARAI SELVI et al.: AN ENSEMBLE NEURAL NETWORK TECHNIQUE FOR IMPROVING SECURITY AMONG VARIOUS DOMAINS OF INFORMATION TECHNOLOGY

2884

since a tree that is extremely complex and has numerous branches

contributes very little to the accuracy of the classification.

The method known as bagging entails selecting a number of

models from the same dataset that are comparable to one another

and then sampling from those models without making any

replacements. During the training process for the individual

decision trees that go into the construction of a random forest,

only a subset of the total number of variables that are contained

within the dataset are used. When doing a task that involves

classification, the end classification is established by taking the

median of the individual decision tree classifiers. When

performing a job that involves regression, on the other hand, the

final classification is determined by taking the mean of the

findings.

3.2.2 XGBoost:

The problem-solving community that works on machine

learning developed a technique called gradient boosting to

address issues with classification and regression. One way to

construct models that can be used for making predictions is by

combining a number of more fundamental forecasting tools, such

as decision trees. This is only one of many possible approaches.

This method is useful because of its generalizability, which makes

it possible to optimize any arbitrary differentiable loss function

while the model is still being generated. This is a benefit to the

method. One of the many reasons why this strategy is so helpful

is because of something like this. This method, in contrast to

others, offers remarkable portability as a result of its support for a

cross-platform between a number of programming languages and

operating systems. Specifically, this portability is made possible

by the fact that the method can translate between Windows and

Linux. Because of its support, the approach can be implemented

on a number of different systems.

Because it incorporates both structural and algorithmic

enhancements, XGBoost is able to make the Gradient Boosting

Machines (GBM) architecture, which is the underlying algorithm,

more effective. Because it allots internal buffers to each thread in

order to keep computed statistics, XGBoost is in a position to

make use of algorithms that are aware of the cache. This is how it

manages to achieve its goals. The software makes use of

parallelization since the process of creating trees using XGBoost

is completed in parallel by exchanging nested loops with one

another. This switching of loops is the key to parallelization.

Rather than relying on the standard stop criterion, you can make

adjustments to the depth at which each tree is separated by making

use of the max_depth option. This is done instead of the default

stop criterion that would normally be used. The ability to design

more complex algorithms is made feasible by the following

characteristics:

When compared to other algorithms, XGBoost models

perform exceptionally well in classification and regression tasks.

This is true in terms of the precision of their forecasts as well as

the speed with which they are computed. This is the case with

regard to both the precision of their forecasts and the efficacy with

which they are computed.

3.2.3 CatBoost:

When it comes to utilizing the gradient boosting process with

decision trees, the open-source software package known as

CatBoost claims that it is superior to any other choice that is

currently available. During training, a series of trees are

constructed one after the other in sequential order, with the

amount of loss used to construct each tree becoming increasingly

smaller than what was used to construct the previous tree in the

sequence as the training progresses.

For the underlying tree structure is one that is analogous to

that of greed. Importantly, it is also able to automatically do

quantization on feature values, which means that it is able to find

the thresholds to employ in order to break feature values and

labels into discrete ranges. This is an extremely useful capability.

This is a capability that is of tremendous value. (bins). It is easy

to use, accurate, dependable, versatile, and extendable, and there

is even a version of it that can be computed by a GPU and provides

support for categorical data formats.

CatBoost is easily compatible with well-known deep learning

libraries such as Apple Core ML and Google TensorFlow, the

latter of which was developed by Apple, and the former was built

by Google. It is compatible with a large number of data formats

and provides explainable artificial intelligence by making use of

ranking features to decide the order in which data is retrieved. In

addition, it is compatible with a wide variety of data formats. In

this scenario, the model for basic supervised classification, which

consists of a predetermined feature set, is put to use.

3.2.4 Extra Trees:

The output of the prediction is created by making use of a

forest of trees, each of which is reliant on the results of the several

base models that were employed in the calculation. The Extra

Trees method generates a significant number of decision trees

without carrying out any type of pruning on them and by

automatically producing them from the supplied data. for making

predictions for classification, a majority vote is used, but the

outcomes of each individual tree are averaged for making

predictions for regression. It is based on the idea that overfitting

may be avoided when trees are built by randomly selecting the

feature to divide at each level for each tree. This is the foundation

of the argument.

The degree to which the trees in the ensemble are similar to

one another is reduced, while the variability of those trees is

increased. One method that can be used to deal with the greater

variability is to increase the number of trees that are present in the

forest.

The fundamental difference between ExtraTrees and Random

Forest is in the way in which the decision trees that are included

within the forest are generated. ExtraTrees uses a top-down

approach, whereas Random Forest uses a bottom-up approach.

ExtraTrees selects a branching point for each feature in a fully

arbitrary manner as opposed to Random Forest, which strives to

achieve a flawless split in the process of selecting a point at which

to split the data.

3.2.5 TabNet:

The goal of the TabNet project is to create a neural network

that will be able to deal with tabular data in an effective manner.

This is the project primary objective. It has been established that

the application of deep learning strategies, as opposed to machine

learning methods, can significantly improve performance as the

dataset continues to develop. This has been noticed in a variety of

application areas, including the field of photography. It was

created to train models that are analogous to decision trees, and it

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2023, VOLUME: 14, ISSUE: 01

2885

shares the benefits of decision trees, such as being interpretable

and including selection, just like those models. It accomplishes

this goal by employing the strategy of multi-headed attention in a

sequential manner to choose which features to utilize at each stage

of the decision-making process. Every single input asks for its

own unique set of features, which are selected on a case-by-case

basis depending on the specifics of the scenario.

3.2.6 Neural Oblivious Decision Ensemble (NODE):

The model is constructed in stages, with input examples being

passed from one stage to the next; it is made up of a transformer

with numerous multi-headed attentions acting in parallel to

produce a sparse feature selection matrix. Input examples are

transmitted from stage to stage as the model is constructed.

During the process of the model construction, the input instances

are passed along from one stage to the next. Because the weights

of the attributes, which are often referred to as their importance,

are retrieved on a per-instance basis, the interpretability of the

data has significantly improved.

The dataset is initially handled in its original, unprocessed

condition before any feature engineering work is carried out on it.

After being subjected to batch normalization, examples are then

sent to the feature transformer, where they are processed by

numerous layers of fully connected neurons that are activated by

a variety of gated linear units. This occurs after the instances have

been subjected to batch normalization. Feature transformer

(GLUs).

This procedure is carried out as many times as necessary until

the appropriate degree of precision is reached. It is essential to

keep in mind that normalization with 0.5 makes learning more

consistent by reducing the frequency of sudden shifts in network

variance. This is something that needs to be borne in mind at all

times. In reference to this specific subject, we make use of an

automatic version of the classification model feature engineering

and feature selection processes. The requirement of an extremely

large amount of information in order to learn is one of the most

significant problems of the multi-headed attention model. This is

also one of the fundamental limitations of this strategy.

An architecture for deep learning known as the NODE

algorithm was designed specifically for use with tabular data. This

design is constructed from the oblivious decision tree, which has

the peculiar characteristic of requiring the same feature for the

split and the same split threshold for all nodes of the same depth.

This is an unusual requirement for any design. The network is

trained using backpropagation from the very beginning to the very

end.

In the deep form, in which numerous NODE layers are stacked

atop one another, the residual connection from the ResNet work

is used to connect the many NODE layers. The outputs from each

layer are mixed with the features of the previous layer to produce

the input for the next NODE layer. When it comes down to it, just

like with Extra Trees, we take the results of all of the layers and

average them, and when it comes to categorization, we use

majority vote rather than majority vote. The deep version of the

model is utilized by NODE when it comes to the classification

process.

3.3 ENSEMBLE NEURAL NETWORK

For the purpose of developing a model for churn prediction,

artificial neural networks, one of the most powerful and well-

known methods for machine learning, were applied. The strategy

that has been developed combines the most useful aspects of two

neural networks in order to generate very accurate forecasts

regarding the number of customers who will leave an

organization. Because of this, at this point in time, two multilayer

feed-forward neural networks were built. One of these networks

used a solution obtained from the alpha wolf, and the other

network used a solution developed by the beta wolf. In the end,

the final response of the prediction model was derived using,

which is a weighted average, and the dataset was taught to the

neural networks utilizing the newly acquired features from the

feature selection stage.

 Output = 0.5 × net1 + 0.5 × net2. (2)

where,

net1 and net2 - neural networks outputs.

The ultimate solution of the neural network is the combined

solution of two neural networks that have the same weighted

average. This ultimate solution is also represented by the output

of the neural network.

4. EVALUATION

This research was validated by testing it on a dataset of

malware that is freely available to the public and was collected

from the VirusHare database. In the year 2020, a total of 2,000

examples of malicious software, originating from a wide variety

of families, were gathered and put into the virus database. The

1744 secure programs were selected from a large number of

different software packages. (games, browsers, word processors,

business, etc.). Following the completion of the collection,

VirusTotal was used to do a scan of the clean files using thirty

distinct anti-malware engines.

In addition, the effectiveness of ENN was determined by

testing it with 8,750 examples of malware hailing from 25 distinct

families contained inside the MaleVis dataset and 9339 Malimg

malware images serving as a benchmark.

The experiment was carried out inside a Google Collaboratory

with a graphics processing unit (GPU), random access memory

(RAM), and a hard drive provided by the business.

4.1 EVALUATION

The evaluation criteria that were applied in order to evaluate

the efficacy of ENN. Accuracy, precision, recall, and F1-score

were some of the measures that were used. The ENN was tested

to determine whether or not it could differentiate between

malicious and benign labels using only a small amount of training

data. During the course of the experiment, a total of 2,000

examples of malicious software and 1,744 examples of benign

software were tested. The outcomes of an experiment are

summarized in Table.1, which shows how ENN performed in

comparison to other classifiers.

R THAMARAI SELVI et al.: AN ENSEMBLE NEURAL NETWORK TECHNIQUE FOR IMPROVING SECURITY AMONG VARIOUS DOMAINS OF INFORMATION TECHNOLOGY

2886

The findings indicate that the recommended technique

resulted in improvements in terms of accuracy, precision, and

recall. The proposed ENN method was successful in attaining a

higher accuracy (96.5%) as compared to the other machine

learning approaches shown in Figure 8, which also includes a bar

chart displaying the outcomes of the binary classification. The

ensemble classifiers Gradient Boosting and Extra Tree Classifier

came in second and third place, respectively, with an accuracy of

95.6% and 95.3%.

4.1.1 Mallmg Dataset:

Only 10 of 25 families of malicious software were selected to

be used in the training of the ENN on Mallmg dataset. According

to Table.2, the accuracy of detection achieved by ENN was

99.8%, which was significantly higher than that of competing

technologies.

4.1.2 MaleVis Dataset:

Using the MaleVis dataset, which contained 25 families with

comparable sample sizes, the same process was carried out.

According to Table 3, ENN has a success percentage of 97%,

whereas NODE has a success rate of 92%, SVM has a success rate

of 88%, KNN has a success rate of 78%, and Bagging has a

success rate of 93%.

Table.1. Training Performance

Models Class Accuracy Precision Recall F1-score

ENN
Benign

0.9960
0.9366 0.9463 0.9366

Malware 0.9463 0.9366 0.9463

Resnet50
Benign

0.9640
0.9366 0.8780 0.9073

Malware 0.8976 0.9366 0.9171

Extra Trees Classifier
Benign

0.9836
0.9073 0.9366 0.9171

Malware 0.9366 0.9073 0.8293

Gradient Boosting Classifier
Benign

0.9867
0.9073 0.9366 0.9171

Malware 0.9366 0.9073 0.9268

Bagging
Benign

0.9671
0.8585 0.9561 0.9073

Malware 0.9561 0.8683 0.9073

SVM
Benign

0.9753
0.9171 0.9171 0.9171

Malware 0.9268 0.9171 0.9171

KNN
Benign

0.8886
0.9463 0.7122 0.8098

Malware 0.7805 0.9561 0.8585

Naïve Bayes
Benign

0.9557
0.9073 0.8585 0.8878

Malware 0.8780 0.9171 0.8976

Random Forest
Benign

0.9712
0.8683 0.9659 0.9171

Malware 0.9659 0.8683 0.9171

Decision Tree Classifier
Benign

0.9310
0.8780 0.8585 0.8683

Malware 0.8780 0.8878 0.8780

Table.2. Accuracy comparison on Mallmg Dataset

Malware

Family

Proposed NODE SVM KNN Bagging

A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Adialer.C

0.997

0.975 0.975 0.975

0.998

0.975 0.975 0.975

0.995

0.975 0.975 0.975

0.954

0.643 0.975 0.770

0.988

0.975 0.975 0.975

Agent.FYI 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974

Alueron.gen!J 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.875 0.972 0.923 0.972 0.972 0.972

Lolyda.AA1 0.969 0.969 0.969 0.950 0.969 0.959 0.950 0.969 0.959 0.940 0.862 0.901 0.950 0.969 0.969

Lolyda.AA2 0.972 0.972 0.972 0.952 0.952 0.952 0.972 0.952 0.962 0.952 0.952 0.962 0.972 0.972 0.972

Malex.gen!J 0.937 0.966 0.957 0.966 0.937 0.957 0.966 0.947 0.957 0.966 0.947 0.957 0.928 0.947 0.937

Obfuscator.AD 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971

Rbot!gen 0.970 0.970 0.970 0.941 0.941 0.941 0.951 0.970 0.960 0.931 0.970 0.951 0.951 0.931 0.941

Swizzor.gen!I 0.969 0.969 0.969 0.940 0.969 0.959 0.969 0.969 0.969 0.940 0.911 0.921 0.940 0.940 0.940

VB.AT 0.968 0.958 0.968 0.968 0.958 0.968 0.968 0.968 0.968 0.968 0.813 0.881 0.958 0.949 0.949

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2023, VOLUME: 14, ISSUE: 01

2887

Table.3. Accuracy comparison on MaleVis Dataset

Malware

Family

Proposed NODE SVM KNN Bagging

A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Adposhel

0.997

0.955 0.975 0.965

0.925

0.975 0.975 0.975

0.898

0.955 0.975 0.965

0.789

0.897 0.965 0.926

0.925

0.945 0.975 0.955

Agent 0.954 0.828 0.857 0.701 0.886 0.857 0.682 0.857 0.759 0.662 0.613 0.633 0.915 0.828 0.867

Allaple 0.884 0.904 0.894 0.884 0.904 0.894 0.855 0.777 0.816 0.943 0.641 0.758 0.962 0.865 0.904

Amonetize 0.940 0.950 0.940 0.882 0.940 0.911 0.882 0.959 0.921 0.921 0.911 0.911 0.969 0.911 0.940

Androm 0.758 0.797 0.787 0.777 0.671 0.719 0.671 0.690 0.680 0.496 0.709 0.583 0.787 0.836 0.807

Autorun 0.860 0.860 0.860 0.744 0.802 0.773 0.792 0.734 0.763 0.783 0.580 0.667 0.841 0.676 0.754

BrowseFox 0.951 0.951 0.951 0.942 0.913 0.922 0.883 0.932 0.913 0.816 0.883 0.845 0.913 0.951 0.932

Dinwod 0.951 0.951 0.951 0.960 0.960 0.960 0.970 0.912 0.941 0.689 0.854 0.766 0.970 0.960 0.960

Elex 0.950 0.901 0.921 0.940 0.950 0.951 0.901 0.969 0.930 0.921 0.940 0.930 0.921 0.862 0.891

Expiro 0.949 0.900 0.920 0.687 0.774 0.726 0.591 0.726 0.649 0.174 0.048 0.077 0.571 0.862 0.687

Fasong 0.965 0.975 0.965 0.975 0.975 0.975 0.975 0.975 0.975 0.955 0.975 0.965 0.965 0.975 0.965

HackKMS 0.867 0.974 0.896 0.964 0.974 0.964 0.974 0.974 0.974 0.974 0.964 0.964 0.974 0.974 0.974

Hlux 0.972 0.972 0.972 0.972 0.972 0.972 0.962 0.962 0.962 0.952 0.962 0.962 0.972 0.962 0.962

Injector 0.930 0.795 0.853 0.853 0.727 0.824 0.630 0.736 0.678 0.562 0.727 0.630 0.882 0.862 0.872

InstallCore 0.962 0.972 0.962 0.972 0.952 0.962 0.962 0.962 0.962 0.972 0.739 0.845 0.972 0.962 0.962

Multiplug 0.918 0.899 0.908 0.850 0.899 0.879 0.850 0.860 0.850 0.850 0.812 0.831 0.966 0.870 0.918

Noreklami 0.951 0.961 0.951 0.942 0.951 0.942 0.913 0.922 0.922 0.951 0.922 0.932 0.971 0.922 0.951

Neshta 0.786 0.776 0.776 0.737 0.582 0.650 0.630 0.630 0.630 0.165 0.388 0.233 0.689 0.863 0.766

Regrun 0.843 0.959 0.891 0.959 0.969 0.959 0.969 0.969 0.969 0.969 0.969 0.969 0.969 0.959 0.959

Sality 0.736 0.610 0.668 0.687 0.581 0.629 0.649 0.368 0.465 0.755 0.068 0.116 0.678 0.639 0.658

Snarasite 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.945 0.975 0.955 0.975 0.975 0.975

Stantinko 0.964 0.964 0.964 0.964 0.954 0.954 0.974 0.935 0.954 0.974 0.925 0.954 0.974 0.974 0.974

VBA 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972

VBKrupt 0.911 0.901 0.911 0.843 0.921 0.882 0.969 0.882 0.921 0.572 0.804 0.669 0.950 0.930 0.940

Vilsel 0.972 0.952 0.962 0.972 0.952 0.962 0.972 0.952 0.962 0.972 0.952 0.962 0.972 0.962 0.962

ENN delivers better results in malware classification by

utilizing adversarial malware development in conjunction with a

deep convolutional neural network that has been finely trained.

5. CONCLUSION AND FUTURE WORK

As a result of this research, a ENN is developed for the

purpose of analyzing and classifying malware. This was done in

view of the continually developing strategies that malware

authors employ to evade detection. Using ENN, malware and

benign features are taught, and then the results are sorted into

various families of malware. In the end, ENN performance was

assessed and compared to that of other industry-leading malware

visualization techniques. It was discovered that using ENN

improved both precision and productivity across the board. The

findings of this research have applications not only in the

visualization but also in the identification of malicious software.

In the future, we intend to evaluate ENN using larger datasets and

incorporate the design of the proposed framework into a system

for the sake of testing its accuracy and performance.

REFERENCES

[1] Chris McNab, “Network Security Assessment”, 2nd Edition,

O’Reilly Media, 2007.

[2] Haifeng Wu, “Research of Network security Assessment

System Based on Vulnerability Scan”, Proceedings of

International Conference on Advanced Computer Control,

pp. 566-569, 2011.

[3] P. Jayashree, “Security Issues in Protecting Computers and

Maintenance”, Journal of Global Research in Computer

Science, Vol. 4, No. 1, pp. 55-58, 2013.

[4] K. Praghash and T. Karthikeyan, “Data Privacy Preservation

and Trade-off Balance Between Privacy and Utility using

Deep Adaptive Clustering and Elliptic Curve Digital

Signature Algorithm”, Wireless Personal Communications,

Vol. 78, 1-16, 2021.

[5] J. Kim and J.H. Yi, “MAPAS: A Practical Deep Learning-

based Android Malware Detection System”, International

Journal of Information Security, Vol. 21, No. 4, pp. 725-738,

2022.

[6] M.E.Z.N. Kamba and K. Taghva, “A Survey on Mobile

Malware Detection Methods using Machine Learning”,

R THAMARAI SELVI et al.: AN ENSEMBLE NEURAL NETWORK TECHNIQUE FOR IMPROVING SECURITY AMONG VARIOUS DOMAINS OF INFORMATION TECHNOLOGY

2888

Proceedings of Annual Workshop and Conference on

Computing and Communication, pp. 215-221, 2022.

[7] X. Song and Y. Wang, “Homomorphic Cloud Computing

Scheme based on Hybrid Homomorphic Encryption”,

Proceedings of International Conference on Computer and

Communications, pp. 13-16, 2017.

[8] D.R. Kumar Raja and S. Pushpa, “Diversifying Personalized

Mobile Multimedia Application Recommendations through

the Latent Dirichlet Allocation and Clustering

Optimization”, Multimedia Tools and Applications, pp. 1-

20, 2019.

[9] C. Paar and J. Pelzl, “Understanding Cryptography”,

Springer, 2010.

[10] Madiha Khalid, Umar Mujahid and Najam-Ul-Islam

Muhammad, “Ultralightweight RFID Authentication

Protocols for Low-Cost Passive RFID Tags”, Security and

Communication Networks, Vol. 2019, pp. 1-25, 2019.

[11] C. Li and Y. Qiao, “A Novel Deep Framework for Dynamic

Malware Detection based on API Sequence Intrinsic

Features”, Computers and Security, Vol. 116, pp. 102686-

102698, 2022.

[12] J.Y. Kim and S.B. Cho, “Obfuscated Malware Detection

using Deep Generative Model based on Global/Local

Features”, Computers and Security, Vol. 112, pp. 102501-

102513, 2022.

[13] Jong Sik Moon and Im-Yeong Lee, “An AAA Scheme using

ID-Based Ticket with Anonymity in Future Mobile

Communication”, Computer Communications, Vol. 34, No.

3, pp. 295-304, 2011.

