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Abstract 

In the era of Internet of Things (IoT), enterprise information Systems 

(IISs) are becoming increasingly valuable in a range of industries due 

to the fact that they constitute a network in which connected devices 

exchange data in an environment that is quite close to real time. In this 

context, enterprises are provided with the opportunity to make use of 

virus detection solutions that are either static, dynamic, or hybrid. The 

research uses ensemble machine learning approaches that have been 

implemented and are analyzed, and comparisons are drawn between 

them. The findings of this research have been effective in the 

identification of malwares in IIS. 
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1. INTRODUCTION 

Internet of Things based enterprise information systems (IoT-

EIS) are becoming increasingly valuable in a range of industries 

due to the fact that they constitute a network in which connected 

devices exchange data in a manner that is quite close to real time. 

It is estimated that sales revenues from IoT devices would have 

topped $14.4 trillion by the year 2022, and it is anticipated that 

there will be approximately 22 billion IoT devices by the year 

2025 [1].  

The limited power sources and computational capabilities, IoT 

devices are vulnerable to a wide variety of different types of 

attacks. Malware that is put on IoT devices leaves those devices 

vulnerable to attack. After then, the malware is utilized to access 

APIs on the business side and steal confidential data. Recent 

malware attacks on the IoT include one known as Maria, which 

took place in 2017 and inflicted damage at the rate of 

approximately $4207.03 per hour [2]. Malware that is put on edge 

devices has the potential to allow such devices to broadcast 

skewed or false data regarding the IT infrastructure of an 

enterprise to a cloud server that is located off-site. Attacks using 

malware such as this one are common in IIoT networks, and they 

can cause irreversible harm to the financial position as well as the 

reputations of those networks [3]. 

Researchers devote a large amount of their time and attention 

to improving the security architecture of enterprise information 

systems that are based on the IoT as a direct consequence of this 

issue [4]. In the past, the bulk of commercial information 

technology systems have relied on feature extraction 

methodologies in order to identify malicious software. This was 

done in order to protect against computer viruses. Before doing 

an analysis on the relevant parts of the code, these methodologies 

require first separating those parts of the code that are of interest 

[5]. These methods of feature detection, however, do not scale 

very well in enterprise information systems because of the 

restricted power and processing capabilities of IoT devices. This 

is due to the constraints imposed by the gadgets that make up the 

IoT [6]. Normal methods of malware detection become useless 

and cannot be employed when adversarial attacks occur, in which 

the attacker alters the training samples [7]. 

Within the context of the IoT, enterprise information systems 

are provided with the opportunity to make use of virus detection 

solutions that are either static, dynamic, or hybrid. Static analyses 

include things like signature analysis, n-gram identification, and 

OpCode analysis, whereas dynamic studies involve actually 

running the application in a virtual environment [8]. Examples of 

static analyses include signature analysis, n-gram identification, 

and OpCode analysis.  

2. LITERATURE SURVEY 

The research in [9] a variety of methods for the identification 

of intrusions in an IoT setting. The author focuses the majority of 

his attention on machine learning algorithms, but he also 

addresses concerns regarding the security of IoT devices and 

provides information about datasets that are available to the 

public. On the other hand, for the purposes of this review study, 

our primary attention is placed on intrusion detection systems that 

are capable of recognizing distributed denial of service attacks.  

Malicious Android applications [10] are used to break into the 

security of IoT devices, allowing hackers to steal sensitive 

information. The author provides a comprehensive look at the 

many different methods of analysis that were done in order to 

discover the malicious Android application. In spite of this, the 

approaches that are utilized to discover malware in Android 

applications are not the primary focus of the survey articles. The 

survey papers, on the other hand, offer further information 

regarding Android applications that can run on IoT devices. 

Certain broad information regarding protection measures for 

IoT devices that make use of machine learning. The author [11] 

provide any context for the many forms of malware that can be 

found in a scenario involving the IoT. In their research paper titled 

Malware Detection in the IoT, which was released researched the 

many machine learning algorithms that are currently being used 

for this specific purpose. They found that there are a large number 

of machine learning algorithms that can be utilized for this 

particular purpose. The various machine learning approaches for 

identifying malware in an IoT setting are analyzed, and 

comparisons and contrasts are drawn between them.  

The authors [12] conducted research on several different 

machine learning algorithms with the intention of identifying 

malicious software in an IoT setting. The author focuses almost 

all of their emphasis on machine learning techniques that are 

derived from OpCode.  

The authors in [12] carried up a survey to explore the many 

different methods that are now available for locating static 
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malware in an IoT setting. The authors conducted research on a 

variety of methods that are already in use to recognize static 

malware. These methods include machine learning, fuzzing, and 

clustering. Nevertheless, the author does not supply any further 

information on how to recognize dynamic and hybrid kinds of 

harmful software. 

On the subject of employing machine learning for the 

detection of malicious software, a significant amount of research 

has been carried out. Malware detection in the context of the IoT 

still suffers from inadequate research. IoT refers to the network of 

interconnected electronic devices [13]. 

3. PROPOSED MALWARE DETECTION 

In this research, we will examine the characteristics of user 

nodes in the malware propagation network from two distinct 

vantage points: the structure of the network, and the activity of 

user nodes in the past. In addition to this, we provide a complete 

representation method for the feature space related with the spread 

of malware. We apply the Doc2vec technique to the user node 

content structure in order to establish the feature vector that is 

reflective of the user node one-of-a-kind content preferences. In 

other words, we want to figure out what those preferences are. In 

order to ascertain the feature vector of the network, the 

Tensor2vec methodology is put to use once more for the purpose 

of this particular scenario. 

3.1 CHARACTERISTICS OF USER NODES  

An examination of the past actions of the nodes that comprise 

a network for the transmission of a virus enables one to gain 

insight into the preferences and routines of users of the network. 

Doc2vec is an unsupervised approach that can learn fixed-length 

feature representations from texts of varying lengths. It was 

developed by the Stanford Natural Language Processing Group. 

It is put to use in the process of constructing vector representations 

of phrases, paragraphs, and entire documents. Paragraphs are 

created from the information that a user node persistently relays 

and actively transmits over the course of a predetermined amount 

of time. The Doc2vec technique is able to express the user social 

behavior as a vector that communicates the user node habits and 

preferences because it makes use of the multiple characteristics 

that are offered by paragraph feature vectors. This is made 

possible by the method ability to take advantage of these 

numerous features. The step in the text classification process that 

is referred to as preprocessing is an essential part of the overall 

method. 

The effectiveness of feature extraction as well as text 

classification is directly influenced by the outcomes of Chinese 

word segmentation and stop words. Both of these processes are 

influenced in a direct manner. A technique known as Jieba 

Chinese word segmentation is used to break up the original corpus 

into its component parts. This approach takes into account the 

peculiarities that are inherent to Chinese grammatical 

conventions. Following the segmentation of the data, it is 

important to apply judgment with reference to the various portions 

of speech. Additionally, stop words are added to the results of the 

segmentation in order to filter out unnecessary keywords that may 

otherwise compromise the accuracy of the classification. This is 

done in order to identify the nouns and verbs in the sentence. 

Additionally, stop words are added in order to identify the nouns 

and verbs in the phrase. 

We are now in possession of the candidate keywords that have 

been derived from the history actions of the user node as a direct 

consequence of this. The TF-IDF calculation algorithm has been 

improved so that it more precisely reflects the current state of the 

network. This improvement was made in order to facilitate the 

calculation of word frequency. This was made possible by the 

incorporation of the variable that distinguishes an active user from 

an ordinary user. This is because active user nodes have a greater 

impact on the overall rate at which information is disseminated 

throughout the network. 

The candidate words are mined for the user historical behavior 

data, which is then used to retrieve relevant keywords. This is 

done in order to ensure the integrity of the core user node data 

while at the same time filtering out any unnecessary information 

that may be present in the propagation network. After that, the 

Doc2vec technique is put to work in order to construct a feature 

vector that is reflective of the user node prior actions and is 

constructed on the basis of the keyword sequence that most 

effectively reflects that behavior. The user receives this feature 

vector once it has been processed.  

 T = N × Fu   (1)  

where  

N - total users 

Fu - representation vector. 

Algorithm: Shap value to probability value 

3.2 BASE CLASSIFIERS OF ENSEMBLE 

The goal of this benchmark is to determine how well deep 

learning and shallow learning perform on the challenge that is 

now being faced using the two datasets that we have just finished 

discussing. 

3.2.1 Random Forest: 

A random forest is a specific kind of classifier that is produced 

by bagging together a number of decision trees. This process is 

described as bagging. A decision tree is a form of graph that 

represents numerous possibilities and the different effects that 

could arise from each selection. One way to think about a action 

plan is as a decision tree, which is one way to think about a action 

plan. One of the things that differentiates this model from others 

is the fact that the information is depicted in the form of a tree, 

which is very straightforward and straightforwardly presented.  

Each of the internal nodes in the decision tree serves as a 

substitute for a different variable. The variable was subjected to 

either an equality, majority, or minority condition in order to 

determine where the split should occur, and each fork in the graph 

depicts the resulting split. As a result of this, each fork is also a 

representation of the arcs that link a parent node to its progeny. 

Instead, the leaf nodes in the tree are what indicate the predicted 

class in the structure.  

Consequently, what comprises a decision tree is a set of rules 

for making decisions that change depending on the values of the 

variables. Using the information included in the dataset, a 

decision tree is constructed. During the training phase, the 

stopping criteria, which are also known as halting, need to be set 
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since a tree that is extremely complex and has numerous branches 

contributes very little to the accuracy of the classification.  

The method known as bagging entails selecting a number of 

models from the same dataset that are comparable to one another 

and then sampling from those models without making any 

replacements. During the training process for the individual 

decision trees that go into the construction of a random forest, 

only a subset of the total number of variables that are contained 

within the dataset are used. When doing a task that involves 

classification, the end classification is established by taking the 

median of the individual decision tree classifiers. When 

performing a job that involves regression, on the other hand, the 

final classification is determined by taking the mean of the 

findings. 

3.2.2 XGBoost: 

The problem-solving community that works on machine 

learning developed a technique called gradient boosting to 

address issues with classification and regression. One way to 

construct models that can be used for making predictions is by 

combining a number of more fundamental forecasting tools, such 

as decision trees. This is only one of many possible approaches. 

This method is useful because of its generalizability, which makes 

it possible to optimize any arbitrary differentiable loss function 

while the model is still being generated. This is a benefit to the 

method. One of the many reasons why this strategy is so helpful 

is because of something like this. This method, in contrast to 

others, offers remarkable portability as a result of its support for a 

cross-platform between a number of programming languages and 

operating systems. Specifically, this portability is made possible 

by the fact that the method can translate between Windows and 

Linux. Because of its support, the approach can be implemented 

on a number of different systems. 

Because it incorporates both structural and algorithmic 

enhancements, XGBoost is able to make the Gradient Boosting 

Machines (GBM) architecture, which is the underlying algorithm, 

more effective. Because it allots internal buffers to each thread in 

order to keep computed statistics, XGBoost is in a position to 

make use of algorithms that are aware of the cache. This is how it 

manages to achieve its goals. The software makes use of 

parallelization since the process of creating trees using XGBoost 

is completed in parallel by exchanging nested loops with one 

another. This switching of loops is the key to parallelization. 

Rather than relying on the standard stop criterion, you can make 

adjustments to the depth at which each tree is separated by making 

use of the max_depth option. This is done instead of the default 

stop criterion that would normally be used. The ability to design 

more complex algorithms is made feasible by the following 

characteristics: 

When compared to other algorithms, XGBoost models 

perform exceptionally well in classification and regression tasks. 

This is true in terms of the precision of their forecasts as well as 

the speed with which they are computed. This is the case with 

regard to both the precision of their forecasts and the efficacy with 

which they are computed. 

3.2.3 CatBoost: 

When it comes to utilizing the gradient boosting process with 

decision trees, the open-source software package known as 

CatBoost claims that it is superior to any other choice that is 

currently available. During training, a series of trees are 

constructed one after the other in sequential order, with the 

amount of loss used to construct each tree becoming increasingly 

smaller than what was used to construct the previous tree in the 

sequence as the training progresses.  

For the underlying tree structure is one that is analogous to 

that of greed. Importantly, it is also able to automatically do 

quantization on feature values, which means that it is able to find 

the thresholds to employ in order to break feature values and 

labels into discrete ranges. This is an extremely useful capability. 

This is a capability that is of tremendous value. (bins). It is easy 

to use, accurate, dependable, versatile, and extendable, and there 

is even a version of it that can be computed by a GPU and provides 

support for categorical data formats.  

CatBoost is easily compatible with well-known deep learning 

libraries such as Apple Core ML and Google TensorFlow, the 

latter of which was developed by Apple, and the former was built 

by Google. It is compatible with a large number of data formats 

and provides explainable artificial intelligence by making use of 

ranking features to decide the order in which data is retrieved. In 

addition, it is compatible with a wide variety of data formats. In 

this scenario, the model for basic supervised classification, which 

consists of a predetermined feature set, is put to use. 

3.2.4 Extra Trees: 

The output of the prediction is created by making use of a 

forest of trees, each of which is reliant on the results of the several 

base models that were employed in the calculation. The Extra 

Trees method generates a significant number of decision trees 

without carrying out any type of pruning on them and by 

automatically producing them from the supplied data. for making 

predictions for classification, a majority vote is used, but the 

outcomes of each individual tree are averaged for making 

predictions for regression. It is based on the idea that overfitting 

may be avoided when trees are built by randomly selecting the 

feature to divide at each level for each tree. This is the foundation 

of the argument.  

The degree to which the trees in the ensemble are similar to 

one another is reduced, while the variability of those trees is 

increased. One method that can be used to deal with the greater 

variability is to increase the number of trees that are present in the 

forest.  

The fundamental difference between ExtraTrees and Random 

Forest is in the way in which the decision trees that are included 

within the forest are generated. ExtraTrees uses a top-down 

approach, whereas Random Forest uses a bottom-up approach. 

ExtraTrees selects a branching point for each feature in a fully 

arbitrary manner as opposed to Random Forest, which strives to 

achieve a flawless split in the process of selecting a point at which 

to split the data. 

3.2.5 TabNet: 

The goal of the TabNet project is to create a neural network 

that will be able to deal with tabular data in an effective manner. 

This is the project primary objective. It has been established that 

the application of deep learning strategies, as opposed to machine 

learning methods, can significantly improve performance as the 

dataset continues to develop. This has been noticed in a variety of 

application areas, including the field of photography. It was 

created to train models that are analogous to decision trees, and it 
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shares the benefits of decision trees, such as being interpretable 

and including selection, just like those models. It accomplishes 

this goal by employing the strategy of multi-headed attention in a 

sequential manner to choose which features to utilize at each stage 

of the decision-making process. Every single input asks for its 

own unique set of features, which are selected on a case-by-case 

basis depending on the specifics of the scenario. 

3.2.6 Neural Oblivious Decision Ensemble (NODE): 

The model is constructed in stages, with input examples being 

passed from one stage to the next; it is made up of a transformer 

with numerous multi-headed attentions acting in parallel to 

produce a sparse feature selection matrix. Input examples are 

transmitted from stage to stage as the model is constructed. 

During the process of the model construction, the input instances 

are passed along from one stage to the next. Because the weights 

of the attributes, which are often referred to as their importance, 

are retrieved on a per-instance basis, the interpretability of the 

data has significantly improved.  

The dataset is initially handled in its original, unprocessed 

condition before any feature engineering work is carried out on it. 

After being subjected to batch normalization, examples are then 

sent to the feature transformer, where they are processed by 

numerous layers of fully connected neurons that are activated by 

a variety of gated linear units. This occurs after the instances have 

been subjected to batch normalization. Feature transformer 

(GLUs).  

This procedure is carried out as many times as necessary until 

the appropriate degree of precision is reached. It is essential to 

keep in mind that normalization with 0.5 makes learning more 

consistent by reducing the frequency of sudden shifts in network 

variance. This is something that needs to be borne in mind at all 

times. In reference to this specific subject, we make use of an 

automatic version of the classification model feature engineering 

and feature selection processes. The requirement of an extremely 

large amount of information in order to learn is one of the most 

significant problems of the multi-headed attention model. This is 

also one of the fundamental limitations of this strategy. 

An architecture for deep learning known as the NODE 

algorithm was designed specifically for use with tabular data. This 

design is constructed from the oblivious decision tree, which has 

the peculiar characteristic of requiring the same feature for the 

split and the same split threshold for all nodes of the same depth. 

This is an unusual requirement for any design. The network is 

trained using backpropagation from the very beginning to the very 

end.  

In the deep form, in which numerous NODE layers are stacked 

atop one another, the residual connection from the ResNet work 

is used to connect the many NODE layers. The outputs from each 

layer are mixed with the features of the previous layer to produce 

the input for the next NODE layer. When it comes down to it, just 

like with Extra Trees, we take the results of all of the layers and 

average them, and when it comes to categorization, we use 

majority vote rather than majority vote. The deep version of the 

model is utilized by NODE when it comes to the classification 

process. 

3.3 ENSEMBLE NEURAL NETWORK 

For the purpose of developing a model for churn prediction, 

artificial neural networks, one of the most powerful and well-

known methods for machine learning, were applied. The strategy 

that has been developed combines the most useful aspects of two 

neural networks in order to generate very accurate forecasts 

regarding the number of customers who will leave an 

organization. Because of this, at this point in time, two multilayer 

feed-forward neural networks were built. One of these networks 

used a solution obtained from the alpha wolf, and the other 

network used a solution developed by the beta wolf. In the end, 

the final response of the prediction model was derived using, 

which is a weighted average, and the dataset was taught to the 

neural networks utilizing the newly acquired features from the 

feature selection stage.  

  Output = 0.5 × net1 + 0.5 × net2.  (2)  

where,  

net1 and net2 - neural networks outputs.  

The ultimate solution of the neural network is the combined 

solution of two neural networks that have the same weighted 

average. This ultimate solution is also represented by the output 

of the neural network. 

4. EVALUATION 

This research was validated by testing it on a dataset of 

malware that is freely available to the public and was collected 

from the VirusHare database. In the year 2020, a total of 2,000 

examples of malicious software, originating from a wide variety 

of families, were gathered and put into the virus database. The 

1744 secure programs were selected from a large number of 

different software packages. (games, browsers, word processors, 

business, etc.). Following the completion of the collection, 

VirusTotal was used to do a scan of the clean files using thirty 

distinct anti-malware engines. 

In addition, the effectiveness of ENN was determined by 

testing it with 8,750 examples of malware hailing from 25 distinct 

families contained inside the MaleVis dataset and 9339 Malimg 

malware images serving as a benchmark. 

The experiment was carried out inside a Google Collaboratory 

with a graphics processing unit (GPU), random access memory 

(RAM), and a hard drive provided by the business. 

4.1 EVALUATION 

The evaluation criteria that were applied in order to evaluate 

the efficacy of ENN. Accuracy, precision, recall, and F1-score 

were some of the measures that were used. The ENN was tested 

to determine whether or not it could differentiate between 

malicious and benign labels using only a small amount of training 

data. During the course of the experiment, a total of 2,000 

examples of malicious software and 1,744 examples of benign 

software were tested. The outcomes of an experiment are 

summarized in Table.1, which shows how ENN performed in 

comparison to other classifiers. 
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The findings indicate that the recommended technique 

resulted in improvements in terms of accuracy, precision, and 

recall. The proposed ENN method was successful in attaining a 

higher accuracy (96.5%) as compared to the other machine 

learning approaches shown in Figure 8, which also includes a bar 

chart displaying the outcomes of the binary classification. The 

ensemble classifiers Gradient Boosting and Extra Tree Classifier 

came in second and third place, respectively, with an accuracy of 

95.6% and 95.3%. 

4.1.1 Mallmg Dataset: 

Only 10 of 25 families of malicious software were selected to 

be used in the training of the ENN on Mallmg dataset. According 

to Table.2, the accuracy of detection achieved by ENN was 

99.8%, which was significantly higher than that of competing 

technologies. 

4.1.2 MaleVis Dataset: 

Using the MaleVis dataset, which contained 25 families with 

comparable sample sizes, the same process was carried out. 

According to Table 3, ENN has a success percentage of 97%, 

whereas NODE has a success rate of 92%, SVM has a success rate 

of 88%, KNN has a success rate of 78%, and Bagging has a 

success rate of 93%. 

Table.1. Training Performance 

Models Class Accuracy Precision Recall F1-score 

ENN 
Benign 

0.9960 
0.9366 0.9463 0.9366 

Malware 0.9463 0.9366 0.9463 

Resnet50 
Benign 

0.9640 
0.9366 0.8780 0.9073 

Malware 0.8976 0.9366 0.9171 

Extra Trees Classifier 
Benign 

0.9836 
0.9073 0.9366 0.9171 

Malware 0.9366 0.9073 0.8293 

Gradient Boosting Classifier 
Benign 

0.9867 
0.9073 0.9366 0.9171 

Malware 0.9366 0.9073 0.9268 

Bagging 
Benign 

0.9671 
0.8585 0.9561 0.9073 

Malware 0.9561 0.8683 0.9073 

SVM 
Benign 

0.9753 
0.9171 0.9171 0.9171 

Malware 0.9268 0.9171 0.9171 

KNN 
Benign 

0.8886 
0.9463 0.7122 0.8098 

Malware 0.7805 0.9561 0.8585 

Naïve Bayes 
Benign 

0.9557 
0.9073 0.8585 0.8878 

Malware 0.8780 0.9171 0.8976 

Random Forest 
Benign 

0.9712 
0.8683 0.9659 0.9171 

Malware 0.9659 0.8683 0.9171 

Decision Tree Classifier 
Benign 

0.9310 
0.8780 0.8585 0.8683 

Malware 0.8780 0.8878 0.8780 

Table.2. Accuracy comparison on Mallmg Dataset 

Malware 

Family 

Proposed NODE SVM KNN Bagging 

A P R F1 A P R F1 A P R F1 A P R F1 A P R F1 

Adialer.C 

0.997 

0.975 0.975 0.975 

0.998 

0.975 0.975 0.975 

0.995 

0.975 0.975 0.975 

0.954 

0.643 0.975 0.770 

0.988 

0.975 0.975 0.975 

Agent.FYI 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 

Alueron.gen!J 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.875 0.972 0.923 0.972 0.972 0.972 

Lolyda.AA1 0.969 0.969 0.969 0.950 0.969 0.959 0.950 0.969 0.959 0.940 0.862 0.901 0.950 0.969 0.969 

Lolyda.AA2 0.972 0.972 0.972 0.952 0.952 0.952 0.972 0.952 0.962 0.952 0.952 0.962 0.972 0.972 0.972 

Malex.gen!J 0.937 0.966 0.957 0.966 0.937 0.957 0.966 0.947 0.957 0.966 0.947 0.957 0.928 0.947 0.937 

Obfuscator.AD 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 

Rbot!gen 0.970 0.970 0.970 0.941 0.941 0.941 0.951 0.970 0.960 0.931 0.970 0.951 0.951 0.931 0.941 

Swizzor.gen!I 0.969 0.969 0.969 0.940 0.969 0.959 0.969 0.969 0.969 0.940 0.911 0.921 0.940 0.940 0.940 

VB.AT 0.968 0.958 0.968 0.968 0.958 0.968 0.968 0.968 0.968 0.968 0.813 0.881 0.958 0.949 0.949 
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Table.3. Accuracy comparison on MaleVis Dataset 

Malware 

Family 

Proposed NODE SVM KNN Bagging 

A P R F1 A P R F1 A P R F1 A P R F1 A P R F1 

Adposhel 

0.997 

0.955 0.975 0.965 

0.925 

0.975 0.975 0.975 

0.898 

0.955 0.975 0.965 

0.789 

0.897 0.965 0.926 

0.925 

0.945 0.975 0.955 

Agent 0.954 0.828 0.857 0.701 0.886 0.857 0.682 0.857 0.759 0.662 0.613 0.633 0.915 0.828 0.867 

Allaple 0.884 0.904 0.894 0.884 0.904 0.894 0.855 0.777 0.816 0.943 0.641 0.758 0.962 0.865 0.904 

Amonetize 0.940 0.950 0.940 0.882 0.940 0.911 0.882 0.959 0.921 0.921 0.911 0.911 0.969 0.911 0.940 

Androm 0.758 0.797 0.787 0.777 0.671 0.719 0.671 0.690 0.680 0.496 0.709 0.583 0.787 0.836 0.807 

Autorun 0.860 0.860 0.860 0.744 0.802 0.773 0.792 0.734 0.763 0.783 0.580 0.667 0.841 0.676 0.754 

BrowseFox 0.951 0.951 0.951 0.942 0.913 0.922 0.883 0.932 0.913 0.816 0.883 0.845 0.913 0.951 0.932 

Dinwod 0.951 0.951 0.951 0.960 0.960 0.960 0.970 0.912 0.941 0.689 0.854 0.766 0.970 0.960 0.960 

Elex 0.950 0.901 0.921 0.940 0.950 0.951 0.901 0.969 0.930 0.921 0.940 0.930 0.921 0.862 0.891 

Expiro 0.949 0.900 0.920 0.687 0.774 0.726 0.591 0.726 0.649 0.174 0.048 0.077 0.571 0.862 0.687 

Fasong 0.965 0.975 0.965 0.975 0.975 0.975 0.975 0.975 0.975 0.955 0.975 0.965 0.965 0.975 0.965 

HackKMS 0.867 0.974 0.896 0.964 0.974 0.964 0.974 0.974 0.974 0.974 0.964 0.964 0.974 0.974 0.974 

Hlux 0.972 0.972 0.972 0.972 0.972 0.972 0.962 0.962 0.962 0.952 0.962 0.962 0.972 0.962 0.962 

Injector 0.930 0.795 0.853 0.853 0.727 0.824 0.630 0.736 0.678 0.562 0.727 0.630 0.882 0.862 0.872 

InstallCore 0.962 0.972 0.962 0.972 0.952 0.962 0.962 0.962 0.962 0.972 0.739 0.845 0.972 0.962 0.962 

Multiplug 0.918 0.899 0.908 0.850 0.899 0.879 0.850 0.860 0.850 0.850 0.812 0.831 0.966 0.870 0.918 

Noreklami 0.951 0.961 0.951 0.942 0.951 0.942 0.913 0.922 0.922 0.951 0.922 0.932 0.971 0.922 0.951 

Neshta 0.786 0.776 0.776 0.737 0.582 0.650 0.630 0.630 0.630 0.165 0.388 0.233 0.689 0.863 0.766 

Regrun 0.843 0.959 0.891 0.959 0.969 0.959 0.969 0.969 0.969 0.969 0.969 0.969 0.969 0.959 0.959 

Sality 0.736 0.610 0.668 0.687 0.581 0.629 0.649 0.368 0.465 0.755 0.068 0.116 0.678 0.639 0.658 

Snarasite 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.945 0.975 0.955 0.975 0.975 0.975 

Stantinko 0.964 0.964 0.964 0.964 0.954 0.954 0.974 0.935 0.954 0.974 0.925 0.954 0.974 0.974 0.974 

VBA 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 

VBKrupt 0.911 0.901 0.911 0.843 0.921 0.882 0.969 0.882 0.921 0.572 0.804 0.669 0.950 0.930 0.940 

Vilsel 0.972 0.952 0.962 0.972 0.952 0.962 0.972 0.952 0.962 0.972 0.952 0.962 0.972 0.962 0.962 

ENN delivers better results in malware classification by 

utilizing adversarial malware development in conjunction with a 

deep convolutional neural network that has been finely trained. 

5. CONCLUSION AND FUTURE WORK 

As a result of this research, a ENN is developed for the 

purpose of analyzing and classifying malware. This was done in 

view of the continually developing strategies that malware 

authors employ to evade detection. Using ENN, malware and 

benign features are taught, and then the results are sorted into 

various families of malware. In the end, ENN performance was 

assessed and compared to that of other industry-leading malware 

visualization techniques. It was discovered that using ENN 

improved both precision and productivity across the board. The 

findings of this research have applications not only in the 

visualization but also in the identification of malicious software. 

In the future, we intend to evaluate ENN using larger datasets and 

incorporate the design of the proposed framework into a system 

for the sake of testing its accuracy and performance. 
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