
E KAMALANABAN et al.: INTRUSION DETECTION SYSTEM TO AVOID MALICIOUS INTRUDERS IN HIGHER LAYER NETWORK SECURITY
DOI: 10.21917/ijct.2023.0426

2868

INTRUSION DETECTION SYSTEM TO AVOID MALICIOUS INTRUDERS IN

HIGHER LAYER NETWORK SECURITY

E. Kamalanaban1, S. Madhusudhanan2, D. Jennifer3 and M. Jayaprakash4
1Department of Computer Science and Engineering, Veltech Hightech Dr.Rangarajan Dr.Sakunthala Engineering College, India

2Department of Computer Science and Engineering, Prathyusha Engineering College, India
3Department of Computer Science and Engineering, Panimalar Engineering College, India

4Department of Information Technology, RMK Engineering College, India

Abstract

Online criminals are focusing their attention more and more on

ordinary computer users, seeking to take advantage of them through a

variety of social and technological exploitation techniques. Some

hackers are getting more skilled and determined. The ability to conceal

their identities, keep their communications secret, keep their finances

separate from their activities, and make use of private infrastructure

are all areas in which cybercriminals have shown a high degree of

proficiency. It is of the utmost importance to safeguard computers with

surveillance systems that are able to identify complex varieties of

malware. In this paper, we utilized machine learning algorithm to

validate the samples from different datasets. The machine learning

classifier is utilized to find the efficacy of the entire model in validating

the class samples. The simulation is conducted in python to test the

efficacy of the model against various class of datasets. The results show

that the proposed method achieves higher degree of accuracy than the

other models.

Keywords:

IDS, Security, Attack, Network Security

1. INTRODUCTION

An additional critical component of internet security is the

intrusion surveillance system. Intrusion Detection Systems (IDS)

are responsible for analyzing the traffic on a network or a portion

of the general computing environment in order to look for

indications of malicious behavior.

As a result of increased research and development efforts in

this field, significant progress has been made in a number of

subfields of artificial intelligence (AI), including pattern

identification and anomaly finding. These advancements have

been made possible as a result of recent breakthroughs in AI. It is

common practice to use neural networks (NN) to find solutions to

challenges of this kind, and the range of situations in which they

can be applied has grown substantially over the past few years.

The increase in the total quantity of computing capacity that is

currently available is the primary explanation for this

phenomenon. Researchers were forced to make adjustments to the

IDS architectures that were already in place as a result of this

circumstance [1].

IDSs, also known as IDS, are organizations that monitor

computer systems and networks for unwanted or illegal activity.

These organizations are also known by their acronym, IDS. When

it comes to classifying IDS, there are a variety of different

techniques. The primary differentiating factors between the first

two categories, which are divided according to where the

malicious behavior was identified, are the network and the server

[2]. Network-based IDSs are concerned with the security of

networks and perform monitoring and analysis of data collected

from networks. Additionally, these systems monitor and analyze

data collected from other networks. In host-based IDSs, the

software environment of a particular computer, in addition to the

processes and events that take place on that machine, is monitored

in order to identify any nefarious actions that may have taken

place [3].

Signature-based (misuse-based), anomaly-based, and hybrid

IDSs (IDSs) are three further subcategories of IDSs that can be

further subcategorized based on the data analytics techniques that

have been implemented. The purpose of the signature-based

technique is to analyze network packets or data from a specific

system (such as logs), with the goal of locating signatures or

patterns that are indicative of malicious behavior. This can be

done in order to protect the system from potential threats. Because

it makes use of data that has been pre-annotated and retrieved

from a database, this technique is significantly more effective than

other approaches when it comes to defending against attacks that

have been identified in the past [4]. It is a simple strategy that gets

the job done, but it does have some drawbacks, such as the

inability to distinguish brand-new types of attack and the

requirement for regular database updates. Despite these

drawbacks, the strategy is effective. However, it does get the task

done [5].

An investigation of the data using an anomaly-based technique

is carried out in order to identify network and system behaviors

that are not typical. The goal of this endeavor is to find out what

is causing the anomalous behavior. If the algorithm is trained

using the data that has already been supplied, then achieving this

objective might not be as difficult as it initially seems. The

potential of the strategy that has been explained lies in the fact

that, in contrast to other, more conventional techniques, it makes

it possible to identify zero-day vulnerabilities [6]. In addition to

this, it makes it much simpler to implement a more individualized

and customized version of any given infrastructure. It is possible

that these methods will discover situations that are anomalous but

are not necessarily cyber security attacks because they are not

only based on labeled data but are also taught to recognize

anomalies based on data that was provided in the past. This is

because these methods are taught to recognize anomalies based

on data that was provided in the past. Because of this, there will

be a significant increase in the number of false positive

notifications [7].

Researchers have begun focusing their attention on

developing IDS by making use of techniques associated with

machine learning in an effort to find a solution that will fix the

issues that were discussed earlier. The use of artificial intelligence

techniques, such as machine learning, enables the independent

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2023, VOLUME: 14, ISSUE: 01

2869

mining of large data sets for the purpose of gaining new insights

[8].

Machine learning-based IDSs are able to accomplish

satisfactory detection levels when there is a sufficient amount of

training data available. This is due to the fact that models created

through machine learning are sufficiently generalizable to

recognize novel attacks in addition to attack variants [9]. Because

they do not require a significant amount of subject knowledge to

develop and construct, IDSs that are based on machine learning

are simple to develop and create [10].

Deep learning, a subfield of machine learning, has shown

remarkable progress in terms of efficiency in recent years. These

improvements have been demonstrated by the subfield. Deep

learning approaches are superior to more conventional machine

learning methods in terms of their ability to manage enormous

amounts of data. Deep learning is a subfield of machine learning.

The methodologies of deep learning have the ability to

automatically acquire feature representations from raw data, after

which they can output the outcomes of their work. These

approaches are not only effective but also easy to implement.

2. LITERATURE SURVEY

The feature engineering requires knowledge in the pertinent

field, and the quality of the features themselves is frequently the

limiting factor in the performance of recognition systems. The

development of automated feature learning is a crucial component

of detection methods that are based on deep learning. The all-

encompassing nature of these methods is rapidly propelling them

to the forefront of IDS research, where they are swiftly becoming

the industry standard [11].

Since deep learning techniques are able to process raw data

directly, they are also able to perform categorization while

simultaneously accumulating features. This is made possible by

the fact that deep learning techniques can process data in their

native format. In [12] suggested using convolutional neural

networks in the process of identifying things as a means to

improve accuracy. Both the NSL-KDD and the UNSW-NB 15

databases were used in the research that was carried out by each

of these organizations, respectively. Feature vectors are a specific

form of data structure that is utilized by these collections. The

feature vectors were originally transformed into photographs

because CNNs work more effectively with data that is represented

in a two-dimensional (2D) space. The total number of features

increased from 41 to 464, and one-hot coding was utilized for the

hypothetical features. Following that, we crafted a singular image

by combining all of the individual 8-byte segments into one.

Instead of the places being left blank, zeros were used to fill them

in. A picture with the measurements of 8 pixels by 8 pixels was

produced as a result of the application of the feature vectors to the

production process. In the end, they decided to construct a CNN

that had three levels in order to better coordinate the attack [13].

For the feature extraction phase of the process, an

unsupervised deep learning model can be utilized, while shallow

models can be utilized for the classification stage of the process.

According to author [14], the process of feature extraction was

carried out using a sparse autoencoder, and the identification of

attacks was carried out using an XGBoost model. During the

course of their investigation, they made use of the information

provided by NSL-KDD. They chose to conduct SMOTE sampling

after determining that the information was biased in a particular

direction. In order to ensure that no one group is

disproportionately represented, the SMOTE method divides the

bigger groups into an extremely large number of smaller

subgroups that are easier to manage. A sparsity restriction is

incorporated into the sparse autoencoder as a means of improving

the autoencoder capacity to identify samples with which it was

not previously familiar. In the end, a classification of the data that

was collected was accomplished through the use of an XGBoost

algorithm.

Deep learning models generate results that are less than stellar

when they are applied to datasets that are either too small or too

imbalanced. Despite the fact that these models have made

remarkable development in their ability to analyze large amounts

of data, this is still the case. Even if there is only a limited amount

of data to work with, increasing the recognition rate can be

accomplished through the use of an adversarial learning strategy.

Using a GAN, it able to enhance the overall quality of the

data. Because of the imbalance and the absence of novel data that

is included in the dataset, machine learning models that have been

trained on the KDD99 dataset suffer from poor generalizability.

This is because the dataset contains neither balanced nor novel

data. In order to address these issues, they utilized a GAN in order

to increase the total quantity of data that was collected. The KDD-

99 flow data were very similar to the findings that the GAN model

generated, which had a high degree of similarity [15].

It is feasible to identify attack variants that would not have

been possible without the inclusion of this generated data in the

training collection. They chose eight different attacks to examine

and then contrasted the accuracy rates of the initial dataset with

those of the expanded dataset. The findings of the experiments

demonstrated that adversarial learning was responsible for an

improvement in the accuracy of seven out of the eight distinct

types of attacks.

3. LIGHTGBM

The GBDT-based algorithm that was developed by Microsoft

Research Asia and assigned the name LightGBM. The ultimate

goal is to improve computational efficiency in order to solve

problems associated with making predictions using large amounts

of data. This will be accomplished by improving computational

efficiency. Before continuing with these procedures, the GBDT

algorithm will first select and separate the signs based on a

previously determined order. This method requires more effort

and memory than any other approach, but it provides a split-off

point that is more accurate than any other method. In order to

accomplish these goals, LightGBM employs a histogram-based

algorithm in association with a leaf-wise tree development

strategy that is limited to a maximum depth. This combination of

tools is bound to a maximum tree depth.

The DT method, which is illustrated here in Figure 4, makes

use of histograms as one of its components. This provides a good

illustration of the s-bin discretization technique, which is used to

separate consecutive floating-point eigenvalues. As soon as that

step is finished, the histogram of breadth is constructed using

these divisions as the fundamental units of its construction. The

histogram is used to collect the important statistics after the data

E KAMALANABAN et al.: INTRUSION DETECTION SYSTEM TO AVOID MALICIOUS INTRUDERS IN HIGHER LAYER NETWORK SECURITY

2870

has been traversed for the very first time. These statistics include

the sum of the gradients and the number of samples that are

contained in each bin. It is possible to use the discrete value of the

histogram as a tool to assist in determining the best location at

which to segment the data. The costs that are typically incurred

for storing data and carrying out computations are cut down

thanks to the utilization of this approach.

The leaf-based growth technique of development known as

level-wise requires synchronized leaf division among the plants

that are on the same layer. This is done in order to maximize crop

yield. It is to one advantage to optimize using a variety of

procedures and to maintain control over the degree to which the

model is complicated. Despite the fact that different leaves on the

same layer receive information in distinctive ways, the data from

those leaves is nevertheless processed in the same manner. It is

possible for us to determine the anticipated decrease in entropy

that will take place of attribute-based partitioning of the nodes by

making use of the formula.

 () () (), n V

v V

IG B V En B BE B


= − (1)

 () 2

1

log
D p

d

d

En B d p
−

=

=  (2)

where

En(B) - information entropy

B - collection ,

pd - ratio of the collection B w.r.t category d,

D - categories,

v - V attribute value, and

Bv - Bth subset.

This strategy is inefficient because it requires searching and

splitting a large number of leaves, which results in a negligible

increase in information obtained but consumes a significant

quantity of additional memory. Additionally, the information

gained from searching and splitting these leaves is not particularly

useful. In comparison, the efficiency of the leaf-wise growth

strategy can be improved by dividing the leaf into two parts only

when doing so will result in the greatest information gain on the

same layer. This is the case when dividing the leaf into two parts

will maximize the information gain on the same layer. Because

this method may produce trees with a high depth, which can

contribute to overfitting, a maximum depth limitation is

implemented during the development of the tree. This is done

because there is a possibility that this method will result in trees

having a deep trunk.

LightGBM uses the leaf-wise tree growth algorithm, as

opposed to the depth-wise tree growth algorithm that is used by a

significant number of other well-known algorithms. The depth-

wise tree growth algorithm is more common. Using the leaf-wise

growth method as opposed to the depth-wise growth method

makes it possible to achieve convergence more quickly; however,

if appropriate hyperparameterization is not performed, overfitting

may occur. The act of making adjustments to the values of an

algorithm hyperparameters in order to enhance the performance

of a model is referred to as hyperparameter optimization, which is

also the name of the term for the process.

To improve the overall performance of the LightGBM models,

we use the Tree-structured Parzen Estimator (TPE) algorithm that

we developed in this article to optimize the hyperparameters of

those models. This was done so that we could improve the overall

performance of the LightGBM models. To be more particular,

TPE employs a method known as iterative sequential model-

based optimization (SMBO) in order to construct a reaction

surface model and collect additional data. This is done in order to

improve the accuracy of the model. The construction of the model

in SMBO is influenced by a number of variables, including the

following:

 H, {(x(1), f(x(1))), (x(2), f(x(2)))⋯(x(k), f(x(k)))} (3)

The hyperparameter configuration space and historical lists of

observed variables, respectively.

The Kernel Density Estimation (KDE) method is utilized in

the development of the substitute function that is produced by the

TPE methodology. In opposition to the other SMBOs, which

construct the surrogate function through the use of regression as

the primary method, TPE builds the function through the

application of a categorization strategy. The algorithm can be

disassembled into its component components, which will be

discussed further on in this section.

Step 1: Initialize the arrays of observed variables H by using the

hyperparameters that were chosen at random. This is the very first

thing that needs to be done.

Step 2: Define a model p(x/y) for representing the data that is

based on the ordered H with respect to y.

 ()
()

()

*

*

l x if y y
p x y

g x if y y

 
= 


 (4)

where

y∗ - yth quantile,

l(x) - xi observations density

f(xi) - corresponding loss, and

g(x) - residual observation density.

Step 3: The tree-like representation of l and g, choose a sizable

group of candidates to evaluate with g(x)/l(x). This should be done

before moving on to step four. The software at the conclusion of

each cycle, return the EI number x∗ that is the highest.

Draw many candidates from the tree-structured form of, and

evaluate them according to. On each iteration, the algorithm

returns the with the greatest EI.

Step 4: Add x∗ and f(x∗) to the H after each repetition that is

performed.

4. IDS FRAMEWORK

The architectural design of the system proposed in this

research is detailed in Fig. 5. The first block is all about data

processing. This process is often referred to as the data

engineering. This step is critical for a successful learning process.

Data processing has three steps, namely, cleaning, normalization

and feature selection. The feature selection process is conducted

using a filter-based method inspired by the XGBoost algorithm

for generating feature importances scores. Once the required

feature vector is selected; the next process involves model training

https://link.springer.com/article/10.1186/s40537-020-00379-6#Fig5

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2023, VOLUME: 14, ISSUE: 01

2871

using the training set. A trained model is then validated with the

validation set. Finally, the test dataset is used to test the validated

model. The procedure described above happens in an iterative

manner till a tuned and fit model is found.

Fig.1. Proposed IDS Architecture

4.1 FEATURE NORMALIZATION

During the learning process, the high numerical value of a

variety of characteristics can have an effect on a variety of

machine learning algorithms, such as SVM, LR, ANN, and kNN,

to name just a few of the available options. In addition to this, in

order to learn about high-dimensional databases, one needs a

considerable amount of computational resources. In most cases,

the effects of these problems can be mitigated through the

implementation of data scaling techniques. When we are dealing

with the data, we scale it based on the values that are at the lowest

and highest extremes. (Eq. 5).

(5)

The standardization computation will take place according to

the steps specified in Algorithm 1 if a dataset is provided with an

input vector (feature space) represented by U(f1,..., fn) 1<n<N1,

where N is the total number of instances (features) in the space.

This is the case if a dataset is provided with an input vector

(feature space) represented by U(f1,..., fn).

5. DATASETS

When training a neural network, a significant amount of data

is necessary because, in its absence, it is impossible to arrive at an

accurate approximation of the correlation that exists between the

input and the output. The process of learning through supervision

is especially susceptible to having this problem occur.

Unfortunately, the vast majority of IDS datasets that are openly

accessible have a tendency to be quite out of date. These datasets

do not provide an accurate portrayal of the traffic that occurs on

contemporary networks or of the potential dangers that they pose.

The solution to this problem could lay in the manual collection of

data or in the modification of duplicates of previously collected

datasets. Both of these options are open to consideration. It is

difficult to make direct comparisons between different methods

with regard to accuracy and the number of false-positive warnings

generated due to the lack of a universally recognized benchmark

for novel IDS implementations.

5.1 DARPA 1998 AND DARPA 1999

It is generally accepted that the availability of datasets

generated by the Defense Advanced Research Projects Agency

(DARPA) represents the absolute bare minimum that is necessary

for public access. The construction of it made use of, among other

things, data taken from the TCP/IP network as well as data taken

from the operating system. The foundational security records for

Solaris (root and user); Backups of the Solaris storage system.

This dataset includes information about a wide range of

products, including those that are currently in working order. The

period of time over which the information was collected was nine

weeks, with seven weeks being devoted to the training set and two

weeks being devoted to the test set. The year after DARPA 1998,

which was known as DARPA 1999, came after DARPA 1998. In

this particular instance, a total of 5 week worth of data was

collected, with 3 week worth of data pertaining to training and 2

week worth of data pertaining to evaluation respectively. The

most salient difference is the increase in the number of potential

attack avenues, which is discussed further below.

Despite the fact that these datasets are frequently marketed as

experimental datasets, we did not come across any innovative

strategies that make use of the DARPA 1998 or 1999 datasets

while conducting our investigation. This was the case despite the

fact that these datasets were created in 1998 and 1999. There are

a number of different potential explanations, one of which is the

fact that more recent proposals are gradually replacing older

datasets. This is happening because older datasets have

demonstrated an inability to reproduce real network systems with

sufficient precision, which is one of the reasons why more recent

proposals are gradually replacing older datasets.

5.2 KDD CUP 1999

In the process of evaluating IDSs, the dataset that was

displayed at the KDD Cup in 1999 is frequently used. For the

objective of this endeavor, the DARPA TCP/IP dataset from 1998

is utilized. The evaluation data for the DARPA 1998 competition

includes approximately 5 million submissions, while the training

data for the KDD Cup 1999 includes approximately 4,900,000

connection vectors. Each vector is assigned either a normal

connection status or an attack status based on the 41 individual

characteristics that comprise it. This status can either be a normal

connection or an attack. In addition to this, it could be any one of

the four different kinds of attacks that are described below:

• Denial of service (DOS): The denial of service, or DOS,

occurs when an adversary renders legitimate users of a

service resources inaccessible by overwhelming them with

an excessive number of malicious requests.

• User to root (U2R): The process of elevating an ordinary

user on a compromised system to the root level of privileges

by exploiting vulnerabilities in the system security is

referred to as user to root (U2R).

Dataset

Cleaning

Normalization

Feature

Selection

Training Set

Validation set

Test Set

Model

Training

Model

Testing
Outcome

E KAMALANABAN et al.: INTRUSION DETECTION SYSTEM TO AVOID MALICIOUS INTRUDERS IN HIGHER LAYER NETWORK SECURITY

2872

• Probe (probing): Probing refers to the process of

investigating a target or its surroundings for the purpose of

acquiring information about either the target or its

surroundings. Checking to see if certain ports are accessible

and determining how long a connection has been established

are just two instances of this.

• Root to local (R2L): R2L describes the process by which an

adversary can acquire local capabilities on a remote

computer.

The following is a list of some of the categories that can be

used to categorize the 41 different characteristics:

• Basic features— TCP communication fundamentals

• Content features— Content features are features that help

identify R2L and U2R attacks by characterizing invalid

behaviors for single connections. These behaviors include

attempts to connect to multiple hosts simultaneously.

Attacks such as R2L and U2R fall under this category of

behaviors.

• Traffic features— Characteristics of the flow of traffic that

are determined by a temporal window.

Table.1. KDD Cup 1999 Features

Feature set 1 Feature set 2

Duration Is_hot_login

Protocol_type Is_guest_login

Service Count

Flag Srv_count

Src_bytes Serror_rate

Dst_bytes Srv_serror_rate

Land Rerror_rate

Wrong_fragment Srv_rerror_rate

Urgent Same_srv_rate

Hot Diff_srv_rate

Num_failed_logins Srv_diff_host_rate

Logged_in Dst_host_count

Num_compromised Dst_host_srv_count

Root_shell Dst_host_same_srv_rate

Su_attempted Dst_host_diff_srv_rate

Num_root Dst_host_same_src_port_rate

Num_file_creations Dst_host_srv_diff_host_rate

Num_shells Dst_host_serror_rate

Num_access_files Dst_host_srv_serror_rate

Num_outbound_cmds Dst_host_rerror_rate

The KDD Cup 1999 had more than its share of issues, despite

the abundance of information and the widespread attention that

surrounded it. Some of them were carried over from the DARPA

98 dataset, such as the fact that it was entirely synthetic and there

was no investigation into the possibility of lost packets while it

was being produced. Other of them were carried over from the

DARPA 98 dataset. The data for the rest of them was brought over

from the DARPA 98 collection. The KDD Cup 1999 has issues

with repetitive records and an uneven distribution of violations,

both of which are problems in and of themselves, and both of

these issues are contributing factors to the overall problem.

5.3 NSL-KDD

The problems that were found in the DARPA and KDD Cup

1999 datasets prompted the creation of a new dataset known as

NSL-KDD. This dataset was developed in order to resolve the

problems that were found in those datasets. There are no

occurrences of duplicate entries found in either the training or the

testing groups. It is not necessary to generate test-specific subsets

of the dataset as the number of records in the dataset can be readily

managed due to this fact. The percentage of the original KDD Cup

1999 dataset that is made up of particular records is inversely

proportional to the number of records that are included in each

complexity level category of the competition. In spite of the fact

that NSL-KDD has quite a few shortcomings, the quality of the

program as a whole makes it suitable for use in IDS

benchmarking.

5.4 UNSW-NB15

After making extensive use of the databases from both the

KDD Cup 1999 and the NSL-KDD, the following challenges

were found to exist: In some domains, our understanding is

deficient, specifically in regards to the characteristics of low-

footprint attacks, transportation patterns, and the dissemination of

particular data sets.

The UNSW-NB15 algorithm came into existence as a direct

result of these worries. UNSW-NB15 includes 49 different

components. The information that has been provided to you

includes two distinct attributes: label, which can either be 0 or 1,

indicating that everything is normal; and attack_cat, which

identifies the type of attack that was carried out; both of these

attributes can be found in the information that has been provided

to you.

Table.2. UNSW-NB15 features

Feature set 1 Feature set 2

srcip sjit

sport djit

dstip stime

dsport ltime

proto sintpkt

state dintpkt

dur tcprtt

sbytes synack

dbytes ackdat

sttl is_sm_ips_ports

dttl ct_state_ttl

sloss ct_flw_http_mthd

dloss is_ftp_login

service ct_ftp_cmd

sload ct_srv_src

dload ct_srv_dst

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2023, VOLUME: 14, ISSUE: 01

2873

spkts ct_dst_ltm

dpkts ct_src_ ltm

swin ct_src_dport_ltm

dwin ct_dst_sport_ltm

stcpb ct_dst_src_ltm

dtcpb attack_cat

5.5 KYOTO2006+

The Kyoto 2006+ dataset is yet another example of benchmark

data that can be readily accessed and utilized for IDS training and

testing without incurring any costs whatsoever. There are twenty-

four distinct characteristics of networks that are described in this

article; all of these characteristics were taken from the computers

at Kyoto University. 14 of the components were taken from the

KDD Cup 1999, while the other ten are completely original. The

collection of information took place between the years 2006 and

2009. It was designed in order to assume the role of the 1999 KDD

Cup, which it did successfully. In addition, a description of the

benchmark edition, which comes packed with seventeen different

features, is included. (14 derived from the KDD Cup of 1999 and

3 additional).

5.6 RESULTS AND DISCUSSION

LGBM_TPE, LGBM, LogReg, GBDT and XGBDT are just

some of the examples of examples of machine learning (ML)

techniques that were taken into consideration during each of the

two different stages that made up our experimentation plan. Other

examples include LGBM_TPE, LGBM, LogReg, GBDT and

XGBDT. These phases were split apart by a distinct phase break

that occurred in between them. In the first phase of the

experiments, we used the full feature space of the UNSW-NB15,

which comprised of 42 different characteristics for both the binary

and the multiclass configurations. This was done so that we could

evaluate the accuracy of the classification.

Table.3. Average Values of all the datasets

Model Accuracy Recall Precision f1-Measure

LGBM_TPE 0.9091 0.9014 0.9156 0.9085

LGBM 0.8881 0.8605 0.9116 0.8853

LogReg 0.8193 0.8198 0.8189 0.8194

GBDT 0.8438 0.8280 0.8553 0.8414

XGB 0.9630 0.8196 0.9011 0.8584

Table.4. Performance of DARPA 1998 AND DARPA 1999

ML method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LGBM_TPE 95.46 95.17 87.60 82.37 99.06 89.95

LGBM 94.17 93.82 80.40 74.07 99.95 85.08

LogReg 97.75 94.56 84.03 79.96 95.26 86.94

GBDT 71.71 71.35 63.06 61.53 89.49 71.91

XGB 94.61 94.33 89.03 84.77 97.46 90.92

Table.5. Performance of KDD CUP 1999

ML method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LGBM_TPE 95.55 95.27 87.68 82.46 99.16 90.04

LGBM 94.27 93.91 80.48 74.14 99.95 85.17

LogReg 97.85 94.65 84.11 80.04 95.36 87.03

GBDT 71.78 71.42 63.12 61.59 89.57 71.98

XGB 94.70 94.42 89.12 84.85 97.55 91.01

Table.6. Performance of NSL-KDD

ML Method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LGBM_TPE 96.87 96.51 91.67 96.89 91.66 92.84

LGBM 91.54 89.63 79.44 93.24 79.45 80.76

LogReg 99.11 93.14 84.97 91.88 85.12 87.32

GBDT 64.77 63.85 74.06 57.55 75.16 65.19

XGB 94.18 93.81 80.05 96.77 80.06 61.97

E KAMALANABAN et al.: INTRUSION DETECTION SYSTEM TO AVOID MALICIOUS INTRUDERS IN HIGHER LAYER NETWORK SECURITY

2874

Table.7. Performance of UNSW-NB15

ML Method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LGBM_TPE 96.33 95.66 93.97 96.38 93.99 93.69

LGBM 87.93 87.06 79.15 85.93 79.15 79.96

LogReg 95.21 96.83 87.65 93.64 87.65 89.48

GBDT 64.98 64.22 74.59 65.40 74.58 62.20

XGB 95.47 95.08 81.92 96.57 81.90 83.96

Table.8. Performance of KYOTO2006+

ML Method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LGBM_TPE 97.18 96.51 94.79 97.23 94.82 94.51

LGBM 88.70 87.82 79.85 86.69 79.85 80.67

LogReg 95.09 97.68 88.42 94.46 88.42 90.27

GBDT 65.55 64.78 75.25 65.98 75.24 62.75

XGB 96.31 95.92 82.64 97.42 82.63 84.70

The XGBoost technique for selecting features was

incorporated into the process during the second iteration.

Following this, a reduced feature vector was constructed, which

includes 19 distinct characteristics, as shown in Table.1 and

Table.2. We ran experiments using the binary classification stage

as well as the multiclass classification stage while utilizing the

optimal feature vector.

In Table.3-Table.8, we can see the results obtained by the ML

algorithms when the binary classification method was applied to

the decreased feature vector that was obtained from the previous

table. This was done in order to ensure that the findings are as

accurate as possible. The outcomes of the ML algorithm attempt

at multiclass categorization are presented in the Table.3-Table.7

that can be found further down the page.

These tables show the results that were obtained when the

entire feature space was used in comparison to the reduced feature

vector. AC appears in each picture to denote the accuracy of the

training data. The precision obtained through the process of

validation is denoted.

The proposed IDS experiments all made use of the Adam

solver, which is a stochastic gradient-based technique that

functions exceptionally well with massive datasets. This was done

in place of the more conventional stochastic gradient descent.

The speed at which the instruction was given could be changed

as necessary. According to Table.4, the proposed IDS network

that had the best overall performance used 150 neurons and an

adaptive learning rate of 0.02 in order to achieve an accuracy rate

of 87% over the test set. This was accomplished by using a neural

network that had the greatest overall performance.

In spite of the fact that the LR technique was capable of

carrying out a maximum of one thousand iterations, the number

ten was selected for the random state. The results of conducting

binary classification on the test set using either the entire feature

space or just a subset of that space are presented in Table.4 and

Table.5, respectively. In terms of accuracy, the full feature space

generated rates of 80%, while the subset produced rates of 78%.

According to the findings, a kNN classifier with three

neighbors that utilized the entirety of the feature space was able

to achieve a test score of 84% in a multiclass classification

scenario. This score was achieved by successfully classifying the

data. In the case of the reduced feature dimension, the kNN

technique achieved an accuracy of 85% when it was given 9

neighbors and was not permitted to overfit the data. This was the

situation when it was not allowed to overfit the data.

We put the DT classifier through its tests by employing a

variety of models, some of which were based on the height of the

branches at their broadest point, in order to evaluate its

performance. The range that is provided by the

maximum_depth_values parameter indicates the stages that could

be used in the game. According to the findings, the DT was able

to achieve a test score of 85% when it was used with 19 features,

but it was only able to achieve an accuracy of 88% when it was

used with 42 features in a binary categorization scenario. When

the binary classification was performed using both the full feature

dimension and the reduced one, the DT achieved a higher test

accuracy score than the other ML techniques did. This was the

case when both the complete feature dimension and the reduced

one were used.

6. CONCLUSION

Research into this area has become one of the top priorities of

the growing importance of using deep learning algorithms in

practical applications. Utilizing numerous deep networks, which

are part of the larger category of methods known as deep learning,

is one way to boost the efficiency of IDSs. Deep learning models

have substantially better fitting and generalization abilities when

compared to more surface-level machine learning models. Deep

learning techniques, on the other hand, don't need any feature

engineering or domain knowledge, in contrast to shallow machine

learning models. This is in stark contrast to the requirement for

such knowledge in shallow machine learning models.

Nevertheless, in order for deep learning models to fulfill the real-

time requirements of IDSs, the execution of these models

typically takes an inordinate amount of time.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2023, VOLUME: 14, ISSUE: 01

2875

REFERENCES

[1] Jiankun Hu, Xinghuo Yu, D. Qiu and Hsiao-Hwa Chen, “A

Simple and Efficient Hidden Markov Model Scheme for

Host-Based Anomaly Intrusion Detection”, IEEE Network,

Vol. 23, No. 1, pp. 42-47, 2009.

[2] K.K. Gupta, and R. Kotagiri, “Layered Approach Using

Conditional Random Fields for Intrusion Detection”, IEEE

Transactions on Dependable and Secure Computing, Vol. 7,

No. 1, pp. 35-49, 2010.

[3] S. Devaraju and S. Ramakrishnan, “Performance Analysis

of Intrusion Detection System using Various Neural

Network Classifiers”, Proceedings of International

Conference on International Conference on Recent Trends

in Information Technology, pp. 1033-1038, 2011.

[4] Mendonça, R. V., Teodoro, A. A., Rosa, R. L., Saadi, M.,

Melgarejo, D. C., Nardelli, P. H., & Rodríguez, D. Z. (2021).

IDS based on fast hierarchical deep convolutional neural

network. IEEE Access, 9, 61024-61034.

[5] Neveen I. Ghali, “Feature Selection for Effective

AnomalyBased Intrusion Detection”, International Journal

of Computer Science and Network Security, Vol. 9, No. 3,

pp. 285-289, 2009.

[6] R. Plutchik, “Emotion: Theory, Research, and Experience”,

Academic Press, 1980.

[7] P.R. Kanna and P. Santhi, “Unified Deep Learning

Approach for Efficient IDS using Integrated Spatial-

Temporal Features”, Knowledge-Based Systems, Vol. 226,

pp. 107132-107143, 2021.

[8] H. Hindy, E. Bayne and M. Bures, “Machine Learning

Based IoT Intrusion Detection System: An MQTT Case

Study”, Proceedings of International Conference on

Network, pp.1-14, 2020.

[9] M. Zhou, L. Han, H. Lu and C. Fu, “Intrusion Detection

System for IoT Heterogeneous Perceptual Network”, Mobile

Networks and Applications, Vol. 33, No. 1, pp. 1-14, 2020.

[10] L. Xiao, X. Wan, X. Lu and Y. Zhang, “IoT Security

Techniques based on Machine Learning: How do IoT

Devices use AI to Enhance Security?”, IEEE Signal

Processing Magazine, Vol. 35, No. 5, pp. 41-49, 2018.

[11] B. Gobinathan and V.P. Sundramurthy, “A Novel Method to

Solve Real Time Security Issues in Software Industry using

Advanced Cryptographic Techniques”, Scientific

Programming, Vol. 2021, pp. 1-9, 2021.

[12] Z.K. Maseer, “Benchmarking of Machine Learning for

Anomaly Based IDSs in the CICIDS2017 Dataset”, IEEE

Access, Vol. 9, pp. 22351-22370, 2021.

[13] X. Li and L. Wu, “Building Auto-Encoder IDS based on

Random Forest Feature Selection”, Computers and Security,

Vol. 95, pp. 101851-101865, 2020.

[14] T. Saba and S.A. Bahaj, “Anomaly-based IDS for IoT

Networks through Deep Learning Model”, Computers and

Electrical Engineering, Vol. 99, pp. 107810-107818, 2022.

[15] R. Ferdiana, “A Systematic Literature Review of IDS for

Network Security: Research Trends, Datasets and Methods”,

Proceedings of International Conference on Informatics and

Computational Sciences, pp. 1-6, 2020.

