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Abstract 

Online criminals are focusing their attention more and more on 

ordinary computer users, seeking to take advantage of them through a 

variety of social and technological exploitation techniques. Some 

hackers are getting more skilled and determined. The ability to conceal 

their identities, keep their communications secret, keep their finances 

separate from their activities, and make use of private infrastructure 

are all areas in which cybercriminals have shown a high degree of 

proficiency. It is of the utmost importance to safeguard computers with 

surveillance systems that are able to identify complex varieties of 

malware. In this paper, we utilized machine learning algorithm to 

validate the samples from different datasets. The machine learning 

classifier is utilized to find the efficacy of the entire model in validating 

the class samples. The simulation is conducted in python to test the 

efficacy of the model against various class of datasets. The results show 

that the proposed method achieves higher degree of accuracy than the 

other models. 
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1. INTRODUCTION 

An additional critical component of internet security is the 

intrusion surveillance system. Intrusion Detection Systems (IDS) 

are responsible for analyzing the traffic on a network or a portion 

of the general computing environment in order to look for 

indications of malicious behavior. 

As a result of increased research and development efforts in 

this field, significant progress has been made in a number of 

subfields of artificial intelligence (AI), including pattern 

identification and anomaly finding. These advancements have 

been made possible as a result of recent breakthroughs in AI. It is 

common practice to use neural networks (NN) to find solutions to 

challenges of this kind, and the range of situations in which they 

can be applied has grown substantially over the past few years. 

The increase in the total quantity of computing capacity that is 

currently available is the primary explanation for this 

phenomenon. Researchers were forced to make adjustments to the 

IDS architectures that were already in place as a result of this 

circumstance [1]. 

IDSs, also known as IDS, are organizations that monitor 

computer systems and networks for unwanted or illegal activity. 

These organizations are also known by their acronym, IDS. When 

it comes to classifying IDS, there are a variety of different 

techniques. The primary differentiating factors between the first 

two categories, which are divided according to where the 

malicious behavior was identified, are the network and the server 

[2]. Network-based IDSs are concerned with the security of 

networks and perform monitoring and analysis of data collected 

from networks. Additionally, these systems monitor and analyze 

data collected from other networks. In host-based IDSs, the 

software environment of a particular computer, in addition to the 

processes and events that take place on that machine, is monitored 

in order to identify any nefarious actions that may have taken 

place [3]. 

Signature-based (misuse-based), anomaly-based, and hybrid 

IDSs (IDSs) are three further subcategories of IDSs that can be 

further subcategorized based on the data analytics techniques that 

have been implemented. The purpose of the signature-based 

technique is to analyze network packets or data from a specific 

system (such as logs), with the goal of locating signatures or 

patterns that are indicative of malicious behavior. This can be 

done in order to protect the system from potential threats. Because 

it makes use of data that has been pre-annotated and retrieved 

from a database, this technique is significantly more effective than 

other approaches when it comes to defending against attacks that 

have been identified in the past [4]. It is a simple strategy that gets 

the job done, but it does have some drawbacks, such as the 

inability to distinguish brand-new types of attack and the 

requirement for regular database updates. Despite these 

drawbacks, the strategy is effective. However, it does get the task 

done [5]. 

An investigation of the data using an anomaly-based technique 

is carried out in order to identify network and system behaviors 

that are not typical. The goal of this endeavor is to find out what 

is causing the anomalous behavior. If the algorithm is trained 

using the data that has already been supplied, then achieving this 

objective might not be as difficult as it initially seems. The 

potential of the strategy that has been explained lies in the fact 

that, in contrast to other, more conventional techniques, it makes 

it possible to identify zero-day vulnerabilities [6]. In addition to 

this, it makes it much simpler to implement a more individualized 

and customized version of any given infrastructure. It is possible 

that these methods will discover situations that are anomalous but 

are not necessarily cyber security attacks because they are not 

only based on labeled data but are also taught to recognize 

anomalies based on data that was provided in the past. This is 

because these methods are taught to recognize anomalies based 

on data that was provided in the past. Because of this, there will 

be a significant increase in the number of false positive 

notifications [7]. 

Researchers have begun focusing their attention on 

developing IDS by making use of techniques associated with 

machine learning in an effort to find a solution that will fix the 

issues that were discussed earlier. The use of artificial intelligence 

techniques, such as machine learning, enables the independent 
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mining of large data sets for the purpose of gaining new insights 

[8].  

Machine learning-based IDSs are able to accomplish 

satisfactory detection levels when there is a sufficient amount of 

training data available. This is due to the fact that models created 

through machine learning are sufficiently generalizable to 

recognize novel attacks in addition to attack variants [9]. Because 

they do not require a significant amount of subject knowledge to 

develop and construct, IDSs that are based on machine learning 

are simple to develop and create [10].  

Deep learning, a subfield of machine learning, has shown 

remarkable progress in terms of efficiency in recent years. These 

improvements have been demonstrated by the subfield. Deep 

learning approaches are superior to more conventional machine 

learning methods in terms of their ability to manage enormous 

amounts of data. Deep learning is a subfield of machine learning. 

The methodologies of deep learning have the ability to 

automatically acquire feature representations from raw data, after 

which they can output the outcomes of their work. These 

approaches are not only effective but also easy to implement. 

2. LITERATURE SURVEY 

The feature engineering requires knowledge in the pertinent 

field, and the quality of the features themselves is frequently the 

limiting factor in the performance of recognition systems. The 

development of automated feature learning is a crucial component 

of detection methods that are based on deep learning. The all-

encompassing nature of these methods is rapidly propelling them 

to the forefront of IDS research, where they are swiftly becoming 

the industry standard [11]. 

Since deep learning techniques are able to process raw data 

directly, they are also able to perform categorization while 

simultaneously accumulating features. This is made possible by 

the fact that deep learning techniques can process data in their 

native format. In [12] suggested using convolutional neural 

networks in the process of identifying things as a means to 

improve accuracy. Both the NSL-KDD and the UNSW-NB 15 

databases were used in the research that was carried out by each 

of these organizations, respectively. Feature vectors are a specific 

form of data structure that is utilized by these collections. The 

feature vectors were originally transformed into photographs 

because CNNs work more effectively with data that is represented 

in a two-dimensional (2D) space. The total number of features 

increased from 41 to 464, and one-hot coding was utilized for the 

hypothetical features. Following that, we crafted a singular image 

by combining all of the individual 8-byte segments into one. 

Instead of the places being left blank, zeros were used to fill them 

in. A picture with the measurements of 8 pixels by 8 pixels was 

produced as a result of the application of the feature vectors to the 

production process. In the end, they decided to construct a CNN 

that had three levels in order to better coordinate the attack [13].  

For the feature extraction phase of the process, an 

unsupervised deep learning model can be utilized, while shallow 

models can be utilized for the classification stage of the process. 

According to author [14], the process of feature extraction was 

carried out using a sparse autoencoder, and the identification of 

attacks was carried out using an XGBoost model. During the 

course of their investigation, they made use of the information 

provided by NSL-KDD. They chose to conduct SMOTE sampling 

after determining that the information was biased in a particular 

direction. In order to ensure that no one group is 

disproportionately represented, the SMOTE method divides the 

bigger groups into an extremely large number of smaller 

subgroups that are easier to manage. A sparsity restriction is 

incorporated into the sparse autoencoder as a means of improving 

the autoencoder capacity to identify samples with which it was 

not previously familiar. In the end, a classification of the data that 

was collected was accomplished through the use of an XGBoost 

algorithm. 

Deep learning models generate results that are less than stellar 

when they are applied to datasets that are either too small or too 

imbalanced. Despite the fact that these models have made 

remarkable development in their ability to analyze large amounts 

of data, this is still the case. Even if there is only a limited amount 

of data to work with, increasing the recognition rate can be 

accomplished through the use of an adversarial learning strategy.  

Using a GAN,  it able to enhance the overall quality of the 

data. Because of the imbalance and the absence of novel data that 

is included in the dataset, machine learning models that have been 

trained on the KDD99 dataset suffer from poor generalizability. 

This is because the dataset contains neither balanced nor novel 

data. In order to address these issues, they utilized a GAN in order 

to increase the total quantity of data that was collected. The KDD-

99 flow data were very similar to the findings that the GAN model 

generated, which had a high degree of similarity [15].  

It is feasible to identify attack variants that would not have 

been possible without the inclusion of this generated data in the 

training collection. They chose eight different attacks to examine 

and then contrasted the accuracy rates of the initial dataset with 

those of the expanded dataset. The findings of the experiments 

demonstrated that adversarial learning was responsible for an 

improvement in the accuracy of seven out of the eight distinct 

types of attacks. 

3. LIGHTGBM 

The GBDT-based algorithm that was developed by Microsoft 

Research Asia and assigned the name LightGBM. The ultimate 

goal is to improve computational efficiency in order to solve 

problems associated with making predictions using large amounts 

of data. This will be accomplished by improving computational 

efficiency. Before continuing with these procedures, the GBDT 

algorithm will first select and separate the signs based on a 

previously determined order. This method requires more effort 

and memory than any other approach, but it provides a split-off 

point that is more accurate than any other method. In order to 

accomplish these goals, LightGBM employs a histogram-based 

algorithm in association with a leaf-wise tree development 

strategy that is limited to a maximum depth. This combination of 

tools is bound to a maximum tree depth. 

The DT method, which is illustrated here in Figure 4, makes 

use of histograms as one of its components. This provides a good 

illustration of the s-bin discretization technique, which is used to 

separate consecutive floating-point eigenvalues. As soon as that 

step is finished, the histogram of breadth is constructed using 

these divisions as the fundamental units of its construction. The 

histogram is used to collect the important statistics after the data 
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has been traversed for the very first time. These statistics include 

the sum of the gradients and the number of samples that are 

contained in each bin. It is possible to use the discrete value of the 

histogram as a tool to assist in determining the best location at 

which to segment the data. The costs that are typically incurred 

for storing data and carrying out computations are cut down 

thanks to the utilization of this approach. 

The leaf-based growth technique of development known as 

level-wise requires synchronized leaf division among the plants 

that are on the same layer. This is done in order to maximize crop 

yield. It is to one advantage to optimize using a variety of 

procedures and to maintain control over the degree to which the 

model is complicated. Despite the fact that different leaves on the 

same layer receive information in distinctive ways, the data from 

those leaves is nevertheless processed in the same manner. It is 

possible for us to determine the anticipated decrease in entropy 

that will take place of attribute-based partitioning of the nodes by 

making use of the formula.  
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where  

En(B) - information entropy  

B - collection ,  

pd - ratio of the collection B w.r.t category d,  

D - categories,  

v - V attribute value, and  

Bv - Bth subset. 

This strategy is inefficient because it requires searching and 

splitting a large number of leaves, which results in a negligible 

increase in information obtained but consumes a significant 

quantity of additional memory. Additionally, the information 

gained from searching and splitting these leaves is not particularly 

useful. In comparison, the efficiency of the leaf-wise growth 

strategy can be improved by dividing the leaf into two parts only 

when doing so will result in the greatest information gain on the 

same layer. This is the case when dividing the leaf into two parts 

will maximize the information gain on the same layer. Because 

this method may produce trees with a high depth, which can 

contribute to overfitting, a maximum depth limitation is 

implemented during the development of the tree. This is done 

because there is a possibility that this method will result in trees 

having a deep trunk. 

LightGBM uses the leaf-wise tree growth algorithm, as 

opposed to the depth-wise tree growth algorithm that is used by a 

significant number of other well-known algorithms. The depth-

wise tree growth algorithm is more common. Using the leaf-wise 

growth method as opposed to the depth-wise growth method 

makes it possible to achieve convergence more quickly; however, 

if appropriate hyperparameterization is not performed, overfitting 

may occur. The act of making adjustments to the values of an 

algorithm hyperparameters in order to enhance the performance 

of a model is referred to as hyperparameter optimization, which is 

also the name of the term for the process. 

To improve the overall performance of the LightGBM models, 

we use the Tree-structured Parzen Estimator (TPE) algorithm that 

we developed in this article to optimize the hyperparameters of 

those models. This was done so that we could improve the overall 

performance of the LightGBM models. To be more particular, 

TPE employs a method known as iterative sequential model-

based optimization (SMBO) in order to construct a reaction 

surface model and collect additional data. This is done in order to 

improve the accuracy of the model. The construction of the model 

in SMBO is influenced by a number of variables, including the 

following: 

 H, {(x(1), f(x(1))), (x(2), f(x(2)))⋯(x(k), f(x(k)))} (3) 

The hyperparameter configuration space and historical lists of 

observed variables, respectively.  

The Kernel Density Estimation (KDE) method is utilized in 

the development of the substitute function that is produced by the 

TPE methodology. In opposition to the other SMBOs, which 

construct the surrogate function through the use of regression as 

the primary method, TPE builds the function through the 

application of a categorization strategy. The algorithm can be 

disassembled into its component components, which will be 

discussed further on in this section. 

Step 1: Initialize the arrays of observed variables H by using the 

hyperparameters that were chosen at random. This is the very first 

thing that needs to be done. 

Step 2: Define a model p(x/y) for representing the data that is 

based on the ordered H with respect to y.  
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where  

y∗ - yth quantile,  

l(x) - xi observations density  

f(xi) - corresponding loss, and  

g(x) - residual observation density. 

Step 3: The tree-like representation of l and g, choose a sizable 

group of candidates to evaluate with g(x)/l(x). This should be done 

before moving on to step four. The software at the conclusion of 

each cycle, return the EI number x∗ that is the highest. 

Draw many candidates from the tree-structured form of, and 

evaluate them according to. On each iteration, the algorithm 

returns the with the greatest EI. 

Step 4: Add x∗ and f(x∗) to the H after each repetition that is 

performed. 

4. IDS FRAMEWORK 

The architectural design of the system proposed in this 

research is detailed in Fig. 5. The first block is all about data 

processing. This process is often referred to as the data 

engineering. This step is critical for a successful learning process. 

Data processing has three steps, namely, cleaning, normalization 

and feature selection. The feature selection process is conducted 

using a filter-based method inspired by the XGBoost algorithm 

for generating feature importances scores. Once the required 

feature vector is selected; the next process involves model training 

https://link.springer.com/article/10.1186/s40537-020-00379-6#Fig5
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using the training set. A trained model is then validated with the 

validation set. Finally, the test dataset is used to test the validated 

model. The procedure described above happens in an iterative 

manner till a tuned and fit model is found. 

 

Fig.1. Proposed IDS Architecture 

4.1 FEATURE NORMALIZATION 

During the learning process, the high numerical value of a 

variety of characteristics can have an effect on a variety of 

machine learning algorithms, such as SVM, LR, ANN, and kNN, 

to name just a few of the available options. In addition to this, in 

order to learn about high-dimensional databases, one needs a 

considerable amount of computational resources. In most cases, 

the effects of these problems can be mitigated through the 

implementation of data scaling techniques. When we are dealing 

with the data, we scale it based on the values that are at the lowest 

and highest extremes. (Eq. 5). 

(5) 

The standardization computation will take place according to 

the steps specified in Algorithm 1 if a dataset is provided with an 

input vector (feature space) represented by U(f1,..., fn) 1<n<N1, 

where N is the total number of instances (features) in the space. 

This is the case if a dataset is provided with an input vector 

(feature space) represented by U(f1,..., fn). 

5. DATASETS 

When training a neural network, a significant amount of data 

is necessary because, in its absence, it is impossible to arrive at an 

accurate approximation of the correlation that exists between the 

input and the output. The process of learning through supervision 

is especially susceptible to having this problem occur. 

Unfortunately, the vast majority of IDS datasets that are openly 

accessible have a tendency to be quite out of date. These datasets 

do not provide an accurate portrayal of the traffic that occurs on 

contemporary networks or of the potential dangers that they pose. 

The solution to this problem could lay in the manual collection of 

data or in the modification of duplicates of previously collected 

datasets. Both of these options are open to consideration. It is 

difficult to make direct comparisons between different methods 

with regard to accuracy and the number of false-positive warnings 

generated due to the lack of a universally recognized benchmark 

for novel IDS implementations. 

5.1 DARPA 1998 AND DARPA 1999 

It is generally accepted that the availability of datasets 

generated by the Defense Advanced Research Projects Agency 

(DARPA) represents the absolute bare minimum that is necessary 

for public access. The construction of it made use of, among other 

things, data taken from the TCP/IP network as well as data taken 

from the operating system. The foundational security records for 

Solaris (root and user); Backups of the Solaris storage system. 

This dataset includes information about a wide range of 

products, including those that are currently in working order. The 

period of time over which the information was collected was nine 

weeks, with seven weeks being devoted to the training set and two 

weeks being devoted to the test set. The year after DARPA 1998, 

which was known as DARPA 1999, came after DARPA 1998. In 

this particular instance, a total of 5 week worth of data was 

collected, with 3 week worth of data pertaining to training and 2 

week worth of data pertaining to evaluation respectively. The 

most salient difference is the increase in the number of potential 

attack avenues, which is discussed further below. 

Despite the fact that these datasets are frequently marketed as 

experimental datasets, we did not come across any innovative 

strategies that make use of the DARPA 1998 or 1999 datasets 

while conducting our investigation. This was the case despite the 

fact that these datasets were created in 1998 and 1999. There are 

a number of different potential explanations, one of which is the 

fact that more recent proposals are gradually replacing older 

datasets. This is happening because older datasets have 

demonstrated an inability to reproduce real network systems with 

sufficient precision, which is one of the reasons why more recent 

proposals are gradually replacing older datasets. 

5.2 KDD CUP 1999 

In the process of evaluating IDSs, the dataset that was 

displayed at the KDD Cup in 1999 is frequently used. For the 

objective of this endeavor, the DARPA TCP/IP dataset from 1998 

is utilized. The evaluation data for the DARPA 1998 competition 

includes approximately 5 million submissions, while the training 

data for the KDD Cup 1999 includes approximately 4,900,000 

connection vectors. Each vector is assigned either a normal 

connection status or an attack status based on the 41 individual 

characteristics that comprise it. This status can either be a normal 

connection or an attack. In addition to this, it could be any one of 

the four different kinds of attacks that are described below: 

• Denial of service (DOS): The denial of service, or DOS, 

occurs when an adversary renders legitimate users of a 

service resources inaccessible by overwhelming them with 

an excessive number of malicious requests. 

• User to root (U2R): The process of elevating an ordinary 

user on a compromised system to the root level of privileges 

by exploiting vulnerabilities in the system security is 

referred to as user to root (U2R).  

Dataset 

Cleaning 

Normalization 

Feature 

Selection 

Training Set 

Validation set 

Test Set 

Model 

Training 

Model 

Testing 
Outcome 
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• Probe (probing): Probing refers to the process of 

investigating a target or its surroundings for the purpose of 

acquiring information about either the target or its 

surroundings. Checking to see if certain ports are accessible 

and determining how long a connection has been established 

are just two instances of this. 

• Root to local (R2L): R2L describes the process by which an 

adversary can acquire local capabilities on a remote 

computer. 

The following is a list of some of the categories that can be 

used to categorize the 41 different characteristics: 

• Basic features— TCP communication fundamentals 

• Content features— Content features are features that help 

identify R2L and U2R attacks by characterizing invalid 

behaviors for single connections. These behaviors include 

attempts to connect to multiple hosts simultaneously. 

Attacks such as R2L and U2R fall under this category of 

behaviors. 

• Traffic features— Characteristics of the flow of traffic that 

are determined by a temporal window. 

Table.1. KDD Cup 1999 Features  

Feature set 1 Feature set 2 

Duration Is_hot_login 

Protocol_type Is_guest_login 

Service Count 

Flag Srv_count 

Src_bytes Serror_rate 

Dst_bytes Srv_serror_rate 

Land Rerror_rate 

Wrong_fragment Srv_rerror_rate 

Urgent Same_srv_rate 

Hot Diff_srv_rate 

Num_failed_logins Srv_diff_host_rate 

Logged_in Dst_host_count 

Num_compromised Dst_host_srv_count 

Root_shell Dst_host_same_srv_rate 

Su_attempted Dst_host_diff_srv_rate 

Num_root Dst_host_same_src_port_rate 

Num_file_creations Dst_host_srv_diff_host_rate 

Num_shells Dst_host_serror_rate 

Num_access_files Dst_host_srv_serror_rate 

Num_outbound_cmds Dst_host_rerror_rate 

The KDD Cup 1999 had more than its share of issues, despite 

the abundance of information and the widespread attention that 

surrounded it. Some of them were carried over from the DARPA 

98 dataset, such as the fact that it was entirely synthetic and there 

was no investigation into the possibility of lost packets while it 

was being produced. Other of them were carried over from the 

DARPA 98 dataset. The data for the rest of them was brought over 

from the DARPA 98 collection. The KDD Cup 1999 has issues 

with repetitive records and an uneven distribution of violations, 

both of which are problems in and of themselves, and both of 

these issues are contributing factors to the overall problem. 

5.3 NSL-KDD 

The problems that were found in the DARPA and KDD Cup 

1999 datasets prompted the creation of a new dataset known as 

NSL-KDD. This dataset was developed in order to resolve the 

problems that were found in those datasets. There are no 

occurrences of duplicate entries found in either the training or the 

testing groups. It is not necessary to generate test-specific subsets 

of the dataset as the number of records in the dataset can be readily 

managed due to this fact. The percentage of the original KDD Cup 

1999 dataset that is made up of particular records is inversely 

proportional to the number of records that are included in each 

complexity level category of the competition. In spite of the fact 

that NSL-KDD has quite a few shortcomings, the quality of the 

program as a whole makes it suitable for use in IDS 

benchmarking. 

5.4 UNSW-NB15 

After making extensive use of the databases from both the 

KDD Cup 1999 and the NSL-KDD, the following challenges 

were found to exist: In some domains, our understanding is 

deficient, specifically in regards to the characteristics of low-

footprint attacks, transportation patterns, and the dissemination of 

particular data sets. 

The UNSW-NB15 algorithm came into existence as a direct 

result of these worries. UNSW-NB15 includes 49 different 

components. The information that has been provided to you 

includes two distinct attributes: label, which can either be 0 or 1, 

indicating that everything is normal; and attack_cat, which 

identifies the type of attack that was carried out; both of these 

attributes can be found in the information that has been provided 

to you. 

Table.2. UNSW-NB15 features 

Feature set 1 Feature set 2 

srcip sjit 

sport djit 

dstip stime 

dsport ltime 

proto sintpkt 

state dintpkt 

dur tcprtt 

sbytes synack 

dbytes ackdat 

sttl is_sm_ips_ports 

dttl ct_state_ttl 

sloss ct_flw_http_mthd 

dloss is_ftp_login 

service ct_ftp_cmd 

sload ct_srv_src 

dload ct_srv_dst 
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spkts ct_dst_ltm 

dpkts ct_src_ ltm 

swin ct_src_dport_ltm 

dwin ct_dst_sport_ltm 

stcpb ct_dst_src_ltm 

dtcpb attack_cat 

5.5 KYOTO2006+ 

The Kyoto 2006+ dataset is yet another example of benchmark 

data that can be readily accessed and utilized for IDS training and 

testing without incurring any costs whatsoever. There are twenty-

four distinct characteristics of networks that are described in this 

article; all of these characteristics were taken from the computers 

at Kyoto University. 14 of the components were taken from the 

KDD Cup 1999, while the other ten are completely original. The 

collection of information took place between the years 2006 and 

2009. It was designed in order to assume the role of the 1999 KDD 

Cup, which it did successfully. In addition, a description of the 

benchmark edition, which comes packed with seventeen different 

features, is included. (14 derived from the KDD Cup of 1999 and 

3 additional). 

5.6 RESULTS AND DISCUSSION 

LGBM_TPE, LGBM, LogReg, GBDT and XGBDT are just 

some of the examples of examples of machine learning (ML) 

techniques that were taken into consideration during each of the 

two different stages that made up our experimentation plan. Other 

examples include LGBM_TPE, LGBM, LogReg, GBDT and 

XGBDT. These phases were split apart by a distinct phase break 

that occurred in between them. In the first phase of the 

experiments, we used the full feature space of the UNSW-NB15, 

which comprised of 42 different characteristics for both the binary 

and the multiclass configurations. This was done so that we could 

evaluate the accuracy of the classification.  

Table.3. Average Values of all the datasets 

Model Accuracy Recall Precision f1-Measure 

LGBM_TPE 0.9091 0.9014 0.9156 0.9085 

LGBM 0.8881 0.8605 0.9116 0.8853 

LogReg 0.8193 0.8198 0.8189 0.8194 

GBDT 0.8438 0.8280 0.8553 0.8414 

XGB 0.9630 0.8196 0.9011 0.8584 

Table.4. Performance of DARPA 1998 AND DARPA 1999 

ML method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

LGBM_TPE 95.46 95.17 87.60 82.37 99.06 89.95 

LGBM 94.17 93.82 80.40 74.07 99.95 85.08 

LogReg 97.75 94.56 84.03 79.96 95.26 86.94 

GBDT 71.71 71.35 63.06 61.53 89.49 71.91 

XGB 94.61 94.33 89.03 84.77 97.46 90.92 

Table.5. Performance of KDD CUP 1999 

ML method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

LGBM_TPE 95.55 95.27 87.68 82.46 99.16 90.04 

LGBM 94.27 93.91 80.48 74.14 99.95 85.17 

LogReg 97.85 94.65 84.11 80.04 95.36 87.03 

GBDT 71.78 71.42 63.12 61.59 89.57 71.98 

XGB 94.70 94.42 89.12 84.85 97.55 91.01 

Table.6. Performance of NSL-KDD 

ML Method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

LGBM_TPE 96.87 96.51 91.67 96.89 91.66 92.84 

LGBM 91.54 89.63 79.44 93.24 79.45 80.76 

LogReg 99.11 93.14 84.97 91.88 85.12 87.32 

GBDT 64.77 63.85 74.06 57.55 75.16 65.19 

XGB 94.18 93.81 80.05 96.77 80.06 61.97 
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Table.7. Performance of UNSW-NB15 

ML Method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

LGBM_TPE 96.33 95.66 93.97 96.38 93.99 93.69 

LGBM 87.93 87.06 79.15 85.93 79.15 79.96 

LogReg 95.21 96.83 87.65 93.64 87.65 89.48 

GBDT 64.98 64.22 74.59 65.40 74.58 62.20 

XGB 95.47 95.08 81.92 96.57 81.90 83.96 

Table.8. Performance of KYOTO2006+ 

ML Method Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

LGBM_TPE 97.18 96.51 94.79 97.23 94.82 94.51 

LGBM 88.70 87.82 79.85 86.69 79.85 80.67 

LogReg 95.09 97.68 88.42 94.46 88.42 90.27 

GBDT 65.55 64.78 75.25 65.98 75.24 62.75 

XGB 96.31 95.92 82.64 97.42 82.63 84.70 

The XGBoost technique for selecting features was 

incorporated into the process during the second iteration. 

Following this, a reduced feature vector was constructed, which 

includes 19 distinct characteristics, as shown in Table.1 and 

Table.2. We ran experiments using the binary classification stage 

as well as the multiclass classification stage while utilizing the 

optimal feature vector. 

In Table.3-Table.8, we can see the results obtained by the ML 

algorithms when the binary classification method was applied to 

the decreased feature vector that was obtained from the previous 

table. This was done in order to ensure that the findings are as 

accurate as possible. The outcomes of the ML algorithm attempt 

at multiclass categorization are presented in the Table.3-Table.7 

that can be found further down the page.  

These tables show the results that were obtained when the 

entire feature space was used in comparison to the reduced feature 

vector. AC appears in each picture to denote the accuracy of the 

training data. The precision obtained through the process of 

validation is denoted.  

The proposed IDS experiments all made use of the Adam 

solver, which is a stochastic gradient-based technique that 

functions exceptionally well with massive datasets. This was done 

in place of the more conventional stochastic gradient descent. 

The speed at which the instruction was given could be changed 

as necessary. According to Table.4, the proposed IDS network 

that had the best overall performance used 150 neurons and an 

adaptive learning rate of 0.02 in order to achieve an accuracy rate 

of 87% over the test set. This was accomplished by using a neural 

network that had the greatest overall performance. 

In spite of the fact that the LR technique was capable of 

carrying out a maximum of one thousand iterations, the number 

ten was selected for the random state. The results of conducting 

binary classification on the test set using either the entire feature 

space or just a subset of that space are presented in Table.4 and 

Table.5, respectively. In terms of accuracy, the full feature space 

generated rates of 80%, while the subset produced rates of 78%. 

According to the findings, a kNN classifier with three 

neighbors that utilized the entirety of the feature space was able 

to achieve a test score of 84% in a multiclass classification 

scenario. This score was achieved by successfully classifying the 

data. In the case of the reduced feature dimension, the kNN 

technique achieved an accuracy of 85% when it was given 9 

neighbors and was not permitted to overfit the data. This was the 

situation when it was not allowed to overfit the data. 

We put the DT classifier through its tests by employing a 

variety of models, some of which were based on the height of the 

branches at their broadest point, in order to evaluate its 

performance. The range that is provided by the 

maximum_depth_values parameter indicates the stages that could 

be used in the game. According to the findings, the DT was able 

to achieve a test score of 85% when it was used with 19 features, 

but it was only able to achieve an accuracy of 88% when it was 

used with 42 features in a binary categorization scenario. When 

the binary classification was performed using both the full feature 

dimension and the reduced one, the DT achieved a higher test 

accuracy score than the other ML techniques did. This was the 

case when both the complete feature dimension and the reduced 

one were used. 

6. CONCLUSION 

Research into this area has become one of the top priorities of 

the growing importance of using deep learning algorithms in 

practical applications. Utilizing numerous deep networks, which 

are part of the larger category of methods known as deep learning, 

is one way to boost the efficiency of IDSs. Deep learning models 

have substantially better fitting and generalization abilities when 

compared to more surface-level machine learning models. Deep 

learning techniques, on the other hand, don't need any feature 

engineering or domain knowledge, in contrast to shallow machine 

learning models. This is in stark contrast to the requirement for 

such knowledge in shallow machine learning models. 

Nevertheless, in order for deep learning models to fulfill the real-

time requirements of IDSs, the execution of these models 

typically takes an inordinate amount of time. 
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