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Abstract 

Vehicular Ad hoc Networks (VANETs) are one of the most advanced 

transportation networks that have attracted much attention in recent 

years. The VANETs are characterized by a large number of traffic 

flows, which make them a good choice for a wide range of applications. 

However, due to the unique characteristics of the VANET, routing 

algorithms present a significant obstacle that must be surmounted. In 

order to improve the communication quality, the research uses 

federated learning. The research demonstrates the capacity of the 

model to learn from its previous errors while also delivering more 

accurate projections using the federated learning. The findings of the 

simulation demonstrate that the model with a prediction accuracy of 4 

packets/s has the highest accuracy when compared to its 

contemporaries as well as other predicted models. The results show that 

the proposed method achieves higher rate of accuracy in transmitting 

the packets with reduced overhead than the other existing methods. 
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1. INTRODUCTION 

Vehicular Ad hoc Networks (VANETs) have gathered a lot of 

attention as a result of the possibilities they present for more 

advanced transportation networks [1]. By utilizing the VANET, 

which removes the necessity of relying on any established 

infrastructure, individual vehicles are afforded the opportunity to 

engage in safe and encrypted communication with one another. 

Professionals in the relevant sector have lauded it for the choices 

it gives users in terms of both protection and entertainment. It is 

still difficult to create a navigation system that is able to function 

in an environment that has a lot of motion going on in it.  

Data may become out of current as a consequence of increased 

mobility and variable topologies, which raises concerns regarding 

disconnectedness and the dropping of packets across vehicle 

networks. In an effort to find a solution to these problems, a 

number of different transportation strategies have been put into 

place. Both of these forwarding methods rely on a network 

topology to determine routes.  

The information that is included in routing modifications is 

what serves as the basis for topology-based forwarding. Both 

proactive and reactive routing are considered to be principal types 

of routing. Preemptive routing was developed first. 

Communication that is proactive has a low latency because it is 

based on having position information readily accessible in 

advance. Proactive routing methods incur a significant amount of 

additional work, also known as overhead, due to the frequent need 

to request for route updates. On the other hand, approaches call 

for a noticeably extended period of time due to the fact that the 

base station needs to determine the routes each time it sends out a 

communication [2]. 

Because of the one-of-a-kind characteristics of VANETs, 

routing algorithms present a significant obstacle that must be 

surmounted. This is the maximum number of packets that can be 

carried all the way from the input to the output of the device. Even 

relatively minor obstacles, such as traffic lights and bridges, have 

the potential to produce a network partition due to the large 

number of vehicles and the enormous nature with continuous 

density variations. This is because of the continuous density 

variations [3].  

The task of routing provides a significant challenge. However, 

because of the design characteristics of routing systems, such as 

mobility restrictions and uninterrupted road mobility, VANETs 

are able to use these characteristics to their advantage. This is due 

to the fact that routing systems are designed. Algorithms centered 

on mobility that estimate the length and breadth of a route based 

on relative movement variables are one category among the 

presently available routing algorithms for VANETs [4].  

Location routing protocols make use of coordinates to 

determine routes that bring the target vehicle closer to the user, 

whereas probabilistic routing protocols are used to anticipate 

incidents and ensure that VANET communication over the 

underlying infrastructure is dependable. Both of these types of 

routing protocols are used by probabilistic routing protocols. The 

proposed connectivity protocols are utilized to guarantee that 

VANET communication over the underlying infrastructure is 

carried out in a secure manner [5]. 

2. RELATED WORKS 

GeOpps-N is introduced as a cutting-edge hybrid routing 

protocol that was developed specifically for implementation in 

Public Transportation Systems with the intention of making it 

easier for vehicles and process control centers to communicate 

with one another. A new location update for the bus is expected 

to be provided at least once every thirty seconds. Data has to be 

transmitted due to the relatively low population density of the 

network and the continuous congestion that it experiences. It has 

been discovered that topology-based routing approaches are 

superior to geographic-based routing or storm routing in terms of 

their suitability for use in low-quantity environments [6]. This 

finding was made possible by the fact that topology-based routing 

approaches take into account the network structure. Rather than 

attempting to identify the person responsible for the conception of 

an idea from within the group that conceived the idea, these 
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methods look for the person who is the most qualified to convey 

an idea from the point where it was first conceived to the place 

where it will ultimately be implemented. When applied to 

networks that contain a large number of mobile devices [7], this 

strategy does not generate the optimal results that could be 

achieved. 

The fuzzy systems contribute the coordination and analysis of 

competing measures. This will be accomplished through the use 

of fuzzy logic. The method that has been proposed takes into 

consideration a number of different aspects, including the position 

and orientation of the vehicle, the standard of the network, and the 

amount of bandwidth that is available in order to select the next-

hop that will provide the best possible path for the transmission 

of data packets. This allows the method to select the next-hop that 

will provide the best possible path for the transmission of data 

packets. On the other hand, when implemented in a dynamic high-

speed network, this approach generates performances that are 

satisfactory [8]. 

A hop-greedy routing (HGR) method was developed as part 

of their research. In addition, the nodes that comprise the 

backbone are responsible for maintaining a record of the locations 

of the sender and the addressee. This enables the payload to be 

redirected through a different conduit, which gives the option to 

do so. Numerical models have demonstrated that the proposed 

routing strategy can increase the percentage of packets that are 

successfully delivered and can reduce the end-to-end latency. 

However, the increases in productivity are not nearly as 

substantial as one might expect [9]. 

Wherever urban environments are concerned, the AODV 

protocol Intersection-based Geographical Routing Protocol 

(IGRP) for VANETs functions more effectively than the other 

options that are currently accessible. IGRP pays special attention 

to the networks that act as road intersections because a signal must 

travel through a number of different networks before it can reach 

an HTTP server. The Quality-of-Service (QoS) criteria for 

acceptable latency, network capacity, and confidence interval are 

all satisfied, and the decision is constructed in such a way that an 

internet connection is guaranteed with a high probability between 

the two endpoints. However, its effectiveness is only about 

average when applied to networks that contain a significant 

number of mobile devices [10]. 

An investigation was conducted into the method by which data 

is transmitted in metropolitan VANETs, and an algorithm known 

as parking-area-assisted spider-web routing (PASRP) was 

proposed as a possible solution. The PASRP produces a spread 

arrangement in the form of a spider web based on the parking lot 

by making use of remote sensing, GPS, and a digital map. By 

sending out two control packets known as a request-spider and a 

confirm-spider, the network is able to determine the path that will 

result in the least amount of delay between the transmitting device 

and the receiving device. Following that, the research sends the 

data that is the most important as it travels along the route using a 

multi-mode greedy approach that takes into consideration the 

concept of dynamic multi-priority. Calculating the packet 

delivery ratio and the throughput are the only two metrics that the 

technique in question is concerned with [11]. 

The Traffic-Aware Routing for urban VANETs by employing 

RSU-assisted Q-learning is used to transport packages to their 

intended locations, a routing strategy in QTAR is comprised of a 

large number of high-availability road segments, and these road 

segments are selected on the fly. Routing packets within a road 

segment with Q-greedy geographical forwarding and distributed 

R2R Q-learning to reduce transmission delay, and routing packets 

at every transitional link with distributed R2R Q-learning to 

reduce the impact of high-speed traffic flows on path 

vulnerability. Both of these strategies aim to reduce transmission 

delay. Both of these routing techniques have the goal of 

minimizing the amount of time spent in transmission delay. On 

the other hand, this approach places an unhealthy amount of 

importance on performance and latency [12]. 

3. SPARSIFICATION  

The relationship between variables such as the size of the 

model, the number of training epochs, and the number of users 

determines how much it costs to communicate between nodes in 

FL. Many FL activities experience insufficient throughput. Our 

primary emphasis is on lowering the number of parameters that 

need to be passed between nodes in order to cut down on the cost 

of communication between them. This is one of the factors that 

determines how much it costs to communicate between nodes. In 

order to accomplish this, the research demonstrate that model 

sparsification offers a viable alternative for accomplishing the 

desired result by cutting down on the quantity of data that is 

utilized by the model.  

The process of sparsifying a model involves making use of 

only a small portion of the available parameters and setting the 

values of the remaining parameters to zero. The k variables that 

need to be chosen in compliance with the sparse ratio r are those 

that have the greatest magnitude in the gradient. The r serves as a 

symbol for the proportion of variables that need to be simplified 

into sparse form, and it represents this proportion as a symbol. 

During the succeeding training iteration, which will center on the 

residual set known as Wr, the remaining |W|-k parameters are 

going to be scrutinized for accuracy. 

It is possible that certain parameters, which frequently 

contribute to large magnitudes in the gradient, can dominate the 

sparsification process, and other pertinent parameters may not be 

shared with the peers, despite the fact that the gradients of 

parameters in the most recent iteration are stored as residuals. This 

is because it is possible that certain parameters frequently 

contribute to large magnitudes in the gradient. This is due to the 

fact that it is feasible for particular characteristics to take control 

of the sparsification process.  

When only a portion of the model is distributed to numerous 

clients, particularly in situations that do not involve IID, the local 

model performance on those clients is negatively affected. This is 

particularly the case when the IID situation is not present. In order 

to lessen the effect of the current gradient, our plan calls for an 

increase in sparsification, which would be accomplished by 

giving velocity to the residual. The training will consequently 

become more consistent as a consequence of this, which will 

ultimately result in enhanced performance. The momentum 

residual, which is denoted by R can be calculated with the help of 

the following algorithm: 

 Rt,i = βRt-1,i + (1-β) F(Wt,i),  (1)  

where β ∈ [0, 1] controls the balance between the current residual 

set and the residual set from previous rounds. The problem in 
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which only the model parameters with the largest magnitudes in 

the gradient are found as a result. 

The component  F(Wt,i) in the equation is a representation of 

an expected gradient of the local model. This gradient is 

determined based on client i at the moment t that it is calculated. 

The majority of the input consists of the two hyperparameters, 

β and r, as well as the parameters of the local model that will be 

used in a fashion that is shared with the neighbors. Additionally, 

there are some other parameters. Both the initial number of the 

filter and the remainder have been adjusted so that they both read 

zero.  

At the tth communication round, both the gradient that is 

obtained from the present Wt,i and the gradient that has been 

accumulated from previous iterations are considered in the 

process of determining the value of the residual rt,i. 

Both lines 4 and 5 illustrate how the sparse ratio r determines 

the number of common parameters k, and how the mask mt, which 

is a binary tensor, is constructed by making use of the k largest 

values of the remainder rt,i. Lines 4 and 5 also demonstrate how 

the sparse ratio r determines the number of common parameters 

k. The very last step in the procedure 

 wt,i = mt ◦ Wt,i  (2) 

where ◦ - Hadamard product.  

In the algorithm, line 6 explains how to calculate the residual 

for the following round, which is indicated by rt+1,i. This step is 

required before moving on to the next round. It is possible to 

achieve this result by subtracting the disguised gradient from the 

current residual, which is represented by the symbol rt,i. 

Algorithm 1: Sparsification Algorithm  

Input: Wt,i, β, and r  

Output: Sparse output: wt,i 

1: Initialize the mask: m0 = 0 

2: Initialize the residual: m0 = R0 = 0  

3: Find the gradient F(Wt,i) ← (Wt,i)  

4: Estimate Rt,i = βRt-1,i + (1-β) F(Wt,i)  

5: k ← r ∗ numel(Rt,i) 

6: Generate the mask mt in ascending order from Rt,i  

7: Rt+1,i = Rt,i - mt ◦ F(Wt,i)  

8: wt,i = mt ◦ Wt,i  

4. FEDERATED LEARNING 

According to the FL learning paradigm, a large number of 

participants exercise together; however, they do not centralize 

their data nor do they share it with one another.  

Let function L, which stands for global loss function is 

acquired by the weighted combination of K local losses, 

{Lk}Kk=1, which is computed from information Xk that is kept in 

private hands and is never shared among the parties involved in 

the transaction. Specifically, this information is never shared 

among the parties involved in the transaction. The formula for this 

function is:  

 ( )min ;L X   with ( );L X   = ( )
1

;
K

k k k

k

w L X 
=

  (3) 

Each of the weight coefficients are denoted by wk > 0, and the 

minimum value of this function is X. 

Individuals acquire and perfect a global consensus model by 

conducting a few iterations of optimization on their own, after 

which they communicate updates either directly or through a 

parameter server. This process results in the model being more 

accurate and complete. The model ends up being more accurate 

as a consequence of going through this procedure. The more 

repetitions of local training that are carried out, the less 

confidence one has in the procedure ability to reduce the equation 

that was discussed earlier.  

The specific method for aggregating parameters is one that 

must take into account the structure of the network. This is due to 

the fact that nodes may be divided into sub-networks on account 

of geographical or legal restrictions. Either in a centralized 

fashion or in a decentralized fashion, aggregation can be carried 

out. When using a centralized FL aggregation technique like the 

one used in Algorithm 1, only websites that are directly connected 

to one another have the ability to trade model updates.  

In the process of learning from one peers, it is possible to 

establish connections with all of the participants or with only a 

subset of them. Clients have the option of choosing to only share 

a subset of the parameters of the model in order to cut down on 

the amount of communication overhead, improve the level of 

privacy protection, generate multi-task learning algorithms with 

only a subset of their parameters learned in a federated manner, 

all of which may be used by aggregation strategies, or for any of 

the other reasons that have been listed above. 

Algorithm 2: Federated Algorithm 

Input: num_rounds T 

1: procedure Aggregate 

2: Initialise the FL: W(0) 

3: for t ← 1 to T do 

4: for packet k ← 1 ⋯ K do 

5: Send wt,i to k 

6: Enable training with iterations (Δwt,i,Nk) with Lk(Xk;wt,i) 

7: end for 

8: wt,i(t)← wt-1,i+ (∑kNk∑kNk⋅wt,i(k))-1 

9: end for 

10: return wt,i
 

11: end procedure 

4.1 FL ASSESSMENT 

In this section, the proposed method is tested in terms of 

communication efficiency and peer-to-peer learning ability. 

4.1.1 Communication Efficiency: 

Instructional material is still dispersed across a large number 

of clients in a federated learning environment, the vast majority 

of which have Internet connections that are either slow or 

inconsistent. In the context of federated learning, the following 

equations provide the total number of bits necessary for uplink 

(client-server) and downlink (server-client) communication by 

each of the K clients while they are being trained, assuming that 

a naive synchronous algorithm is being used: 

 Bup/down ∈ O(U×|w|×(H(△wup/down)+β))  (4) 
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where  

U - total updates by a client,  

|w| - model size and  

H(△wup/down) - weight entropy updates.  

β - difference between the true and minimal update size.  

There are three possible courses of action that can be taken in 

order to bring down the expense of communication, and they are 

as follows: It would be beneficial to cut down on (a) the number 

of users K, (b) the quantity of updates, and (c) the number of times 

updates are carried out U.  

4.1.2 Peer-to-Peer Learning: 

When it comes to federated learning, having a centralized 

server is an essential requirement in order to be able to manage 

the education for the worldwide model. However, if there are a 

considerable number of clients actively participating in the 

activity, the cost of communication to the central server may 

become excessive.  

Many peer-to-peer networks that exist in the real world are 

changeable, which means that it is not always possible to access a 

single server that is always online. This is one of the reasons why 

accessing a single server that is always online is not always 

possible. The training process for all clients would be halted if the 

central server were to become unavailable because all clients are 

dependent on a single, dependable central entity. This is because 

the training process is dependent on the availability of the central 

server. 

The immediate effect of this was that researchers started 

looking into various alternatives to the conventional centralized 

solution. Due to the fact that the data is only disseminated on a 

local level, clients can only communicate with their immediate 

neighbors in the graph or network. Each person starts by gathering 

information from their immediate neighborhood, which they then 

use to update their own local opinion based on the data they have 

collected based on the information they have gathered. 

When training the centralized model, the goal is to minimize 

loss in comparison to the standard distribution, which is defined 

as: 

 ,

1

K

k n k

k

D n D
=

=  ,  (5) 

where D pertains to the distribution of interest for the training 

collection. The problem is that making use of this particular 

regular distribution as an option is virtually never one that is 

prudent. 

5. PERFORMANCE ANALYSIS 

GrooveNet v2.0.1 was the tool that was used for the 

simulation; it is a hybrid simulator that incorporates mobility and 

network modeling, and it is both open source and free to use. The 

parameters of simulation is given in Table.1.  

Table.1. Simulation Parameters 

Parameter Value 

Area 0.5 Km2 

Maximum trip distance 1 km 

Rate of Transmission 3 Mbps 

Range of Transmission 300 m 

SNR 20dB 

Nodes mobility model Car-following model 

Group leader mobility Uniform speed 

Simulation Time 15 min 

Number of Nodes 20, 50, 100 

Iterated simulation 30 times/scenario 

Message lifetime 1 min 

Table.2. Performance of Routing metrics 

Node Delay Packet Drop Packet Delivery Ratio 

20 97.99 1.67 20.20 

40 37.38 10.09 33.34 

60 50.51 14.83 48.49 

80 95.96 51.06 59.60 

100 68.69 57.73 64.65 

Table.3. Performance of Network metrics 

Node Network  

Lifetime 

Fairness  

Index (FI) 

Energy  

Consumption (J) 

Throughput 

(KB/sec) 

20 342.97 4.29 0.25 1290.98 

40 671.07 2.44 0.32 1939.50 

60 529.32 1.81 0.35 1727.37 

80 374.58 1.59 0.43 1358.66 

100 310.84 1.41 0.52 1221.28 

The quantity of energy that is consumed by each node is 

carefully monitored and recorded. The consumption of half of the 

total quantity of energy occurs at node 100. The greater the 

number of servers that are a part of the network, the greater the 

quantity of electricity that is required to maintain the network 

functionality. 

Table.4. Energy Consumption (mJ) of higher nodes 

Node Date Rate 

4 6 8 10 12 14 

20 1353 905 682 505 396 392 

40 2273 1591 1243 973 657 606 

60 1873 1259 926 677 556 505 

80 1384 942 625 506 404 399 

100 1111 767 536 443 321 303 

The amount of time that each node in the network was active 

for was recorded. This location contains information regarding the 

lifespan of network node 100. The increased number of nodes in 

the network led to an increase in the network stability over time. 

The compilation of data includes a table that presents a 

breakdown of the throughput generated by the proposed method 

on a node-by-node basis. The results show that the proposed 

method achieves higher rate of accuracy in transmitting the 
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packets with reduced overhead than the other existing methods as 

in Table.2-Table.5. 

Table.5. Performance Assessment 

Metris Techniques 
Nodes 

20 40 60 80 

Delay (s) 

GeOpps 0.3021 10.1552 15.7753 15.8021 

IGRP 10.3310 29.9402 46.7015 46.5044 

FL 7.0127 17.3419 20.3831 19.7677 

Energy 

consumption 

(mJ) 

GeOpps 7.0711 3.0305 2.0203 2.0203 

IGRP 8.0813 5.0508 4.0406 3.0305 

FL 8.0813 4.0406 3.0305 2.0203 

Packet 

Drop 

GeOpps 0.6735 0.1805 0.1592 0.1566 

IGRP 1.0092 0.6204 0.4501 0.3938 

FL 1.0030 0.5269 0.3442 0.3120 

Throughput 

(Bps) 

GeOpps 42084 28279 30870 40502 

IGRP 13720 18976 204357 22525 

FL 25276 22267 26826 32261 

Fairness 

Index 

(FI) 

GeOpps 66.6703 17.1727 15.1523 15.1523 

IGRP 100.0055 61.6195 44.4469 38.3859 

FL 100.0055 52.5281 34.3453 30.3047 

The output is significantly higher than that of the methods that 

have been used in the past. The technique that has been proposed 

deviates significantly from the methods that are being used at the 

moment in a number of essential respects, the most notable of 

which is the incorporation of a fairness score. 

6. CONCLUSION 

The goal is to improve the communication quality on the 

VANET, and the method that the research uses federated learning. 

The research demonstrates the model capacity to learn from its 

previous errors while also delivering more accurate projections 

for the future. Moreover, this enables us to make better use of the 

model. In contrast to other more traditional types of time series 

prediction models, this learning framework is able to improve its 

predictive accuracy with each training session that it undergoes. 

In addition, the evaluation of the traffic number that is produced 

by the model will be more accurate the more data that is input into 

it. The real-time traffic prediction can produce more accurate 

results, making it an important component of the process. The 

findings of the simulation demonstrate that the model with a 

prediction accuracy of 4 packets/s has the highest accuracy when 

compared to its contemporaries as well as other predicted models. 

This model also had the highest accuracy when it was compared 

to other predicted models. 
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