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Abstract 

As the use of swarm intelligence algorithms grows, so does the interest 

in placing nodes in a Wireless Sensor network. For this reason, the 

RSSI range model positioning algorithm has been replaced by a more 

accurate one. With the help of this paper, you can solve complex 

structural optimization problems with the Grasshopper Optimization 

Algorithm (GOA). Optimization problems can be solved using this 

algorithm, which was inspired by the behaviour of grasshopper 

colonies. CEC2005 is used to test the GOA algorithm quality and 

quantitative performance. Trusses with a total of 53 and 3 cantilever 

beams are used to demonstrate the design practicality. It appears that 

the proposed algorithm outperforms well-known and recently 

developed algorithms in this area. GOA ability to solve real-world 

problems with unknown search spaces is demonstrated by its use in the 

real world. 
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1. INTRODUCTION 

Network architecture presents numerous difficulties in 

monitoring and delivering the required quality data to end-users 

in the emerging communication and network. Several protocols 

have been developed to synchronize the operations of network 

models in wireless sensor networks, which have come a long way. 

Network performance can be improved by observing and 

maintaining a linear scale of several factors such as congestion 

mechanisms, packet delivery, node survival, network lifetime, 

and optimal path determination. Despite this, wireless sensor 

networks (WSN) face much greater problems with network 

congestion because of the high data transfer rates and the rapid 

rise in the number of people using them [1].  Congestion control 

and successful packet. 

Delivery has been addressed by numerous WSN protocols. To 

solve this issue, we need to find a solution. At the end-user, a 

variety of optimization algorithms have been developed to control 

traffic and route it through multiple paths. The goal of an 

optimization problem is to find the best possible value and 

location for a mathematical function. Because it is less likely to 

get stuck in local optimizations, a modified version of 

grasshopper optimization has been used. Other possible uses for 

the proposed method include military operations, weather 

forecasting, traffic efficiency, cellular changes like intelligent 

devices, and health infrastructure. Constrained and unconstrained 

optimization models are widely used in computer science, 

artificial intelligence, and pattern recognition, as well as energy 

consumption, structural trusses, engineering areas, and nonlinear 

time series. 

An optimization technique known as GWO [2] has recently 

been introduced. Based on three optimal samples with zero 

optimization value, a large-scale search method. Based on ant 

foraging behaviour, the Ant Colony Optimization Algorithm 

(ACO) found the shortest route between a colony and its food 

source. This method worked for a travelling salesman problem. 

To enhance prediction, selection of features, and running time, 

this method makes use of cross-validation techniques as well as 

SVR parameters for hyperparameter optimization [3]. The study 

of nonlinear time series, constraint-based optimization models, 

and structural trusses is a common theme in computer science. 

Recently, the bionics principle has become more widely 

accepted, which has prompted researchers to model swarm 

intelligence algorithms in mathematics. Swarm intelligence 

optimization, an adaptive AI technology, can be used to solve 

extreme-value problems. This algorithm is used in a wide range 

of industries because it is so popular. The Butterfly optimization 

algorithm (BOA) was used to solve the bolted rim coupling 

problem in light vehicle design [4]. A robotic clamping 

mechanism utilizes GOA and Nelder-Mead algorithm [5] 

techniques in tandem to achieve this result. Industrial structure 

design issues can be resolved more quickly with a new hybrid 

Taguchi salt swarm algorithm [6]. The vehicle support shapes can 

be optimised using the seagull optimization algorithm (SOA) [7]. 

The Equilibrium Optimization Algorithm (EOA) can be used to 

solve the structural design optimization of automobile seat 

supports [8]. Metaheuristic algorithms are used in the design of 

an automated planetary gear train [9]. Intelligent swarm 

optimization algorithms can be used to solve these issues [10]. 

Simple implementation and minimal sensor hardware are 

required for WSN node positioning using the RSSI (received 

signal strength indication) [11] range of technology. This paper 

uses RSSI distance measurement to reduce power consumption 

and costs. Antenna gain and non-line-of-sight are unavoidable to 

avoid large RSSI algorithm positioning errors due to wireless 

signal interference. RSSI values can be corrected using the 

Gaussian function as a solution to this quandary.  

2. RELATED WORK 

Using the RSSI positioning algorithm, you can improve your 

positioning accuracy. Low power consumption and the absence of 

additional hardware facilities make RSSI a popular algorithm 

[12]. Even though RSSI ranging errors can be caused by multipath 

propagation and obstacles, a better antenna can make a significant 

difference. Using this technology, mobile nodes can save energy 

and improve their location accuracy [13]. Poor positioning 

accuracy is one of the drawbacks of this iterative method in noisy 

environments [14]. A few examples include hierarchical analysis 

and the weighted nearest neighbour algorithm for indoor location, 

which utilizes deep learning (see [15]). By increasing the weights' 

influence on RSSI differences between reference points, the 

hierarchical analysis method improves location accuracy. 
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Adaptive Kalman filtering also improves noise reduction by 

accounting for RSSI measurement deviations. As a result of 

improvements in localization accuracy, the algorithm has become 

unmanageable. Improved node location was achieved using a 

fuzzy C-mean clustering algorithm [16]. The learning regression 

tree method and RSSI filtering have been proposed as new target 

tracking algorithms. This method is both practical and effective, 

according to the results [17]. 

Two methods for locating WSN nodes have been proposed: an 

RSSI ranging model and a 3D weighted centroid algorithm [18]. 

Improved node localization accuracy has been achieved using this 

DV-Hop improvement algorithm. These algorithms help to 

improve the accuracy of the nodes that need to be placed [19] to 

some extent. The positioning nodes are identified using a trilateral 

centroid location algorithm. 

3. NODE OPTIMIZATION ALGORITHM 

WSN use range-based positioning algorithms that use spatial 

geometry to calculate the distance or angle between nodes to 

locate nodes. Localizations such as minimum-maximum, 

maximum likelihood, and trilateral localizations are all examples. 

There is a good chance that trilateral localization will happen 

because of its low power use, low cost, and low complexity. It is 

accurate when three anchor nodes cross, but if there are no 

crossovers, the accuracy of their position estimation is typical 

[20]-[24]. For this reason, an adaptive swarm intelligence 

optimization algorithm is employed. The placement of nodes is 

treated as an optimization problem in a swarm intelligence 

algorithm. Particle swarm optimization (PSO) has been used to 

improve the accuracy of swarm intelligence algorithms such as 

the whale optimization algorithm (WOA), slime mould algorithm 

(SMA), hunger games search (HGS), and Harris Hawks optimizer 

[25]-[28]. 

 

Fig.1. Three anchor nodes cross 

 

Different methods are used to solve the problem of 

localization on an approximate or actual line based on the 

estimation error for each hop [29].  Monte Carlo and particle 

swarm optimization are two methods for locating mobile nodes. 

In a variety of situations, the algorithm prioritizes accuracy, 

efficiency, and speed. An algorithm called particle swarm 

optimization was used to improve the localization accuracy. The 

particle swarm algorithm convergence conditions and initial 

search space characteristics in WSN localization [30] are the 

reasons for this. No additional time or complexity was added by 

the new particle swarm algorithm. According to other algorithms, 

this one has lower average positioning errors and faster 

calculation times, which is good news for the user. Network 

traffic and energy consumption are reduced by the EFPA, which 

provides a better routing mechanism. Cluster intelligence 

optimization-based location algorithms must be simple to 

implement, with minimal parameter tuning and minimal time and 

space complexity. There has been a dynamic reduction of the 

search space [31] [32]. To improve WOA global search ability 

and development trends, a new communication method (CM) 

could be used. The exploration and development trends are then 

coordinated using a BBO algorithm, which considers 

biogeographically considerations. To improve the efficiency of 

exploration and development and to ensure more stable 

development trends, additional strategies are added to the original 

method. As a result of chaos, the optimizer incorporates a chaotic 

initialization phase. Gaussian variation can be used to increase the 

diversity of an evolutionary population. In [33] the shrinkage and 

chaotic local search strategies boost the development tendency of 

the basic optimizer. Improved positioning accuracy is achieved in 

this stage by optimizing the positioning nodes. 

 

Fig.2. Three anchor nodes do not cross 

3.1 RSSI RANGING MODEL  

Based on transmission loss, RSSI calculates the transmitter-

to-receiver distance using one of two models: theoretical or 

empirical. The RSSI location accuracy is greatly affected by the 

channel attenuation. Here is an example of the log-distance 

distribution model that was used: 

 PL(d) = PL(d0) + 10n log(d/d0) + ε (1) 

PL(d) and d0, the anchor node, and the node distance from the 

base station can all be used to estimate the strength of the signal 

at the node in question (d0). d0 is the distance between the anchor 

node and the base station; d is the distance between the node and 

the base station, and d is random noise with a mean less variance 

of d. Equation is used to estimate the distance between the anchor 

node and the node to be located (1). 

 d = 10PL(d) − PL(d0)−ε/10n    (2) 

3.2 WHALE OPTIMIZATION ALGORITHM 

The term WOAs refers to algorithms based on the whale 

feeding process in the field of artificial intelligence. For the 

algorithm to find and converge on an optimal solution, individual 

whales use a variety of strategies. Hunters can use WOA 

surround, random, or spiral search methods to keep track of their 

prey. First, we initialize the position W (i = 1, 2, n) and fitness 
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values for each whale in the population, and then we evolve each 

individual whale separately, calculating the coefficient vectors A 

and C and generating a random pth decision with a uniform 

distribution. This is done to create the pth decision random 

number. 

 
12A ar a= − ; 

22C r=  (3) 

The number of iterations increases the decrease from 2 to zero. 

Random vectors (r1) and (r2) on the [0, 1] plane. 

3.3 FRAMEWORK OF GOA 

There are a wide variety of grasshoppers, and they'll eat just 

about anything that comes their way. Farmers are terrified of these 

tiny pests because of the devastating impact they have on their 

crops. When a swarm of millions of grasshoppers gathers in the 

wild, it creates one of the largest natural swarms ever seen. The 

larval and adult stages of the grasshopper life cycle are distinct 

from those of other insects. Grasshopper swarming can be 

observed in both stages, but the behaviors are distinct. Because 

they lack wings, grasshoppers crawl slowly across the ground in 

their larval stage. As an example, a swarm of adult grasshoppers 

in the air moves quickly with large steps. [34][35]. 

There are two types of swarming behavior, and the GOA is 

primarily motivated by the differences between them. A 

mathematical model of swarm dynamics is shown in the 

following: 

 Xi = Si + Gi + Ai  (4) 

There is a relationship between the location of a grasshopper 

and its social interaction and its gravitational pull on the 

surrounding environment, as illustrated in this figure: Xi - location 

for each grasshopper, Si - its social interaction, Gi is its gravity 

force, and Ai is its wind advection. 

 ( )
1
1

N

i ij ij

i
j

S s d d
=


=   (5) 

 dij = |Xj - Xi| (6) 

 ijd  = (Xj - Xi)/dij  (7) 

For example, each grasshopper has a dij and cdij distance from 

its neighbor; this distance is referred to as dij cdij. There are an 

infinite number of grasshoppers in this model, so Ni represents the 

total number of grasshoppers. 

 ( )
d

dls r fe e
−

−− −  (8) 

F - object intensity of attraction, l - attractive length scale. 

There are distinct zones of repulsion, attraction, and comfort 

between two grasshoppers (where there is neither attraction nor 

repulsion). For example, the grasshopper-per shifts its position 

because it is attracted to or repulsed by something. The i-th 

grasshopper gravity and wind advection can be determined using 

the following equations: 

 
i gG ge= −     (9) 

 
i wA ue= −  (10) 

Constants g and u are referred to as constants here, 
we  and  

ge  

represent the direction of the earth centre and the wind direction, 

respectively, as the unity vector. 

According to [36] [37], to solve the optimization problem, an 

altered version of Eq.(4) is proposed, but it is not possible to use 

the mathematical model presented thus far: 
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  (11) 

The dth dimension has upper and lower limits, and Td is the 

best value. The comfort zone, repulsion zone, and attraction zone 

all shrink in the outer c is as the number of iterations rises.  

 

Fig.3. Flowchart Grasshopper Optimization Algorithm 

The parameter c is can be calculated using the equation below: 

Star

t 

Initialize population of Grasshoppers Pi(i=1,2,…..,n) 

Initialize Cmax,Cmin and Tmax 

Evaluate the fitness f(Pi) of each grasshopper Pi and 

determine the best solution 

Update C1 and C2 

Normalize the distance between grasshopper in the 

range [1,4] 

Update the position of the current grasshopper Pi 

Update T if there is a better solution 

Bring Pi back if it goes outside the boundaries 

Return the best solution T 

Stop 

T=t+1 

t<tma

x 
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 max min

max

c c
c c l

L

−
= −  (12) 

For each iteration, l denotes how many times it has already 

been done, and L represents the maximum number of times it can 

be done. A value of 1 is the default for Cmax and Cmin, 

respectively. Assuming the target Td wind direction, gravity is not 

considered in the modified equation. 

3.4 VARIANTS OF GOA 

Fig.4 depicts a variety of GOA modifications and hybrids 

that have been proposed in the literature. In the following 

sections, you'll find all the information you need to know 

about these versions. 

 

Fig.4. Variants of GOA 

3.5 BINARY GOA 

The Multidimensional Knapsack Problem was addressed by 

[38], who developed BGOA, a binary GOA based on the 

percentile notion (MKP). KMTR compared the performance of 

BGOA to BAAA and K-Means Transition Ranking with OR-

Library benchmarks. BGOA excelled both the BAAA and KMTR 

models in comparison to other tests. 

As a solution to the problem of set coverage, [39] presented a 

Binary GOA (BGOA) (SCP). Using the percentile principle, 

GOA binary version was created. When it comes to the SCP, 

BGOA answers are more precise and high-quality thanks to 

simulations. 

To tackle the difficulty of feature selection, Hichem et al. [40] 

recommend adopting a novel binary GOA (NBGOA). Twenty 

datasets from the UCI dataset collection were used to evaluate 

NBGOA against five well-known feature selection optimization 

approaches. NBGOA has a superior fitness function and a greater 

average classification accuracy than the other programmes tested. 

3.6 CHAOTIC GRASSHOPPER OPTIMIZATION 

ALGORITHM 

Some variations of enhanced chaotic GOA for the 

construction of three-bar trusses and the estimate of frequency-

modulated sound synthesis parameters (ECGOAs) [41]. It was 

found that ECGOA with the Singer map outperforms the normal 

GOA and nine different variations of ECGOA. 

•  Gaussian GOA: GOA was enhanced by [42] to predict 

financial stress (IGOA). In GOA, Opposition-based 

learning, Gaussian mutation, and Levy-flight were 

employed in GOA to establish a fair balance between 

exploitation and exploration. For the years 1995 to 2009, 

data from Japanese financial statements were used to 

compare IGOA to other accounting measures such as GA 

and FA. IGOA is more accurate than other methods when it 

comes to classifying items. 

• Levy-Flight GOA: Based on Levy flight in GOA, 

Developed an improved approach (LGOA) for visual 

tracking [43]. LGOA was compared to other GOAs in a 

series of comparisons. The LGOA algorithm outperformed 

the more typical GOA, PSO, CS, and ALO algorithms in 

tests. 

• Dynamic GOA: For feature selection, an evolutionary 

population dynamic (EPD) and selection operator GOA 

(GOA EPD) was proposed [44]. Real-world datasets from 

the UCI machine learning library were utilized to assess 

GOA EPD performance. GOA EPD was found to be 

extremely long-lasting when compared to other materials 

such as GA, PSO, BGSA, BBA, and bGWO. 

• Adaptive GOA: For solar-powered unmanned aerial 

vehicles (SUAVs) in urban contexts, an adaptable GOA 

(AGOA) has been proposed [45]. Natural selection, dynamic 

feedback, and democratic decision-making procedures were 

employed to improve AGOA performance. GOA, GWO, 

and GOA outperform AGOA in simulations, according to 

the statistics. 

• Fuzzy-Based GOA: GOA and the Fuzzy approach 

[46] were used to construct this model to find the best 

locations for distributed generation, shunt capacitors, and 

charging stations for electric vehicles. Fuzzy GOA beat the 

conventional technique and Fuzzy GA and PSO in 

distribution networks with 51 and 69 buses, respectively.  

• Opposition-Based Learning GOA: To deal with 

benchmark optimization functions and engineering 

difficulties, [47] presented a better version of GOA, 

OBLGOA, which incorporates the OBL mechanism into 

GOA. With 23 benchmark functions and four engineering 

issues, OBLGOA was compared against normal GOA and 

GA, as well as GA, BA, DE, and DA. In comparison to the 

most cutting-edge optimization techniques, OBLGOA 

surpasses.  

• Multi-Objective GOA: Path planning for robots in 

stationary contexts has been proposed using GOA [48]. 

(MOGOA). It was in MOGOA that we looked at the length 

of a path, costs, smoothness, and computation time. 

• Other Improved GOA: A combined approach (LWSGOA) 

[49] proposed to address the issue of energy management. 

This approach combines GOA with Linear Weighted Sum 

(LWS). The effectiveness of LWSGOA was evaluated using 

an optimal model consisting of three interconnected heat 

exchangers (EH) to represent the Multi-Integrated Energy 

System (MIES). Because of its scalability and flexibility, 

LWSGOA outperformed other methods in terms of multi-

carrier energy consumption, peak power, and heat demand. 

Variants of GOA 

Modified Versions Hybridized 

Versions 

Meta-Heuristics 

SVM 

SVR 

ANNs 

Levy Flight 

Gaussian 

Chaotic 

Binary 

Dynamic 

Opposition-Based 

Learning 

Multi-Objective 

Fuzzy 

Adaptive 

Improved 
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4. METHODOLOGY  

     The deployment of sensor nodes and reference nodes in a 

random pattern gives rise to a WSN. To obtain the desired level 

of coverage, great consideration should be given to the selection 

of the node density. 

4.1 LOCALIZATION OF NODES 

After the first deployment, nodes utilize the GOA approach to 

self-localize. The initial step is comparable to a hop-based 

algorithm, but communication ranges replace hop counts. This 

modification helps mitigate the effect of variability on distance 

calculations.  

Here, each reference node broadcasts its location data (x, y) 

and communication range CR to its neighboring nodes. The 

neighboring nodes store this data and add their CR to the received 

CR. If this sum of CR is less than a predefined CR threshold, 

nodes broadcast them together with reference node location 

information. The CR threshold aids in identifying only the closest 

reference nodes, hence minimizing the effect of curved pathways 

on distance calculations. 

After receiving this information, neighbor nodes determine 

whether the obtained reference node information is already stored 

in their neighbor information. If it is a new node, the neighbor 

information is updated using the received position of the reference 

node and the sum of CR. If the collected node information is 

already recorded, the received CR sum is compared to the stored 

value, and the smaller of the two CR values is saved with the 

location information. At the conclusion of this process, each node 

will possess the location information of reference nodes and the 

minimum value of the sum of CR from the reference node to itself. 

     After localization, each node knows its position inside the 

field. Next, this location data is used to identify coverage gaps. 

This is accomplished by ensuring a uniform distribution of 

neighboring nodes with overlapping sensing ranges surrounding 

each node. Each node identifies a small number of locations 

evenly spread around it at a distance of SNi. The identified 

number of points can be any number greater than 1.  

After recognizing the points, the nodes determine whether or 

not they are within the sensing range of any of the neighbor nodes 

contained in the neighbor matrix. If any of a node identified points 

do not exist inside the sensing range of a neighboring node, the 

node is identified as a border node with the Border parameter set 

to 1.  

By selecting additional locations, it is possible to find 

coverage gaps with smaller sides. However, since every point 

must be examined for neighboring nodes that overlap, this raises 

the computational burden. Therefore, a suitable amount of points 

must be determined based on the application requirements. 

5. SIMULATION RESULTS AND ANALYSIS 

Most benchmark functions, such as unimodal and multimodal 

operations, are derived from the literature [50]. The comparison 

indices for the standard deviation of each experiment are shown 

in Fig.5, Fig.6, Fig.7 describes the lowest (the best value), median, 

maximum, and average values. The novel whale method 

outperformed HPSO and WOA-QT compared to ten unimodal 

functions in addition to its improved local search performance. 

With 3 multimodal operations, the grasshopper algorithm has an 

absolute advantage in ranking all metrics.  

 

Fig.5. Iteration 

Fig.5 describes compared to the original RSSI algorithm, 

HPSO algorithm, WOA algorithm, and WOA positioning error, 

the node placement algorithm in this study has a positioning error 

compared to the other algorithms. It has been demonstrated that 

this paper localization algorithm grasshopper algorithm 

outperforms the other three. 

Fig.6 describes the average positioning error of the four 

methods falls as communication distance grows and then 

increases when communication distance increases more than it 

decrease. Compared to the original RSSI, HPSO, and WOA 

algorithms used in this study, GOA, the average positioning errors 

of the node location algorithm and the positioning errors of this 

algorithm have been minimized. 

 

Fig.6. Communication Distance 

 

Fig.7. Ranging Error 
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Fig.7 describes although this approach has a less average 

positioning error than either RSSI or HPSO or WOA or even the 

original WOA algorithm, it still has a larger positioning error than 

the node location technique GOA described in this study. The 

average placement error of the four algorithms rises dramatically 

when the range error is high. But the algorithm in this paper 

localization grasshopper algorithm error is always smaller than 

that of the original RSSI, HPSO, and WOA algorithm, regardless 

of how the ranging error changes. 

6. CONCLUSION 

Based on enhanced whale optimization, this work develops an 

algorithm for finding WSN node locations that takes 

environmental aspects into account. As a starting point, the RSSI-

ranging model is altered using a Gaussian fitting function. 

Positioning precision can be further increased by utilizing the 

newly developed grasshopper optimization technique. The first 

step is to draw a boundary around the search region. The real 

distance between the anchor and target nodes is omitted in favour 

of an estimated distance, resulting in a more objective fitness 

metric hierarchies and feedback mechanisms can be introduced 

throughout the algorithm, including during random walks, to 

hasten convergence and enhance search accuracy. Convergence 

and node positioning accuracy are superior to RSSI and HPSO 

algorithms under the same hardware conditions. Researchers will 

study the grasshopper algorithm performance in future studies. 

REFERENCES 

[1] P.Sindhuja and P.Ramamoorthy, “An Improved Fuzzy 

enabled Optimal Multipath routing for Wireless Sensor 

Networks”, Cluster Computing, Vol. 78, No. 2, pp. 1-15, 

2017. 

[2] M. Ghalambaz, R.J. Yengejeh and A.H. Davami, “Building 

Energy Optimization using Grey Wolf Optimizer (GWO)”, 

Case Studies in Thermal Engineering, Vol. 27, pp. 1-13, 

2021. 

[3] Z.Y. Algamal and H.T. Ali, “Improving Grasshopper 

Optimization Algorithm for Hyperparameters Estimation 

and Feature Selection in Support Vector Regression”, 

Chemometrics and Intelligent Laboratory Systems, Vol. 

208, pp. 104196-104201, 2021. 

[4] B.S. Yıldız, A.R. Yıldız, E.S. Albak, H. Abderazek, S.M. 

Sait and S. Bureerat, “Butterfly Optimization Algorithm for 

Optimum Shape Design of Automobile Suspension 

Components”, Materials Testing, Vol. 62, No. 4, pp. 365-

370, 2020.  

[5] B.S. Yildiz, N. Pholdee, S. Bureerat, A.R. Yildiz and S.M. 

Sait, “Robust Design of a Robot Gripper Mechanism using 

New Hybrid Grasshopper Optimization Algorithm”, Expert 

Systems, Vol. 38, No. 3, pp. 1-16, 2021. 

[6] A.R. Yıldız and M.U. Erdaş, “A New Hybrid Taguchi-Salp 

Swarm Optimization Algorithm for the Robust Design of 

Realworld Engineering Problems”, Materials Testing, Vol. 

63, No. 2, pp. 157-162, 2021.  

[7] N. Panagant, N. Pholdee, S. Bureerat, K. Kaen, A.R. Yıldız 

and S.M. Sait, “Seagull Optimization Algorithm for Solving 

Realworld Design Optimization Problems”, Materials 

Testing, Vol. 62, No. 6, pp. 640-644, 2020.  

[8] A.R. Yıldız, B.S. Yıldız and S.M. Sait, “The Equilibrium 

Optimization Algorithm and the Response Surface-Based 

Metamodel for Optimal Structural Design of Vehicle 

Components”, Materials Testing, Vol. 62, No. 5, pp. 492-

496, 2020.  

[9] H. Abderazek, S.M. Sait and A.R. Yildiz, “Optimal Design 

of Planetary Gear Train for Automotive Transmissions using 

Advanced Meta-Heuristics”, International Journal of 

Vehicle Design, Vol. 80, No. 2-3, pp. 121-136, 2019. 

[10] L. Chen, L. Pang and B. Zhou, “RLAN: Range-Free 

Localisation based on Anisotropy of Nodes for WLANs”, 

Electronics Letters, Vol. 51, No. 24, pp. 2066-2068, 2015.  

[11] L. Sun, Y. Yuan, Q. Xu, C. Hua and X. Guan, “A Mobile 

Anchor Node Assisted RSSI Localization Scheme in 

Underwater Wireless Sensor Networks”, Sensors, Vol. 19, 

No. 20, pp. 4369-4389, 2019. 

[12] S.P. Maruthi and T. Panigrahi, “Robust Mixed Source 

Localization in WLAN using Swarm Intelligence 

Algorithms”, Digital Signal Processing, Vol. 98, No. 98, pp. 

102651-102658, 2020. 

[13] V. Bianchi, P. Ciampolini and I. De Munari, “RSSI-based 

Indoor Localization and Identification for ZigBee Wireless 

Sensor Networks in Smart Homes”, IEEE Transactions on 

Instrumentation and Measurement, Vol. 68, No. 2, pp. 566-

575, 2019.  

[14] C. Muller, D.I. Alves and J.B.S. Martins, “Improved 

Solution for Node Location Multilateration Algorithms in 

Wireless Sensor Networks”, Electronics Letters, Vol. 52, 

No. 13, pp. 1179-1181, 2016.  

[15] S. Pan, S. Hua, D.W. Pan and X. Sun, “Wireless 

Localization Method based on AHP-WKNN and 

Amendatory AKF”, Wireless Communications and Mobile 

Computing, Vol. 2021, pp. 1-11, 2021.  

[16] H. Li, D. Yu, Y. Hu and H.Y. Yu, “Improved Trilateral 

Centroid Localization Algorithm for Wireless Sensor 

Networks”, Journal of Chinese Computer Systems, Vol. 41, 

No. 6, pp. 1216-1223, 2020. 

[17] H. Ahmadi, F. Viani and R. Bouallegue, “An Accurate 

Prediction Method for Moving Target Localization and 

Tracking in Wireless Sensor Networks”, Ad Hoc Networks, 

Vol. 70, pp. 14-22, 2018. 

[18] S. Shah, C. Zhe and F.L. Yin, “3D Weighted Centroid 

Algorithm and RSSI Ranging Model Strategy for Node 

Localization in WLAN based on Smart Devices”, 

Sustainable Cities and Society, Vol. 39, pp. 298-308, 2018. 

[19] K. Ren and C.M. Pan, “A Novel DV-Hop Algorithm for 

RSSI Hop Quantization and Error Correction”, Chinese 

Journal of Sensors and Actuators, Vol. 33, No. 5, pp. 718-

724, 2020. 

[20] L.M. Schmitt and M. Schmitt, “Theory of Genetic 

Algorithms”, Theoretical Computer Science, Vol. 259, No. 

1-2, pp. 1-61, 2001. 

[21] M. Dorigo, M. Birattari and T. Stutzle, “Ant Colony 

Optimization”, IEEE Computational Intelligence Magazine, 

Vol. 1, No. 4, pp. 28-39, 2009.  

[22] X.S. Yang, “Firefly Algorithms for Multimodal 

Optimization”, Mathematics, vol. 5792, pp. 169-178, 2009.  

[23] S. Mirjalili, M. Mirjalili and A. Lewis, “Grey Wolf 

Optimizer”, Advances in Engineering Software, Vol. 69, pp. 

46-61, 2014.  



ISSN: 2229-6948(ONLINE)                                                                                     ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 03 

2773 

[24] S. Mirjalili and A. Lewis, “The Whale Optimization 

Algorithm”, Advances in Engineering Software, Vol. 95, 

No. 5, pp. 51-67, 2016.  

[25] S.M. Li, H.L. Chen, M.J. Wang, A.A. Heidari and S. 

Mirjalili, “Slime Mould Algorithm: A New Method for 

Stochastic Optimization”, Future Generation Computer 

Systems, Vol. 111, pp. 300-323, 2020. 

[26] Y.T. Yang, H.L. Chen, A.A. Heidari and A.H. Gandomi, 

“Hunger Games Search: Visions, Conception, 

Implementation, Deep Analysis, Perspectives, and Towards 

Performance Shifts”, Expert Systems with Applications, Vol. 

177, pp. 114864-114875, 2021.  

[27] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja 

and H. Chen, “Harris Hawks Optimization: Algorithm and 

Applications”, Future Generation Computer Systems, Vol. 

97, pp. 849-872, 2019.  

[28] S. Phoemphon and N. Leelathakul, “Improved Distance 

Estimation with Node Selection Localization and Particle 

Swarm Optimization for Obstacle-Aware Wireless Sensor 

Networks”, Expert Systems with Applications, Vol. 175, pp. 

114773-114785, 2021. 

[29] F.S. Gharehchopogh and H. Gholizadeh, “A Comprehensive 

Survey: Whale Optimization Algorithm and its 

Applications”, Swarm Evolutionary Computing, Vol. 48, pp. 

1-24, 2019. 

[30] Y. Meng, Q. Zhi, Q. Zhang and E. Lin, “A Two-Stage 

Wireless Sensor Grey Wolf Optimization Node Location 

Algorithm based on K-Value Collinearity”, Mathematical 

Problems in Engineering, Vol. 2020, pp. 1-10, 2020. 

[31] H.M. Kanoosh, E.H. Houssein and M.M. Selim, “Salp 

Swarm Algorithm for Node Localization in Wireless Sensor 

Networks”, Journal of Computer Networks and 

Communications, Vol. 2019, pp. 1-12, 2019. 

[32] J.S. Pan, F. Fan, S. Chu, Z. Du and H. Zhao, “A Node 

Location Method in Wireless Sensor Networks based on a 

Hybrid Optimization Algorithm”, Wireless Communications 

and Mobile Computing, Vol. 2020, pp. 1-14, 2020. 

[33] J. Luo, H. Chen, A.A. Heidari, Y. Xu, Q. Zhang and C. Li, 

“Multi-Strategy Boosted Mutative Whale-Inspired 

Optimization Approaches”, Applied Mathematical 

Modelling, Vol. 73, pp. 109-123, 2019. 

[34] Ahmed A Ewees, Mohamed Abd Elaziz and Essam H 

Houssein, “Improved Grasshopper Optimization Algorithm 

using Opposition-Based Learning”, Expert Systems with 

Applications, Vol. 112, pp. 156-172, 2018. 

[35] Laith Abualigah and Ali Diabat, “A Comprehensive Survey 

of the Grasshopper Optimization Algorithm: Results, 

Variants, and Applications”, Neural Computing and 

Applications, Vol. 78, pp. 1-24, 2020. 

[36] Shahrzad Saremi, Seyedali Mirjalili and Andrew Lewis, 

“Grasshopper Optimisation Algorithm: Theory and 

Application”, Advances in Engineering Software, Vol. 105, 

pp. 30-47, 2017. 

[37] S. Saremi, S. Mirjalili and A. Lewis, “Grasshopper 

Optimisation Algorithm: Theory and Application”, 

Advances in Engineering Software, Vol. 105, pp. 30-47, 

2017. 

[38] H. Pinto, A. Pena, M. Valenzuela and A. Fernandez, “A 

Binary Grasshopper Algorithm Applied to the Knapsack 

Problem”, Artificial Intelligence and Algorithms in 

Intelligent Systems, Vol. 764, pp. 1-14, 2019. 

[39] B. Crawford, R. Soto, A. Pena and G. Astorga, “A Binary 

Grasshopper Optimisation Algorithm applied to the Set 

Covering Problem”, Cybernetics and Algorithms in 

Intelligent Systems, Vol. 765, pp. 1-16, 2019. 

[40] H. Hichem, M. Elkamel, M. Rafik, M.T. Mesaaoud and C. 

Ouahiba, “A New Binary Grasshopper Optimization 

Algorithm for Feature Selection Problem”, Journal of King 

Saud University - Computer and Information Sciences, Vol. 

34, pp. 1-17, 2019. 

[41] A. Saxena, S. Shekhawat and R. Kumar, “Application and 

Development of Enhanced Chaotic Grasshopper 

Optimization Algorithms”, Modelling and Simulation in 

Engineering, Vol. 2018, pp. 1-14, 2018. 

[42] J. Luo, H. Chen, Q. Zhang, Y. Xu, H. Huang and X. Zhao, 

“An Improved Grasshopper Optimization Algorithm with 

Application to Financial Stress Prediction”, Applied 

Mathematical Modelling, Vol. 64, pp. 654-668, 2018. 

[43] H. Zhang, Z. Gao, J. Zhang and G. Yang, “Visual Tracking 

with Levy Flight Grasshopper Optimization Algorithm”, 

Pattern Recognition and Computer Vision, Vol. 11857, pp. 

1-17, 2019. 

[44] M. Mafarja, I. Aljarah, A.A. Heidari, A.I. Hammouri, H. 

Faris and, A.M. Al-Zoubi, “Evolutionary Population 

Dynamics and Grasshopper Optimization Approaches for 

Feature Selection Problems”, Knowledge-Based Systems, 

Vol. 145, pp. 25-45, 2018. 

[45] J. Wu, H. Wang, N. Li, P. Yao, Y. Huang and Z. Su, 

“Distributed Trajectory Optimization for Multiple Solar-

Powered UAVs Target Tracking in Urban Environment by 

Adaptive Grasshopper Optimization Algorithm”, Aerospace 

Science and Technology, Vol. 70, pp. 497-510, 2017. 

[46] S.R. Gampa, K. Jasthi, P. Goli, D. Das and R.C. Bansal, 

“Grasshopper Optimization Algorithm based Two Stage 

Fuzzy Multiobjective Approach for Optimum Sizing and 

Placement of Distributed Generations Shunt Capacitors and 

Electric Vehicle Charging Stations”, Journal of Energy 

Storage, Vol. 27, pp. 1-16, 2020. 

[47] A.A. Ewees, M. Abd Elaziz and E.H. Houssein, “Improved 

Grasshopper Optimization Algorithm using Opposition-

Based Learning”, Expert System and Applications, Vol. 112, 

pp. 156-172, 2018. 

[48] Z. Elmi and M.O. Efe, “Multi-Objective Grasshopper 

Optimization Algorithm for Robot Path Planning in Static 

Environments”, Proceedings of IEEE International 

Conference on Industrial Technology, pp. 244-249, 2018. 

[49] J. Liu, A. Wang, Y. Qu and W. Wang, “Coordinated 

Operation of Multi-Integrated Energy System based on 

Linear Weighted Sum and Grasshopper Optimization 

Algorithm”, IEEE Access, Vol. 6, pp. 42186-42195, 2018. 

[50] Q. Fan, X. Yan and Y. Xue, “Prior Knowledge Guided 

Differential Evolution”, Soft Computing, Vol. 21, No. 22, 

pp. 6841-6858, 2017.

 


