
NEHA R THAKUR AND ASHWINI S KUNTE: EFFICIENT ARCHITECTURE WITH A GENERAL OPTIMIZED REDUNDANT ERROR BASED MPTCP SCHEDULER
DOI: 10.21917/ijct.2022.0399

2694

EFFICIENT ARCHITECTURE WITH A GENERAL OPTIMIZED REDUNDANT

ERROR BASED MPTCP SCHEDULER

Neha R. Thakur and Ashwini S. Kunte
Department of Electronics and Telecommunication, University of Mumbai, India

Abstract

The path scheduler of Multipath TCP (MPTCP) is responsible to

distribute packets in an optimized way on available multiple sub-flows.

Due to heterogeneous scenarios of MPTCP sub-flows, MPTCP should

have a good packet scheduler that can handle versatile network sub-

flow conditions. This article looks over different MPTCP schedulers

and finds key problems like Out-of-order (OFO) packets issue, Receiver

side blocking, sub-flows, and bandwidth disunion. These problems

appeal to the design of good MPTCP architecture providing an efficient

packet scheduler. This article proposes an MPTCP architecture with a

General and optimized MPTCP scheduler which overcomes the

problems of some known schedulers. The proposed Redundant Error-

based MPTCP Scheduler (REMS) meets the three goals, first, it

achieves ranking of available paths based on congestion window and

outstanding packets on it, second goal is smart sequencing schedule

with redundant error calculation. REMS experimentation shows, it

improves throughput and quality of experience of application with

bandwidth aggregation and decreasing application delay considerably.

This article also shows the comparison of the proposed scheduler with

previously known schedulers.

Keywords:

Redundant Error, Packet Holding, Multipath Packet Scheduler, Start

Sequence, End Sequence

1. INTRODUCTION

MPTCP is the concept derived from TCP. Today’s smart

devices are technologically evolved. These devices can use

several internet interfaces simultaneously by using Internet

Protocol (IP) addresses, this capability is called multi-homing. To

explore the flavor of this facility and utilize available resources in

an optimized way, Internet Engineering Task Force (IETF) [1] has

given the standard MPTCP, its open-source code is available in

multipath “www.multipath-tcp.org”. MPTCP is the hidden upper

layer of TCP. In MPTCP enabled host, MPTCP is hidden from

the application layer and network layer. MPTCP is made up of

one or many independent TCP connections, working all together

with different interfaces concurrently to provide aggregated

capacity, maximize throughput, and enhance the resilience of the

network. Multi-homed devices can be better utilized by using

MPTCP for speedy and seamless communication. MPTCP uses a

connection that is logically made up of many TCP connections.

These TCP connections are established with a three-way

handshake method. Each TCP connection in MPTCP is called a

sub-flow of MPTCP. Each sub-flow in MPTCP uses a different

IP address at the end host. Over

MPTCP connection, the sequence number for data is called a

connection sequence number or data sequence number and at sub-

flow level sequence number for data is called sub-flow sequence

number. MPTCP connection is established between two MPTCP

enabled end hosts. Initially, only one TCP flow is started in

MPTCP connection and as per requirement, more TCP flows are

joined in MPTCP as multiple sub-flows. Middleboxes will treat

individual MPTCP sub-flow as TCP connection. MPTCP is

transparent to the Network layer and Application layer.

1.1 WHY MULTIPATH TCP?

MPTCP over TCP has two main advantages, capacity

aggregation, and redundant connection. Wi-Fi and LTE are two

different interfaces with their capacity. TCP cannot use them

simultaneously when both of them available but MPTCP can use

both of them simultaneously and aggregate their capacity. Thus,

MPTCP may give theoretically maximized throughput and

application performance improved. MPTCP uses many TCP

connections running concurrently, so if any TCP connection fails,

other redundant TCP connections are there to serve the

application. IOS uses MPTCP in the SIRI application for

redundancy. Linux code is available for MPTCP.

MPTCP’s architecture is made up of three major building

blocks, path manager, congestion control, and packet scheduler.

Path manager decides to add sub-flows to MPTCP architecture.

Congestion control decides the total number of packets that

should be present on each sub-flow per RTT. Path scheduler is

accountable for efficient distribution of packets on available sub-

flow. Improper path scheduler can lead to degradation of the

Quality of service of the application.

1.2 PATH MANAGER

MPTCP connection between two systems Host A and Host B

is established by establishing a single path TCP connection first.

single connection adds further sub-flows with ADD ADDR

command option of MPTCP. Path manager takes path

management decisions. MPTCP is provided with three different

path managers [2].

• Default Path Manager: This type of path manager does not

broadcast IP addresses also it does not add new sub-flows. It

accepts the new creation of sub-flows.

• Full-Mesh Path Manager: All available IPs of the client

can make the connection with the available IPs of a server.

• Path Manager: For a specific sub-flow, the same IP address

pair is used but with different TCP ports always. This path

manager.

MPTCP uses three methods to control path usage

• Primary Mode: It is the default mode and it utilizes all

available interfaces.

• Backup Mode: Only active sub-flows are chosen to transmit

data and other passive sub-flows are redundant to act as

backup.

• Single Path Mode: MPTCP acts like single-path TCP by

using a single active sub-flow at a time to transmit data.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 02

2695

TCP has only one path, so path manager is not required but in

MPTCP multiple sub-flows are available and there is a need for

path manager to manage them as shown in Fig.1. Each sub-flow

in MPTCP is associated with Source IP and Destination IP pair.

MPTCP’s Default path manager will add new sub-flow on the

request of a new interface.

Fig.1. Default MPTCP with default scheduler

1.3 CONGESTION CONTROL IN MPTCP

The capacity of MPTCP sub-flows is different so we required

good congestion control technique. If congestion control is

independent for each sub-flow, it will create the head of line

blocking at the receiver end because of the link within a group of

sub-flows of MPTCP. MPTCP uses coupled congestion control.

It is robust to failure and it uses resource pooling in terms of

available congestion window by a congested path. By using

coupled congestion control MPTCP may achieve targets like

• MPTCP should not dominate other single-path TCP

connections in the network.

• MPTCP should work at least as that of single-path TCP.

• MPTCP should give seamless delivery of traffic by the

congested path by accounting upper two targets.

Few congestion control algorithms for TCP and MPTCP are

LIA, OLIA, BALIA, and D-LIA [3]. All these algorithms follow

the Additive Increase and Multiplicative Decrease (AIMD)

method. AIMD has three phases slow start, congestion avoidance,

and fast retransmission phase.

In the slow start phase congestion window of sub-flow

doubles till the slow-start threshold, once the first packet drops

congestion avoidance phase starts. In the congestion avoidance

phase, the congestion window of sub-flow increases by one for

each RTT. Unacknowledged packets on sub-flow are more than

the capacity of congestion window of sub-flow then the fast

retransmission phase starts. During the phase, new packets are not

transmitted on any of the sub-flows.

1.4 PATH SCHEDULER

In MPTCP multiple sub-flows are used, which are

heterogeneous concerning path delays, congestion windows, and

bandwidths so packets send on many sub-flows will not come in

proper sequence at the receiver end, higher-order packets will be

transmitted first, and lower order packets may be transmitted with

delays. This may cause many out of orders packets and head-of-

line blocking at the receiver end. If the receiver does not have

enough space to hold OFO packets then due to request time out,

many and spurious retransmissions may occur, and the loss ratio

will increase.

This drawback of the head of line blocking can be avoided by

using an efficient MPTCP scheduler in MPTCP architecture.

MPTCP sends data by using bandwidth aggregation of many TCP

paths so a scheduler is necessary for MPTCP. MPTCP scheduler

is triggered when data arrives at the sender side from the

application. Many authors have given their algorithms and ideas

on the MPTCP scheduler. They have used various key

performance factors in different combinations for implementing

the MPTCP scheduler. They achieved goals like bandwidth

aggregation, receiver buffer optimization, loss recovery, etc. but

no one achieved these goals altogether.

In this article, authors propose an MPTCP scheduler that is

capable of doing bandwidth aggregation, head of line monitoring,

and energy conservation by considering the feedback of the

MPTCP receiver.

Further, in this paper, the contents are organized as follows.

Related work gives an overview of existing techniques in this

area. The methodology section explains the proposed MPTCP

approach in detail step by step. The following sections are

methodology, results, and discussion of the proposed approach.

Finally, the conclusion section gives remarks about the

experimentation undertaken and the future work.

2. RELATED WORK

In MPTCP architecture many packet schedulers are studied.

MPTCP protocol is implemented in the Linux kernel. Various

MPTCP scheduler algorithms for throughput optimization [4] and

reduced download time [5] have been proposed by researchers.

Numerous performance characteristics can influence throughput

and application download time (QOS) using MPTCP. They were

viewed differently by various scholars. Few authors used all

available sub-flows, but some of them used only one or two

effective sub-flows out of many sub-flows. Bandwidth

aggregation is accomplished by using multiple sub-flows. Some

authors used sender buffer [6] as a sub-flow selection parameter,

while others used receiver buffer for sub-flow quality estimation

[7].

The majority of them estimate sub-flow efficiency using sub-

flow characteristics such as Round-Trip Time (RTT), Congestion

Window (cwnd), and queue size. Few send all application layer

packets in sequence from the sender side, others send them in

mixed order so that all packets arrive at the receiver end in the

correct order. Few authors designed schedulers that took into

NEHA R THAKUR AND ASHWINI S KUNTE: EFFICIENT ARCHITECTURE WITH A GENERAL OPTIMIZED REDUNDANT ERROR BASED MPTCP SCHEDULER

2696

account the status of the router’s buffer as well as the buffers of

the end devices [8]. Some schedulers use a proactive strategy [9],

while others use a reactive strategy [10]. Some schedulers

prioritize fresh packets over retransmitted packets during packet

transmission from the sender end. Some schedulers can also

retransmit packets on a new route instead of the old path. Few

schedulers assign a priority to applications [11]. Programmable

Multipath [12] is a system that allows us to select one scheduler

from a large number of schedulers based on our needs and

network conditions. It is a medium through which we can create

new Scheduler and test them in the ProgMP system. Many authors

have contributed to MPTCP schedulers, but only a few schedulers

are theoretically compared in Table.1.

Few MPTCP schedulers are studied with their functionality,

advantages, and disadvantages.

• MinRTT MPTCP Scheduler: This scheduler chooses a fast

path as a priority. This scheduler sends traffic on a fast path

until it is used fully, then sends traffic on the next fast path

till it gets exhausted. In heterogeneous scenarios due to the

large difference in round trip time of sub-flows, many OFO

packets get accumulated at the MPTCP receiver, and they

cause head of line blocking and receiver buffer overflow. In

MinRTT scheduler, this situation is handled using

penalization of the slow path and fast retransmission of

packets on a fast path (PR) and because of this most of the

time fast path is utilized and the slow path is used for very

less amount of time. The Key performance parameter used

in the scheduler is RTT. Its work is shown in Fig.2.

Fig.2. MPTCP MinRTT scheduler

• Round Robin [20]: This scheduler does not prefer any sub-

flow. It sends packets irrespective of their preferences in a

Round Robin fashion. Due to heterogeneity slow sub-flows

get congested and the scheduler losses its performance. Its

methodology is shown in Fig.3.

• Blind Round Robin: It is MPTCP scheduler which

considers three performance metrics like receiver congestion

window congestion window and inflight packets or

unacknowledged packets on the sub-flows. It collects data at

sender side then it selects best sub-flow by checking its

congestion window, if congestion window is not exhausted

by unacknowledged packets, then packets are sent on the

same sub-flow otherwise packets are sent on the other

alternative sub-flow. For all sub-flows this procedure is

repeated while allocating packets on the sub-flows. If

receiver window is exhausted then all sub-flows are blocked

for a while. Receiver window blocking is tested with respect

to summation of unacknowledged packets of all the sub-

flows in MPTCP. Its work is shown in Fig.4.

Fig.3. Round Robin MPTCP scheduler

Fig.4. Blind Round Robin MPTCP Scheduler

• Redundant [21]: Redundant scheduler in MPTCP gives

perfect redundancy in the network for transmitting data

packets. The redundant scheduler broadcasts the packets on

every available sub-flow of MPTCP. The receiver sends

combined acknowledgment of received packets on any one

of the sub-flows. Bandwidth is wasted in this type of

scheduler. Bandwidth aggregation is 100% in this scheduler.

Many other schedulers use this scheduler as fast

retransmission policy which is shown in Fig.5.

Fig.5. Redundant MPTCP Scheduler

• Delay Aware Packet Scheduler in MPTCP (DAPS) [14]:

Delay aware packet scheduler does bandwidth aggregation

by using fast and slow both sub-flows simultaneously.

DAPS scheduler uses longest sub-flow’s One Way Delay

(OWD = RTTs/2). It sends n = (RTTs/RTTf) packets on fast

sub-flow and remaining packets on slow sub-flow. It is

assumed that packets to be sent are more than the congestion

window of fast sub-flow, then only slow sub-flow is utilized

otherwise fast sub-flow is enough to send all data. Schedule

‘S’ contains which sequence number chunk to be sent on

which sub-flow in RTTs/2 duration of time. DAPS do not

consider MPTCP send Window and path loss. DAPS takes

care of OFO packets at the receiver, it sends OFO packets at

the sender to receive ‘in order packets’ at the receiver. DAPS

do not exhaust fast sub-flow fully but it puts only n packets

on fast sub-flow and remaining packets on slow sub-flow.

Its work is shown in Fig.6.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 02

2697

Fig.6. Delay Aware MPTCP Scheduler

• Blocking Estimation Based MPTCP scheduler (Blest)

[22]: MinRTT does PR when it comes across head of line

blocking and because of it MinRTT uses mainly fast sub-

flow and neglects slow sub-flow. It hardly uses slow sub-

flow. Blest avoids PR by managing OFO packets at the

receiver. In a homogeneous scenario, Blest avoids HOL

blocking by restricting OFO packets. Blest initiates

algorithm with MinRTT but as its congestion window fills,

it goes to slow sub-flow and calculates the number of

segments ‘X’ that may be transferred on slow sub-flow.

Before transferring data ‘X’ on slow sub-flow, it checks

whether to wait for fast sub-flow or to transfer the current

data on the slow sub-flow. This decision is taken based on

the congestion window of fast sub-flow and RTTs/ RTTf

factor for RTTs duration, that is during longest sub-flow

OWD. Path probing is done by using the congestion window

of fast sub-flow cwnd. Its work is shown in Fig.7.

Fig.7. Blest MPTCP Scheduler

• Loss Aware MPTCP Scheduler (LAMPS) [23]: LAMPS

switches from MinRTT to Redundant and Redundant to

MinRTT MPTCP scheduler. This switching decision is

taken based on path loss factor. Considering sub-flow’s loss

factor, transfer time ‘T’ of all sub-flows is calculated. The

Least transfer time sub-flow is selected for transmission of

data and the algorithm followed is MinRTT. As path loss of

fast sub-flow increases beyond the desired threshold value

then the redundant scheduler starts working in the MPTCP

connection. Prior scheduled packets are also recovered at the

current time and sent on all sub-flows simultaneously. The

path probing method used is also good. It is described in

Fig.8.

Fig.8. LAMPS MPTCP Scheduler

3. BACKGROUND AND MOTIVATION

Comparison of various know schedulers is done with deep

experimentation and found some observations from the analytical

study. MPTCP is set up using the Linux kernel implementation.

Two computers with 8 GB RAM, a Raspberry

Pi, and an ADSL router are used in the experiment. MPTCP is

available on both machines, with Linux kernels and MPTCP

versions of 4.19.105 and MPTCP-v95, respectively. A

homogeneous scenario is generated with (Wi-Fi, Wi-Fi)

interfaces, Heterogeneous scenario is generated with (Ethernet,

Wi-Fi) and (LTE-Wi-Fi) interfaces. Experiments are run for two

sets, 20 seconds and 200 seconds for each MPTCP scheduler to

download different data sizes traffic generated by the ’iperf’

traffic generator [24].

3.1 STUDY AND OBSERVATIONS OF

EXPERIMENTATION

Observations are listed based on key performance factors.

3.1.1 Throughput:

For known scheduler of MPTCP like MinRTT, Round Robin,

Redundant, and Blest throughput is recorded in kilobytes for

different data sizes like 64KB, 128 KB, 256 KB, 1 MB, and 256

MB. It is observed that when data load is less all the schedulers

give almost similar performance.

Calculate loss component of each path

Calculate Transfer time

Select best path

Run scheduler as MinRTT

Check Path loss of best path above threshold or not

If path loss above than threshold then switch to redundant

scheduler

NEHA R THAKUR AND ASHWINI S KUNTE: EFFICIENT ARCHITECTURE WITH A GENERAL OPTIMIZED REDUNDANT ERROR BASED MPTCP SCHEDULER

2698

Table.1. Theoretical Comparison of MPTCP Schedulers

MPTCP

Schedulers
Method Performance Parameters Advantages Disadvantages

Round Robin Sub paths are used alternately CWND
Capacity

aggregation.

It is very poor for

heterogeneous transmission.

MinRTT Use of fastest sub path RTT, CWND Easy to implement.
Heterogeneity restricts even

small file to download.

REMP

(Redundant) [13]

It uses all paths to transmit same

data.
-

Speedy but with

move overheads

More redundant packets so

more overhead of buffer.

CP [14] Sends data in proactive manner Buffer capacity Probing of fast path. Mobility is not considered

DAPS [15] Tried to utilize all sub paths RTT No receiver block
It doesn’t work in all network

scenarios.

ECF [16]
Uses shortest path to send the

data

RTT, cwnd, MSS, amount

of data to be sent
Fast completion time

May underutilize some of the

sub-flows.

OTIAS [17]

OWD is used, min RTT is

considered without considering

cwnd.

RTT Less parameters. Many out of order packets.

Blest [18] Gives priority to fast sub path RTT, MSS
Receiver blocking is

avoided
Slow sub path is underutilized

DEMS [19]
All sub flows complete the task at

same time.
Capacity of paths

Good for specific

setups.

Chunk size of data and exact

bounds matters.

Fig.9. Throughput of MPTCP schedulers for data download of

size 64KB

In all the observations considering different data sizes, Round

Robin scheduler gives outstanding performance for 64 KB data

size downloads. It is shown in Fig.9. As the data size of download

increases, Round Robin is not a stable MPTCP scheduler whereas

in this scenario Blest gives better performance.

In a heterogeneous scenario of Ethernet and Wi-Fi interface,

throughput is recorded for two sets of experiments like 20sec and

200sec data transfers and it has been observed that Blest, MinRTT

and Redundant scheduler perform well but Round Robin

scheduler degrades its performance drastically. As shown in

Fig.10 the Round Robin scheduler could not withstand with a

heterogeneous scenario in comparison with other MPTCP

schedulers. Among all scheduler as heterogeneity increases Blest

performs well in terms of throughput.

Another heterogeneous scenario is run for 200 seconds using

Wi-Fi and LTE networks as shown in Fig.11. In this experiment,

Blest and MinRTT scheduler works well but Redundant and

Round Robin schedulers give poor performance.

In another set of an experiment to measure throughput

homogeneous scenario is used. It is shown in Fig.12. A

homogeneous scenario is created by using Wi-Fi and Wi-Fi

interfaces. It is found that the Round Robin scheduler performs

very well in all schedulers and gives maximum throughput.

3.1.2 Download Time:

Four different schedulers of MPTCP MinRTT, Round Robin,

Redundant, and Blest are run for downloading different data sizes

like 64KB, 128 KB, 1 MB and 256 KB of data. It has been

observed that for a small size of data that is 64 KB download time,

all schedulers behave similarly as shown in Fig.13. As data size

for download increases Round Robin and Blest degrade their

performances. For moderate data sizes like 128 KB and 256 KB

Blest gives the least download time than other schedulers as

shown in Fig.14.

3.1.3 Path Utilization and Bandwidth Aggregation:

In homogeneous and heterogeneous scenarios, Blest and

MinRTT schedulers utilize only fast path with the least RTT for

maximum time. These two schedulers use slow path for a very

small fraction of time, whereas the Round Robin scheduler tried

to use slow and fast paths equally. The Redundant scheduler uses

all the sub-flows exactly for an equal amount of time as shown in

Fig.15.

3.2 MOTIVATION AND FINDINGS BASED ON

OBSERVATIONS

All schedulers provide seamless redundancy in the network by

using multiple available sub-flows. In homogeneous scenarios,

Round Robin’s performance is best among Blest, Round Robin,

Redundant, and MinRTT schedulers but as heterogeneity

increases, Round Robin scheduler starts degrading its

performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

Default Round Robin Redundant Blest

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

MPTCP Scheduler

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 02

2699

Fig.10. MPTCP scheduler Throughput in heterogeneous scenario

For the download of small data sizes up to 64 KB all the four

schedulers perform almost in a similar way. As data size of

download increases Round Robin scheduler becomes unstable

and Blest scheduler gives a moderate performance. For 256 MB

data size Blest also degrades in performance.

Fig.11. Throughput of MPTCP schedulers in heterogeneous

scenario

Fig.12. Throughput of MPTCP schedulers in homogeneous

scenario

The Round Robin scheduler and Redundant scheduler give

good bandwidth aggregation. Redundant scheduler gives 100%

bandwidth aggregation. Blest and MinRTT schedulers used fast

path for maximum time and slow path for very little time so that

bandwidth aggregation is almost nil.

None of the above schedulers used path loss as a key

performance parameter. Blest and MinRTT schedulers use only

RTT as the performance measure parameter. There is the

requirement of an MPTCP path scheduler, which can withstand

homogeneous as well as heterogeneous network scenarios.

Round Robin scheduler is the best option in homogeneous

scenarios. As heterogeneity increases in the MPTCP network, the

scheduler should handle the OFO packets at the receiver also

receiver buffer should be used in an optimized way.

Fig.13. Download time in seconds of MPTCP schedulers for

data download of size 64KB

Fig.14. Download time in seconds of MPTCP schedulers for

data download of size 128KB and 256KB

Fig.15. Path utilization and bandwidth aggregation of different

MPTCP schedulers

At the sender side, receiver buffer can be mapped with

MPTCP send window and OFO packets at the receiver can be

reduced. When we leave the fast path due to congestion, the fast

path should be traced continuously with a good probing method.

So there is the need for efficient MPTCP architecture with a good

scheduler which can utilize all available sub-flows efficiently in

coordination with the MPTCP congestion control method and it

0

10

20

30

40

50

60

70

80

Default Round Robin Redundant Blest

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

MPTCP Scheduler

14

14.5

15

15.5

16

16.5

17

17.5

Default Round Robin Redundant Blest

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

MPTCP Scheduler

0

5

10

15

20

25

30

Default Round Robin Redundant Blest

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

MPTCP Scheduler

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

Default Round Robin Redundant Blest

T
im

e
(s

)

MPTCP Scheduler

0

0.05

0.1

0.15

0.2

0.25

0.3

Default Round Robin Redundant Blest

T
im

e
(s

)

MPTCP Scheduler

128K

256K

0

20

40

60

80

100

120

Blest Default Redundant Round robin tcp-eth tcp-wifi

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

MPTCP Scheduler

Ethernet

WiFi

NEHA R THAKUR AND ASHWINI S KUNTE: EFFICIENT ARCHITECTURE WITH A GENERAL OPTIMIZED REDUNDANT ERROR BASED MPTCP SCHEDULER

2700

should use receiver buffer in an optimized way by giving receiver

feedback to the sender buffer to avoid receiver buffer overflow.

MPTCP scheduler should use some sequencing logic to avoid

OFO packets at the receiver side so that many retransmissions are

avoided and application download time will decrease and

throughput will increase.

4. METHODOLOGY

4.1 OBJECTIVES OF EFFICIENT MPTCP

ARCHITECTURE

• The effective scheduler should have very small schedules so

that recovery of schedules would be easier during a network

failure.

• The effective scheduler should have spontaneous schedules.

• The scheduler should have receiver feedback incorporated.

• The scheduler should be more from redundant to Round

Robin.

• Path selection and recommendation should be autonomous

and functional in the scheduler.

• Application delay = Wait time(queue) + RTT + ACK time,

since RTT and ACK time is constant, the scheduler must

work on Wait time at receiver buffer.

4.2 WORKING OF AN EFFICIENT MPTCP

ARCHITECTURE

As shown in Fig.16, the application buffer gives data to TCP

send buffer. TCP send buffer transmits the data to MPTCP send

buffer, which consists of Send queue, inflight queue, and

retransmission queue. This data is given to scheduler. Scheduler

takes multivariate input to schedule data on different sub-flows in

different RTT cycles.

Path manager unit gives information of number of added sub-

flows with fixed congestion window to the scheduler. Congestion

window unit gives the information of current capacity of available

sub-flows to the scheduler. Receiver buffer sends

acknowledgment for specific RTT to the path scheduler and asks

next data on the sub-flows. Each sub-flow consists of its

congestion window, queue, and an acknowledgment part. These

three things will decide the current capacity of the sub-flows and

this information is provided to the congestion control unit from

sub-flow.

4.3 WORKING OF MPTCP PATH SCHEDULER

An efficient scheduler will work in three functional phases:

redundant phase, overambitious phase and Round Robin phase.

Suppose there are two paths with heterogeneity in RTTs and

cwnds, cwnd1 and cwnd2 as shown in Fig.17. There is a common

queue of the send buffer. Initially, both the paths will start

fetching the common queue data from the start sequence, so the

scheduler will work in a redundant phase. In this phase, a

redundant error is negative. After some time, a fast path will

receive the acknowledgment of initial sent data and sends new

data on the same fast path whereas transmission of previous data

on a slow path is still going on. When the slow path finishes old

data transfer, it will come to know about other fast sub-flow which

is ahead in data transfer, so it leaves the gap of redundant error

and transfers next sequence of packets from common queue. In

this way, scheduler enters into an overambitious mode with

positive redundant error. Later when redundant error reduces to

zero, the scheduler works in Round Robin mode. It is desirable to

work the scheduler in Round Robin mode and reduce

the error to zero. It is observed from previous experimentation

that Roun robin among all schedulers gives good throughput and

good bandwidth aggregation in a homogeneous scenario. The

proposed path scheduler has two essential modules, the path

Sorting module and the redundant error module as explained in

the next subsections.

4.3.1 Path Sorting Module:

It takes inputs such as congestion window and outstanding

packets of each sub-flow and it calculates the current capacity of

each sub-flow. Workflow of this module is shown in Fig.18 and

the algorithm of the module is given in Algorithm 1. Every sub-

flow maintains its queue. The total number of RTTs required to

transmit the data on a particular sub-flow is calculated based on

its queue, cwnd, and current capacity. The arrival time for data

transfer on each sub-flow is calculated by using Total RTTs.

Finally, all available sub-flows are sorted in ascending order of

arrival times. If two sub-flows will have the same arrival times

then their congestion windows are compared and the maximum

congestion window sub-flow is preferred. ‘Eq.(1)-Eq.(3)’ are

used to get minimum arrival time sub-flow.

Algorithm 1: Path Sorting Module

Capacity of the pathj

 Cj = cwndj – unackedpacketsj (1)

Total number of RTTs required:

 Ti = (packets_bufferj - cj)/cwndj (2)

Arrival time of j

ipath :

 (ATi) = (Ti) * sRTT (3)

4.3.2 Redundant Error Module:

In Fig.19, there are two sub-flows, sub-flow1 and sub-flow2.

Sub-flow1 has cwnd1=2 and Sub- flow2 has cwnd2=3 and for

every respective RTT their cwnd increase by 1. Both sub-flows

fetch data from the common queue. First sub-flow1 and sub-flow2

transmit packets 1, 2 and 1, 2 and 3 simultaneously from a

common queue so they are in redundant mode. Sub- flow1 is fast

and it gets acknowledgment of packets 1,2 in its fast RTT, sub-

flow2 is still transmitting packets 1, 2 and 3.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 02

2701

Fig.16. Efficient MPTCP with redundant error scheduler

Sub-flow1 takes new packets 3, 4, 5 for transfer. In next turn

sub-flow2 completes its data transfer of packets 1, 2 and 3 and it

will come to know that another fast sub-flow is available who can

transmit 5 more packets than it, so, now sub-flow will transmit

next 4 packets 6, 7, 8, 9 and sub-flow2 will leave the gap of

redundant error = 5 in a common queue and sends next 3 packets

from 11. Redundant error calculation table is also shown in

Table.2.

The module in Fig.20 initializes the start and end sequence

number of all available sub-flows also it will initialize redundant

error. Then after iterating all available sorted sub-flows,

redundant error and their start and end sequence numbers are

updated. Thus, planned packets are sent on each sub-flow out of

order so that they will be received at the receiver in sequence, and

application Wait time reduces and throughput increases. Packets

are scheduled on all available sub-flows so bandwidth

aggregation is also achieved. The workflow is illustrated in

Algorithm 2. The Eq.(4)-Eq.(8) are used to calculate sequence

numbers on sub-flows and redundant errors.

Fig.17. Three phases of Efficient MPTCP scheduler

Start sequence of fast sub-flow is calculated as:

 seq11 = Data_sequence (4)

Fig.18. Path sorting module

End sequence of fast sub flow is calculated as:

 seqi
2 = seqi

1+ cwnd1 + inflight1 (5)

Start sequence of other sub flows is calculated as:

 seqi
1 = max(dataseq,

1

1iseq − + abs(red_error) +1) (6)

End sequence of other sub flows is calculated as:

 seqi
2

 = seqi
1 + cwndi – inflighti (7)

Fig.19. Redundant error calculation

Redundant error for sub flow is calculated as:

 red_errori = seqi
1 - 2

1iseq −
 (8)

Theoretical calculation of application delay: Theoretical

comparison of different known schedulers with a proposed

scheduler concerning download time is shown in Table 3.

Initialization is done as follows.

• RTT Path1(fast) = 5ms, W1 = 5

• RTT Path2(slow) = 20ms, W2 = 20

• Receiver window = 60

Table.2. Redundant error calculation

Time seq11 seq21 seq12 seq22 Ack1 Ack2 Ack error

0-5 1 5 1 5 5 0 5 -4

10 6 11 22 27 11 5 11 -10

15 12 17 22 27 17 5 17 5

20 18 23 28 33 23 27 27 -1

25 28 33 28 39 33 27 33 -5

30 34 39 51 56 39 39 39 -11

35 40 45 51 56 45 39 45 6

40 46 51 57 62 51 56 56 0

Table.3. Download time of MPTCP schedulers calculated

theoretically

MPTCP Scheduler Download time (ms)

Default 60

Blest 50

Round Robin 60

Redundant 60

REMPS 40

5. EXPERIMENT AND EVALUATION

5.1 EXPERIMENT SETUP

Linux kernel implementation is used for MPTCP setup. This

setup enables us to test out extreme scenarios in a safe

environment. The Experiment is implemented by using two

computers with 8 GB RAM, raspberry pi, and an ADSL router.

Both the computers are MPTCP enabled with Linux kernel and

MPTCP version of 4.19.105, MPTCP-v95 respectively. Fig.21

shows how we set up a basic topology. A Router is used between

MPTCP source host and MPTCP destination host. Each network

Q = Data_sequence

1, 2, 3

Subflow1 = 1,2 Subflow2 = 1, 2, 3

Q = Data_sequence

Subflow1 = 3, 4, 5 Subflow2 = 1, 2, 3

Q = Data_sequence

6, 7, 8, 9, 10, 11, 12, 13, 14

Subflow1 = 6, 7, 8, 9 Subflow2 = 11, 12, 13,14

3, 4, 5

Red_error =5

Calculate number of packets on each sub-flow based

on their cwnd and outstanding packets

Calculate arrival time of each sub-flow (arrival time =

number of total RTT’s required of all available paths)

Sort available sub-flows in ascending order based on

arrival time

NEHA R THAKUR AND ASHWINI S KUNTE: EFFICIENT ARCHITECTURE WITH A GENERAL OPTIMIZED REDUNDANT ERROR BASED MPTCP SCHEDULER

2702

link is allotted with proper bandwidth and latency with the help

of the ’tc qdisc’ command as shown in Table.4. The default

interface can also be set by using the ’iproute’ command. With

proper setting each time two interface combination is made in

experiment setup like1) Wi-F+Ethernet 2) Wi-Fi + LTE and 3)

Wi-Fi + Wi-Fi.

Algorithm 2: Redundant error module

Step 1: Initialize data_seq = next_chunk_seq from send buffer,

redundant_error = -1 and all sequence no. = 0.

Step 2: Send redundant sequence no. packets on all available

sub-flows.

Step 3: Get sorted sub-flows from path sorting module basis

cwnd ≥ sent_packets on every sub-flow.

Step 4: Calculate start and end sequence of packets on fast sub-

flow.

Step 5: Calculate start and end sequence of packets on rest of the

sub-flows

Step 6: calculate redundant_error

Step 7: Send data on all sub-flows

Step 8: Redundant Error Module

Fig.20. Redundant error module

Fig.21. MPTCP setup for Bandwidth aggregation

Table.4. Interfaces used in Experiments

Interface Bandwidth RTT

Ethernet 80Mbps 10ms

Wi-Fi 8 Mbps 50ms

LTE 16 Mbps 70ms

The proposed schedulers MPTCP architecture is compared

with default MPTCP architecture using known schedulers.

Experiments are run in two sets, first for 20 seconds and second

for 200 seconds. For each set of experiments iperf3 traffic

generator is used with no loss links. Experiments are run for 20

seconds and 200seconds for the proposed scheduler and known

schedulers individually with different data sizes 64KB, 100KB,

500KB, 1000KB. Using Python script, System socket command

readings are recorded and dataset for different experiments are

collected. Collected data is analyzed using ’R tool’ concerning

various key performance parameters.

The proposed scheduler’s MPTCP architecture is compared

with known scheduler’s MPTCP architectures like

• Default Scheduler: It uses the least RTT interface for

maximum time. For a very small amount of time, it uses a

slow interface. To handle OFO packets and retransmissions

it uses Penalization and retransmission algorithm.

• Round Robin Scheduler: It uses an alternate interface for

data transmission irrespective of knowledge of RTTs of

interfaces.

• Redundant Scheduler: It broadcast data on all available

interfaces in a redundant manner. Combined data

acknowledgment of data is sent on anyone sub-flow.

• Blest Scheduler: It sends data on fastest sub-flow in

priority. If fast sub-flow is not available then estimated

transfer time of data is calculated on fast and slow sub-flow

and whichever is less that path will be chosen for data

transfer.

5.2 EVALUATION

The evaluation of proposed scheduler’s MPTCP architecture

is made by comparing proposed scheduler with known schedulers.

Comparison of proposed schedulers with known schedulers is

made with respect to various key performance parameters like

percentage path utilization, RTT behavior, average throughput,

average application download time, and unacknowledged

packets.

5.2.1 Percentage Path Utilization:

As shown in Table 5, for 20 seconds experiment, it has been

observed that in both MinRTT and Blest schedulers, Wi-Fi

interface is less used, only 7% in comparison to the Ethernet

interface, which is 93%. Ethernet interface has low and consistent

RTT whereas Wi-Fi has a large and fluctuating RTT. In a similar

type of experiment as per the basic behavior of Round Robin and

Redundant schedulers, they utilize both the interface almost

equally. Due to Redundant error module designed in proposed

scheduler it tries to use both slow and fast sub-flow equally, Wi-

Fi 48% and Ethernet 52%. It is proved that proposed algorithm

does best bandwidth aggregation in heterogeneous scenario of

(Wi-Fi, Ethernet) with proper sequencing of data on available

sub-flows using redundant error calculation.

Table.5. Path Utilization of different MPTCP schedulers

compared with proposed scheduler for 20sec duration

MPTCP Schedulers Wi-Fi Ethernet

Select available sub flows with their congestion window

Select Redundant packets on all available sub flows

Select Data_sequence = next_chunk_seq() and read_error = -1

Update start and end sequence of fast subflows

Update start and end sequence of slow subflows

Send planned packets on all available subflows

Repeat Steps from step 2

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 02

2703

Blest 7% 93%

Default 7% 93%

Redundant 46% 54%

Round Robin 61% 39%

TCP LTE 0% 100%

TCP Wi-Fi 100% 0%

Proposed 48% 52%

In 200s experiment, it has been observed that, as per the

behavior of MinRTT scheduler, it does not use interface (Wi-Fi)

with large RTT, it prefers to use LTE interface for scheduling

maximum data. BLEST scheduler also, uses only a minimum

RTT interface (LTE). It uses an LTE interface and Wi-Fi interface

in a proportion of 88% and 13% respectively as shown in Table.6.

Round Robin and Redundant schedulers try to use both the

interfaces. Proposed scheduler also uses both the interfaces almost

equally. In all the experiments, it has been observed that

Redundant scheduler (ReMP) and Proposed scheduler utilize both

the interfaces fully. It is observed that in heterogeneous and

homogeneous scenarios, proposed scheduler uses both the

interfaces in equal contribution. It is possible only because of

redundant error calculation and proper sequencing of data packets

on available sub-flows of MPTCP architecture.

Table 6. Path Utilization of different MPTCP schedulers

compared with proposed scheduler for 200sec duration

Schedulers LTE Wi-Fi

Blest 88% 13%

Default 90% 10%

Redundant 50% 50%

Round Robin 38% 62%

TCP LTE 100% 0%

TCP Wi-Fi 0% 100%

Proposed 47% 53%

In Literature [25] MPTCP is a protocol that is implemented in

the Linux kernel. Various MPTCP scheduler algorithms for

throughput optimization [8] and reduced download time [9] have

been proposed by a number of writers. They warn that using a

path with a long RTT will always cause the receive buffer size to

overflow. Other studies, such as [9] and [14], add to the evidence

of this problem. Furthermore, [1], [9], and [14] all provide

experimental proof of how MPTCP output degrades when the

receive buffer size is small. In proposed scheduler, Receiver

buffer overflow is restricted by using all available sub-flows with

proper data scheduling on it.

5.2.2 Average Throughput and Application Data Download

Time:

Average Throughput achieved is best for the Proposed

scheduler among all schedulers. Blest and MinRTT scheduler

perform well in comparison to Round Robin and Redundant

scheduler in heterogeneous scenarios, their throughput has been

observed better than that of Round Robin and Redundant

scheduler but their throughput is less than Proposed scheduler.

The reason is MinRTT and Blest scheduler use fastest sub-flow

for maximum time, and they neglect slow sub flow. Proposed

scheduler can get the benefit of bandwidth aggregation of

available sub-flows in MPTCP architecture by using proper

scheduling of data on available sub-flows using redundant error

module. There are very less re-transmission in case of proposed

scheduler because of receiver feedback used at sender side to plan

the data on different sub-flows. Since receiver buffer is utilized

properly and less number of OFOs are at the receiver side,

throughput obtained by Proposed scheduler is more in comparison

with other MPTCP schedulers. Sometimes Round Robin and

Redundant schedulers performance are even below single-path

TCP as shown in Table.7.

Table.7. Average Throughput of different MPTCP schedulers

compared with Proposed MPTCP scheduler

MPTCP Schedulers Throughput in Kbps

Default 19.442

Round Robin 16.0985

Redundant 18.876125

Blest 19.37375

Proposed 29.54234

Experiments are also run to download data of size 64KB,

100KB, 500KB, and 1MB, and average download time in seconds

of different schedulers of MPTCP, Proposed scheduler of MPTCP

and vanilla TCP is observed and compared as shown in Fig.25 and

Table 8. The download time of Proposed scheduler is least among

all the schedulers. Overall MPTCP Schedulers with Proposed

scheduler of MPTCP do perform bandwidth aggregation and

reduce download time in comparison to TCP but Proposed

MPTCP scheduler downloads application with variable data sizes

in the least time because of proper bandwidth aggregation of all

available sub-flows in homogeneous and heterogeneous

scenarios.

5.2.3 Unacknowledged Packets:

In these experiments, in a heterogeneous environment,

unacked packets are being observed more for the Redundant

scheduler and unacked packets are very less for Proposed MPTCP

scheduler. It is shown in Fig 26 and ’Table 9’. Proposed scheduler

uses receiver feedback at the sender side to select proper sub-flow

and to calculate redundant error, based on that data is scheduled

in proper way on all available sub-flows and because of that OFOs

or unacked packets are very less in case of Proposed scheduler of

MPTCP.

Table.8. Average application download time of different

MPTCP schedulers compared with Proposed MPTCP scheduler

Data Default
Round

Robin
Redundant Blest Proposed

64Kb 49.762 49.262 49.085 44.158 32.234

100Kb 52.102 52.468 51.657 51.305 40.561

500Kb 68.276 69.293 72.572 67.6465 51.234

1MB 131.8 139.54 132.67 142.7106 101.22

NEHA R THAKUR AND ASHWINI S KUNTE: EFFICIENT ARCHITECTURE WITH A GENERAL OPTIMIZED REDUNDANT ERROR BASED MPTCP SCHEDULER

2704

Table.9. Unacknowledged packets of different MPTCP

schedulers compared with Proposed MPTCP scheduler

Schedulers
Homo-

geneous

Homo-

geneous

Hetero-

geneous

Hetero-

geneous

Default 27 47 54 65

Round Robin 27 69 53 105

Redundant 46 70 67 120

Blest 19 34 41 54

Proposed 3 5 7 12

6. CONCLUSION

MPTCP architecture should use all available TCP sub-flows

in multi-homed devices concurrently and efficiently. Previous

MPTCP architectures use different schedulers but while using

available sub-flows simultaneously, they generate many OFO

packets at the receiver. MPTCP scheduler used in this literature

makes MPTCP architecture efficient by using proper packet

sequencing, receiver feedback and many key performance factors

like RTT, cwnd, OFO packets on each sub-flow. This architecture

uses redundant error as key measuring factor. This architecture

uses path sorting model and Redundant error model to increase

throughput of application and to decrease average download time

of the application. This MPTCP architecture with redundant error-

based scheduler, improves quality of experience of the

application.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley and O. Bonaventure, “TCP

Extensions for Multipath Operation with Multiple

Addresses”, Available at

https://datatracker.ietf.org/doc/html/rfc6824, Accessed at

2013.

[2] A. Ford, C. Raiciu, M. Handley, S. Barre and J. Iyengar,

“Architectural Guidelines for Multipath TCP

Development”, Available at https://www.rfc-

editor.org/rfc/rfc6182, Accessed at 2011.

[3] T. Lubna, I. Mahmud and Y.Z. Cho, “D-LIA: Dynamic

Congestion Control Algorithm for MPTCP”, ICT Express,

Vol. 6, No. 4, pp. 263-268, 2020.

[4] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier and

Simon, “Cross-Layer Scheduler for Video Streaming over

MPTCP”, Proceedings of International Conference on

Multimedia Systems, pp. 1-12, 2016.

[5] B. Han, F. Qian, L. Ji and V. Gopalakrishnan, “MP- DASH:

Adaptive Video Streaming over Preference-Aware

Multipath”, Proceedings of International Conference on

Emerging Technologies, pp. 1-14, 2018.

[6] H. Kim, J.B.H. Oh and A. Lee, “Improvement of MPTCP

Performance in Heterogeneous Network using Packet

Scheduling Mechanism”, Proceedings of International on

Conference on Communications, pp. 842-847, 2012.

[7] F. Yang and P. Amer, “Work in Progress: Using One-Way

Communication Delay for In-Order Arrival MPTCP

Scheduling”, Proceedings of International on Conference

on Communications and Networking, pp. 122-125, 2014.

[8] T. Shreedhar, N. Mohan, K. Sanjit, J. Kaul, and

Kangasharju, “QAware: A Cross-Layer Approach to

MPTCP Scheduling”, Proceedings of International on

Conference on Networking and Workshops, pp. 1-9, 2018.

[9] W. Yang, P. Dong, W. Tang, X. Lou, H. Zhou, K. Gao and

G. Wang, “A MPTCP Scheduler for Web Transfer”,

Computers, Materials and Continua, Vol. 57, No. 2, pp.

205-222, 2018.

[10] F. Yang, P. Amer and N. Ekiz, “A Scheduler for Multi-Path

TCP”, Proceedings of International Conference on

Computer Communication and Networks, pp. 1-7, 2013.

[11] W. Lu, D. Yu, M. Huang and B. Guo, “PO-MPTCP:

Priorities-Oriented Data Scheduler for Multimedia Multi-

Pathing Services”, International Journal of Digital

Multimedia Broadcasting, Vol. 2018, pp. 1-9, 2018.

[12] A. Frommgen, A. Rizk, T. Erbshauber, M. Weller, B.

Koldehofe, A. Buchmann and R. Steinmetz, “A

Programming Model for Application-Defined Multipath

TCP Scheduling”, Proceedings of ACM/IFIP/USENIX

Conference on Middleware, pp. 134-146, 2017.

[13] D. Wischik, C. Raiciu, A. Greenhalgh and M. Handley,

“Design, Implementation and Evaluation of Congestion

Control for Multipath TCP”, Proceedings of Conference on

Networked Systems Design and Implementation, pp. 1-8,

2011.

[14] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani and

R. Boreli, “DAPS: Intelligent Delay-Aware Packet

Scheduling for Multipath Transport”, Proceedings of IEEE

International Conference on Communications, pp. 1222-

1227, 2014.

[15] F. Yang, Q. Wang and P.D. Amer, “Out-of-Order

Transmission for In-Order Arrival Scheduling for multipath

TCP”, Proceedings of International Conference on

Advanced Information Networking and Applications

Workshops, pp. 749-752, 2014.

[16] Y.S. Lim, E.M. Nahum, D. Towsley and R.J. Gibbens,

“ECF: An MPTCP Path Scheduler to Manage

Heterogeneous Paths”, Proceedings of International

Conference on emerging Networking Experiments and

Technologies, pp. 147-159, 2017.

[17] B.H. Oh and J. Lee, “Constraint-Based Proactive Scheduling

for MPTCP in Wireless Networks”, Computer Networks,

Vol. 91, pp. 548–563, 2015.

[18] P. Hurtig, K.J. Grinnemo, A. Brunstrom, S. Ferlin, O. Alay

and N. Kuhn, “Low-Latency Scheduling in MPTCP”,

IEEE/ACM Transactions on Networking, Vol. 27, No. 1, pp.

302-315, 2019.

[19] Y. Guo, A. Ethan, Z. M. Nikravesh, F. Mao, S. Qian, and K.

Sen, “DEMS: Decoupled Multipath Scheduler for

Accelerating Multipath Transport”, Proceedings of

International Conference on Mobile Computing and

Networking, pp. 477-479, 2017.

[20] C. Paasch, S. Ferlin, O. Alay and O. Bonaventure,

“Experimental Evaluation of Multipath TCP Schedulers”,

Proceedings of ACM SIGCOMM Workshop on Capacity

Sharing, pp. 27-32, 2014.

[21] A. Frommgen, A. Buchmann, T. Zimmermann and K.

Wehrle, “ReMP TCP: Low latency Multipath TCP”,

Proceedings of IEEE International Conference on

Communications, pp. 1-7, 2016.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 02

2705

[22] S. Ferlin, O. Alay, O. Mehani and R. Boreli, “BLEST:

Blocking Estimation-Based MPTCP Scheduler for

Heterogeneous Networks”, Proceedings of IFIP Networking

Conference and Workshops, pp. 431-439, 2016.

[23] E. Dong, M. Xu, X. Fu and Y. Cao, “LAMPS: A Loss Aware

Scheduler for Multipath TCP over Highly Lossy Networks”,

Proceedings of IEEE Conference on Local Computer

Networks, pp. 1-9, 2020.

[24] V.H. Tran, Q.D. Coninck, B. Hesmans, R. Sadre and O.

Bonaventure, “Observing Real Multipath TCP Traffic”,

Computer Communications, Vol. 94, pp. 114-122, 2016.

[25] D. Yao, X. Su, B. Liu and J. Zeng, “A Mobile Handover

Mechanism based on Fuzzy Logic and MPTCP Protocol

under SDN Architecture”, Proceedings of IEEE

International Conference on Communications and

Information Technologies, pp. 141-146, 2018.

