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Abstract 

The path scheduler of Multipath TCP (MPTCP) is responsible to 

distribute packets in an optimized way on available multiple sub-flows. 

Due to heterogeneous scenarios of MPTCP sub-flows, MPTCP should 

have a good packet scheduler that can handle versatile network sub-

flow conditions. This article looks over different MPTCP schedulers 

and finds key problems like Out-of-order (OFO) packets issue, Receiver 

side blocking, sub-flows, and bandwidth disunion. These problems 

appeal to the design of good MPTCP architecture providing an efficient 

packet scheduler. This article proposes an MPTCP architecture with a 

General and optimized MPTCP scheduler which overcomes the 

problems of some known schedulers. The proposed Redundant Error-

based MPTCP Scheduler (REMS) meets the three goals, first, it 

achieves ranking of available paths based on congestion window and 

outstanding packets on it, second goal is smart sequencing schedule 

with redundant error calculation. REMS experimentation shows, it 

improves throughput and quality of experience of application with 

bandwidth aggregation and decreasing application delay considerably. 

This article also shows the comparison of the proposed scheduler with 

previously known schedulers. 
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1. INTRODUCTION 

MPTCP is the concept derived from TCP. Today’s smart 

devices are technologically evolved. These devices can use 

several internet interfaces simultaneously by using Internet 

Protocol (IP) addresses, this capability is called multi-homing. To 

explore the flavor of this facility and utilize available resources in 

an optimized way, Internet Engineering Task Force (IETF) [1] has 

given the standard MPTCP, its open-source code is available in 

multipath “www.multipath-tcp.org”. MPTCP is the hidden upper 

layer of TCP. In MPTCP enabled host, MPTCP is hidden from 

the application layer and network layer. MPTCP is made up of 

one or many independent TCP connections, working all together 

with different interfaces concurrently to provide aggregated 

capacity, maximize throughput, and enhance the resilience of the 

network. Multi-homed devices can be better utilized by using 

MPTCP for speedy and seamless communication. MPTCP uses a 

connection that is logically made up of many TCP connections. 

These TCP connections are established with a three-way 

handshake method. Each TCP connection in MPTCP is called a 

sub-flow of MPTCP. Each sub-flow in MPTCP uses a different 

IP address at the end host. Over 

MPTCP connection, the sequence number for data is called a 

connection sequence number or data sequence number and at sub-

flow level sequence number for data is called sub-flow sequence 

number. MPTCP connection is established between two MPTCP 

enabled end hosts. Initially, only one TCP flow is started in 

MPTCP connection and as per requirement, more TCP flows are 

joined in MPTCP as multiple sub-flows. Middleboxes will treat 

individual MPTCP sub-flow as TCP connection. MPTCP is 

transparent to the Network layer and Application layer. 

1.1 WHY MULTIPATH TCP? 

MPTCP over TCP has two main advantages, capacity 

aggregation, and redundant connection. Wi-Fi and LTE are two 

different interfaces with their capacity. TCP cannot use them 

simultaneously when both of them available but MPTCP can use 

both of them simultaneously and aggregate their capacity. Thus, 

MPTCP may give theoretically maximized throughput and 

application performance improved. MPTCP uses many TCP 

connections running concurrently, so if any TCP connection fails, 

other redundant TCP connections are there to serve the 

application. IOS uses MPTCP in the SIRI application for 

redundancy. Linux code is available for MPTCP.  

MPTCP’s architecture is made up of three major building 

blocks, path manager, congestion control, and packet scheduler. 

Path manager decides to add sub-flows to MPTCP architecture. 

Congestion control decides the total number of packets that 

should be present on each sub-flow per RTT. Path scheduler is 

accountable for efficient distribution of packets on available sub-

flow. Improper path scheduler can lead to degradation of the 

Quality of service of the application. 

1.2 PATH MANAGER 

MPTCP connection between two systems Host A and Host B 

is established by establishing a single path TCP connection first. 

single connection adds further sub-flows with ADD ADDR 

command option of MPTCP. Path manager takes path 

management decisions. MPTCP is provided with three different 

path managers [2]. 

• Default Path Manager: This type of path manager does not 

broadcast IP addresses also it does not add new sub-flows. It 

accepts the new creation of sub-flows. 

• Full-Mesh Path Manager: All available IPs of the client 

can make the connection with the available IPs of a server. 

• Path Manager: For a specific sub-flow, the same IP address 

pair is used but with different TCP ports always. This path 

manager. 

MPTCP uses three methods to control path usage 

• Primary Mode: It is the default mode and it utilizes all 

available interfaces. 

• Backup Mode: Only active sub-flows are chosen to transmit 

data and other passive sub-flows are redundant to act as 

backup. 

• Single Path Mode: MPTCP acts like single-path TCP by 

using a single active sub-flow at a time to transmit data. 
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TCP has only one path, so path manager is not required but in 

MPTCP multiple sub-flows are available and there is a need for 

path manager to manage them as shown in Fig.1. Each sub-flow 

in MPTCP is associated with Source IP and Destination IP pair. 

MPTCP’s Default path manager will add new sub-flow on the 

request of a new interface. 

 

Fig.1. Default MPTCP with default scheduler 

1.3 CONGESTION CONTROL IN MPTCP 

The capacity of MPTCP sub-flows is different so we required 

good congestion control technique. If congestion control is 

independent for each sub-flow, it will create the head of line 

blocking at the receiver end because of the link within a group of 

sub-flows of MPTCP. MPTCP uses coupled congestion control. 

It is robust to failure and it uses resource pooling in terms of 

available congestion window by a congested path. By using 

coupled congestion control MPTCP may achieve targets like 

• MPTCP should not dominate other single-path TCP 

connections in the network. 

• MPTCP should work at least as that of single-path TCP. 

• MPTCP should give seamless delivery of traffic by the 

congested path by accounting upper two targets. 

Few congestion control algorithms for TCP and MPTCP are 

LIA, OLIA, BALIA, and D-LIA [3]. All these algorithms follow 

the Additive Increase and Multiplicative Decrease (AIMD) 

method. AIMD has three phases slow start, congestion avoidance, 

and fast retransmission phase. 

In the slow start phase congestion window of sub-flow 

doubles till the slow-start threshold, once the first packet drops 

congestion avoidance phase starts. In the congestion avoidance 

phase, the congestion window of sub-flow increases by one for 

each RTT. Unacknowledged packets on sub-flow are more than 

the capacity of congestion window of sub-flow then the fast 

retransmission phase starts. During the phase, new packets are not 

transmitted on any of the sub-flows. 

1.4 PATH SCHEDULER 

In MPTCP multiple sub-flows are used, which are 

heterogeneous concerning path delays, congestion windows, and 

bandwidths so packets send on many sub-flows will not come in 

proper sequence at the receiver end, higher-order packets will be 

transmitted first, and lower order packets may be transmitted with 

delays. This may cause many out of orders packets and head-of-

line blocking at the receiver end. If the receiver does not have 

enough space to hold OFO packets then due to request time out, 

many and spurious retransmissions may occur, and the loss ratio 

will increase. 

This drawback of the head of line blocking can be avoided by 

using an efficient MPTCP scheduler in MPTCP architecture. 

MPTCP sends data by using bandwidth aggregation of many TCP 

paths so a scheduler is necessary for MPTCP. MPTCP scheduler 

is triggered when data arrives at the sender side from the 

application. Many authors have given their algorithms and ideas 

on the MPTCP scheduler. They have used various key 

performance factors in different combinations for implementing 

the MPTCP scheduler. They achieved goals like bandwidth 

aggregation, receiver buffer optimization, loss recovery, etc. but 

no one achieved these goals altogether.  

In this article, authors propose an MPTCP scheduler that is 

capable of doing bandwidth aggregation, head of line monitoring, 

and energy conservation by considering the feedback of the 

MPTCP receiver. 

Further, in this paper, the contents are organized as follows. 

Related work gives an overview of existing techniques in this 

area. The methodology section explains the proposed MPTCP 

approach in detail step by step. The following sections are 

methodology, results, and discussion of the proposed approach. 

Finally, the conclusion section gives remarks about the 

experimentation undertaken and the future work. 

2. RELATED WORK 

In MPTCP architecture many packet schedulers are studied. 

MPTCP protocol is implemented in the Linux kernel. Various 

MPTCP scheduler algorithms for throughput optimization [4] and 

reduced download time [5] have been proposed by researchers. 

Numerous performance characteristics can influence throughput 

and application download time (QOS) using MPTCP. They were 

viewed differently by various scholars. Few authors used all 

available sub-flows, but some of them used only one or two 

effective sub-flows out of many sub-flows. Bandwidth 

aggregation is accomplished by using multiple sub-flows. Some 

authors used sender buffer [6] as a sub-flow selection parameter, 

while others used receiver buffer for sub-flow quality estimation 

[7].  

The majority of them estimate sub-flow efficiency using sub-

flow characteristics such as Round-Trip Time (RTT), Congestion 

Window (cwnd), and queue size. Few send all application layer 

packets in sequence from the sender side, others send them in 

mixed order so that all packets arrive at the receiver end in the 

correct order. Few authors designed schedulers that took into 
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account the status of the router’s buffer as well as the buffers of 

the end devices [8]. Some schedulers use a proactive strategy [9], 

while others use a reactive strategy [10]. Some schedulers 

prioritize fresh packets over retransmitted packets during packet 

transmission from the sender end. Some schedulers can also 

retransmit packets on a new route instead of the old path. Few 

schedulers assign a priority to applications [11]. Programmable 

Multipath [12] is a system that allows us to select one scheduler 

from a large number of schedulers based on our needs and 

network conditions. It is a medium through which we can create 

new Scheduler and test them in the ProgMP system. Many authors 

have contributed to MPTCP schedulers, but only a few schedulers 

are theoretically compared in Table.1. 

Few MPTCP schedulers are studied with their functionality, 

advantages, and disadvantages. 

• MinRTT MPTCP Scheduler: This scheduler chooses a fast 

path as a priority. This scheduler sends traffic on a fast path 

until it is used fully, then sends traffic on the next fast path 

till it gets exhausted. In heterogeneous scenarios due to the 

large difference in round trip time of sub-flows, many OFO 

packets get accumulated at the MPTCP receiver, and they 

cause head of line blocking and receiver buffer overflow. In 

MinRTT scheduler, this situation is handled using 

penalization of the slow path and fast retransmission of 

packets on a fast path (PR) and because of this most of the 

time fast path is utilized and the slow path is used for very 

less amount of time. The Key performance parameter used 

in the scheduler is RTT. Its work is shown in Fig.2. 

 

Fig.2. MPTCP MinRTT scheduler 

• Round Robin [20]: This scheduler does not prefer any sub-

flow. It sends packets irrespective of their preferences in a 

Round Robin fashion. Due to heterogeneity slow sub-flows 

get congested and the scheduler losses its performance. Its 

methodology is shown in Fig.3. 

• Blind Round Robin: It is MPTCP scheduler which 

considers three performance metrics like receiver congestion 

window congestion window and inflight packets or 

unacknowledged packets on the sub-flows. It collects data at 

sender side then it selects best sub-flow by checking its 

congestion window, if congestion window is not exhausted 

by unacknowledged packets, then packets are sent on the 

same sub-flow otherwise packets are sent on the other 

alternative sub-flow. For all sub-flows this procedure is 

repeated while allocating packets on the sub-flows. If 

receiver window is exhausted then all sub-flows are blocked 

for a while. Receiver window blocking is tested with respect 

to summation of unacknowledged packets of all the sub-

flows in MPTCP. Its work is shown in Fig.4. 

 

Fig.3. Round Robin MPTCP scheduler 

 

Fig.4. Blind Round Robin MPTCP Scheduler 

• Redundant [21]: Redundant scheduler in MPTCP gives 

perfect redundancy in the network for transmitting data 

packets. The redundant scheduler broadcasts the packets on 

every available sub-flow of MPTCP. The receiver sends 

combined acknowledgment of received packets on any one 

of the sub-flows. Bandwidth is wasted in this type of 

scheduler. Bandwidth aggregation is 100% in this scheduler. 

Many other schedulers use this scheduler as fast 

retransmission policy which is shown in Fig.5. 

 

Fig.5. Redundant MPTCP Scheduler 

• Delay Aware Packet Scheduler in MPTCP (DAPS) [14]: 

Delay aware packet scheduler does bandwidth aggregation 

by using fast and slow both sub-flows simultaneously. 

DAPS scheduler uses longest sub-flow’s One Way Delay 

(OWD = RTTs/2). It sends n = (RTTs/RTTf ) packets on fast 

sub-flow and remaining packets on slow sub-flow. It is 

assumed that packets to be sent are more than the congestion 

window of fast sub-flow, then only slow sub-flow is utilized 

otherwise fast sub-flow is enough to send all data. Schedule 

‘S’ contains which sequence number chunk to be sent on 

which sub-flow in RTTs/2 duration of time. DAPS do not 

consider MPTCP send Window and path loss. DAPS takes 

care of OFO packets at the receiver, it sends OFO packets at 

the sender to receive ‘in order packets’ at the receiver. DAPS 

do not exhaust fast sub-flow fully but it puts only n packets 

on fast sub-flow and remaining packets on slow sub-flow. 

Its work is shown in Fig.6. 



ISSN: 2229-6948(ONLINE)                                                                                     ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2022, VOLUME: 13, ISSUE: 02 

2697 

 

Fig.6. Delay Aware MPTCP Scheduler 

• Blocking Estimation Based MPTCP scheduler (Blest) 

[22]: MinRTT does PR when it comes across head of line 

blocking and because of it MinRTT uses mainly fast sub-

flow and neglects slow sub-flow. It hardly uses slow sub-

flow. Blest avoids PR by managing OFO packets at the 

receiver. In a homogeneous scenario, Blest avoids HOL 

blocking by restricting OFO packets. Blest initiates 

algorithm with MinRTT but as its congestion window fills, 

it goes to slow sub-flow and calculates the number of 

segments ‘X’ that may be transferred on slow sub-flow. 

Before transferring data ‘X’ on slow sub-flow, it checks 

whether to wait for fast sub-flow or to transfer the current 

data on the slow sub-flow. This decision is taken based on 

the congestion window of fast sub-flow and RTTs/ RTTf 

factor for RTTs duration, that is during longest sub-flow 

OWD. Path probing is done by using the congestion window 

of fast sub-flow cwnd. Its work is shown in Fig.7. 

 

Fig.7. Blest MPTCP Scheduler 

• Loss Aware MPTCP Scheduler (LAMPS) [23]: LAMPS 

switches from MinRTT to Redundant and Redundant to 

MinRTT MPTCP scheduler. This switching decision is 

taken based on path loss factor. Considering sub-flow’s loss 

factor, transfer time ‘T’ of all sub-flows is calculated. The 

Least transfer time sub-flow is selected for transmission of 

data and the algorithm followed is MinRTT. As path loss of 

fast sub-flow increases beyond the desired threshold value 

then the redundant scheduler starts working in the MPTCP 

connection. Prior scheduled packets are also recovered at the 

current time and sent on all sub-flows simultaneously. The 

path probing method used is also good. It is described in 

Fig.8. 

 

Fig.8. LAMPS MPTCP Scheduler 

3. BACKGROUND AND MOTIVATION 

Comparison of various know schedulers is done with deep 

experimentation and found some observations from the analytical 

study. MPTCP is set up using the Linux kernel implementation. 

Two computers with 8 GB RAM, a Raspberry  

Pi, and an ADSL router are used in the experiment. MPTCP is 

available on both machines, with Linux kernels and MPTCP 

versions of 4.19.105 and MPTCP-v95, respectively. A 

homogeneous scenario is generated with (Wi-Fi, Wi-Fi) 

interfaces, Heterogeneous scenario is generated with (Ethernet, 

Wi-Fi) and (LTE-Wi-Fi) interfaces. Experiments are run for two 

sets, 20 seconds and 200 seconds for each MPTCP scheduler to 

download different data sizes traffic generated by the ’iperf’ 

traffic generator [24]. 

3.1 STUDY AND OBSERVATIONS OF 

EXPERIMENTATION 

Observations are listed based on key performance factors. 

3.1.1 Throughput: 

For known scheduler of MPTCP like MinRTT, Round Robin, 

Redundant, and Blest throughput is recorded in kilobytes for 

different data sizes like 64KB, 128 KB, 256 KB, 1 MB, and 256 

MB. It is observed that when data load is less all the schedulers 

give almost similar performance.  

  

Calculate loss component of each path 

Calculate Transfer time 

Select best path 

Run scheduler as MinRTT 

Check Path loss of best path above threshold or not 

If path loss above than threshold then switch to redundant 

scheduler 
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Table.1. Theoretical Comparison of MPTCP Schedulers 

MPTCP 

Schedulers 
Method Performance Parameters Advantages Disadvantages 

Round Robin Sub paths are used alternately CWND 
Capacity 

aggregation. 

It is very poor for 

heterogeneous transmission. 

MinRTT  Use of fastest sub path  RTT, CWND Easy to implement. 
Heterogeneity restricts even 

small file to download. 

REMP 

(Redundant) [13] 

It uses all paths to transmit same 

data. 
- 

Speedy but with 

move overheads 

More redundant packets so 

more overhead of buffer. 

CP [14] Sends data in proactive manner Buffer capacity Probing of fast path. Mobility is not considered 

DAPS [15] Tried to utilize all sub paths RTT No receiver block 
It doesn’t work in all network 

scenarios. 

ECF [16] 
Uses shortest path to send the 

data 

RTT, cwnd, MSS, amount 

of data to be sent 
Fast completion time 

May underutilize some of the 

sub-flows. 

OTIAS [17] 

OWD is used, min RTT is 

considered without considering 

cwnd. 

RTT Less parameters. Many out of order packets. 

Blest [18] Gives priority to fast sub path RTT, MSS 
Receiver blocking is 

avoided 
Slow sub path is underutilized 

DEMS [19] 
All sub flows complete the task at 

same time. 
Capacity of paths 

Good for specific 

setups. 

Chunk size of data and exact 

bounds matters. 

 

Fig.9. Throughput of MPTCP schedulers for data download of 

size 64KB 

In all the observations considering different data sizes, Round 

Robin scheduler gives outstanding performance for 64 KB data 

size downloads. It is shown in Fig.9. As the data size of download 

increases, Round Robin is not a stable MPTCP scheduler whereas 

in this scenario Blest gives better performance. 

In a heterogeneous scenario of Ethernet and Wi-Fi interface, 

throughput is recorded for two sets of experiments like 20sec and 

200sec data transfers and it has been observed that Blest, MinRTT 

and Redundant scheduler perform well but Round Robin 

scheduler degrades its performance drastically. As shown in 

Fig.10 the Round Robin scheduler could not withstand with a 

heterogeneous scenario in comparison with other MPTCP 

schedulers. Among all scheduler as heterogeneity increases Blest 

performs well in terms of throughput. 

Another heterogeneous scenario is run for 200 seconds using 

Wi-Fi and LTE networks as shown in Fig.11. In this experiment, 

Blest and MinRTT scheduler works well but Redundant and 

Round Robin schedulers give poor performance. 

In another set of an experiment to measure throughput 

homogeneous scenario is used. It is shown in Fig.12. A 

homogeneous scenario is created by using Wi-Fi and Wi-Fi 

interfaces. It is found that the Round Robin scheduler performs 

very well in all schedulers and gives maximum throughput. 

3.1.2 Download Time: 

Four different schedulers of MPTCP MinRTT, Round Robin, 

Redundant, and Blest are run for downloading different data sizes 

like 64KB, 128 KB, 1 MB and 256 KB of data. It has been 

observed that for a small size of data that is 64 KB download time, 

all schedulers behave similarly as shown in Fig.13. As data size 

for download increases Round Robin and Blest degrade their 

performances. For moderate data sizes like 128 KB and 256 KB 

Blest gives the least download time than other schedulers as 

shown in Fig.14. 

3.1.3 Path Utilization and Bandwidth Aggregation: 

In homogeneous and heterogeneous scenarios, Blest and 

MinRTT schedulers utilize only fast path with the least RTT for 

maximum time. These two schedulers use slow path for a very 

small fraction of time, whereas the Round Robin scheduler tried 

to use slow and fast paths equally. The Redundant scheduler uses 

all the sub-flows exactly for an equal amount of time as shown in 

Fig.15. 

3.2 MOTIVATION AND FINDINGS BASED ON 

OBSERVATIONS 

All schedulers provide seamless redundancy in the network by 

using multiple available sub-flows. In homogeneous scenarios, 

Round Robin’s performance is best among Blest, Round Robin, 

Redundant, and MinRTT schedulers but as heterogeneity 

increases, Round Robin scheduler starts degrading its 

performance. 
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Fig.10. MPTCP scheduler Throughput in heterogeneous scenario 

For the download of small data sizes up to 64 KB all the four 

schedulers perform almost in a similar way. As data size of 

download increases Round Robin scheduler becomes unstable 

and Blest scheduler gives a moderate performance. For 256 MB 

data size Blest also degrades in performance. 

 

Fig.11. Throughput of MPTCP schedulers in heterogeneous 

scenario 

 

Fig.12. Throughput of MPTCP schedulers in homogeneous 

scenario 

The Round Robin scheduler and Redundant scheduler give 

good bandwidth aggregation. Redundant scheduler gives 100% 

bandwidth aggregation. Blest and MinRTT schedulers used fast 

path for maximum time and slow path for very little time so that 

bandwidth aggregation is almost nil. 

None of the above schedulers used path loss as a key 

performance parameter. Blest and MinRTT schedulers use only 

RTT as the performance measure parameter. There is the 

requirement of an MPTCP path scheduler, which can withstand 

homogeneous as well as heterogeneous network scenarios. 

Round Robin scheduler is the best option in homogeneous 

scenarios. As heterogeneity increases in the MPTCP network, the 

scheduler should handle the OFO packets at the receiver also 

receiver buffer should be used in an optimized way. 

 

Fig.13. Download time in seconds of MPTCP schedulers for 

data download of size 64KB 

 

Fig.14. Download time in seconds of MPTCP schedulers for 

data download of size 128KB and 256KB 

 

Fig.15. Path utilization and bandwidth aggregation of different 

MPTCP schedulers 

At the sender side, receiver buffer can be mapped with 

MPTCP send window and OFO packets at the receiver can be 

reduced. When we leave the fast path due to congestion, the fast 

path should be traced continuously with a good probing method. 

So there is the need for efficient MPTCP architecture with a good 

scheduler which can utilize all available sub-flows efficiently in 

coordination with the MPTCP congestion control method and it 
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should use receiver buffer in an optimized way by giving receiver 

feedback to the sender buffer to avoid receiver buffer overflow. 

MPTCP scheduler should use some sequencing logic to avoid 

OFO packets at the receiver side so that many retransmissions are 

avoided and application download time will decrease and 

throughput will increase. 

4. METHODOLOGY 

4.1 OBJECTIVES OF EFFICIENT MPTCP 

ARCHITECTURE 

• The effective scheduler should have very small schedules so 

that recovery of schedules would be easier during a network 

failure. 

• The effective scheduler should have spontaneous schedules. 

• The scheduler should have receiver feedback incorporated. 

• The scheduler should be more from redundant to Round 

Robin. 

• Path selection and recommendation should be autonomous 

and functional in the scheduler. 

• Application delay = Wait time(queue) + RTT + ACK time, 

since RTT and ACK time is constant, the scheduler must 

work on Wait time at receiver buffer. 

4.2 WORKING OF AN EFFICIENT MPTCP 

ARCHITECTURE 

As shown in Fig.16, the application buffer gives data to TCP 

send buffer. TCP send buffer transmits the data to MPTCP send 

buffer, which consists of Send queue, inflight queue, and 

retransmission queue. This data is given to scheduler. Scheduler 

takes multivariate input to schedule data on different sub-flows in 

different RTT cycles.  

Path manager unit gives information of number of added sub-

flows with fixed congestion window to the scheduler. Congestion 

window unit gives the information of current capacity of available 

sub-flows to the scheduler. Receiver buffer sends 

acknowledgment for specific RTT to the path scheduler and asks 

next data on the sub-flows. Each sub-flow consists of its 

congestion window, queue, and an acknowledgment part. These 

three things will decide the current capacity of the sub-flows and 

this information is provided to the congestion control unit from 

sub-flow. 

4.3 WORKING OF MPTCP PATH SCHEDULER 

An efficient scheduler will work in three functional phases: 

redundant phase, overambitious phase and Round Robin phase. 

Suppose there are two paths with heterogeneity in RTTs and 

cwnds, cwnd1 and cwnd2 as shown in Fig.17. There is a common 

queue of the send buffer. Initially, both the paths will start 

fetching the common queue data from the start sequence, so the 

scheduler will work in a redundant phase. In this phase, a 

redundant error is negative. After some time, a fast path will 

receive the acknowledgment of initial sent data and sends new 

data on the same fast path whereas transmission of previous data 

on a slow path is still going on. When the slow path finishes old 

data transfer, it will come to know about other fast sub-flow which 

is ahead in data transfer, so it leaves the gap of redundant error 

and transfers next sequence of packets from common queue. In 

this way, scheduler enters into an overambitious mode with 

positive redundant error. Later when redundant error reduces to 

zero, the scheduler works in Round Robin mode. It is desirable to 

work the scheduler in Round Robin mode and reduce  

the error to zero. It is observed from previous experimentation 

that Roun robin among all schedulers gives good throughput and 

good bandwidth aggregation in a homogeneous scenario. The 

proposed path scheduler has two essential modules, the path 

Sorting module and the redundant error module as explained in 

the next subsections. 

4.3.1 Path Sorting Module: 

It takes inputs such as congestion window and outstanding 

packets of each sub-flow and it calculates the current capacity of 

each sub-flow. Workflow of this module is shown in Fig.18 and 

the algorithm of the module is given in Algorithm 1. Every sub-

flow maintains its queue. The total number of RTTs required to 

transmit the data on a particular sub-flow is calculated based on 

its queue, cwnd, and current capacity. The arrival time for data 

transfer on each sub-flow is calculated by using Total RTTs. 

Finally, all available sub-flows are sorted in ascending order of 

arrival times. If two sub-flows will have the same arrival times 

then their congestion windows are compared and the maximum 

congestion window sub-flow is preferred. ‘Eq.(1)-Eq.(3)’ are 

used to get minimum arrival time sub-flow. 

Algorithm 1: Path Sorting Module 

Capacity of the pathj 

 Cj = cwndj – unackedpacketsj (1) 

Total number of RTTs required: 

 Ti = (packets_bufferj - cj)/cwndj (2) 

Arrival time of j

ipath :  

 (ATi) = (Ti) * sRTT (3) 

4.3.2 Redundant Error Module: 

In Fig.19, there are two sub-flows, sub-flow1 and sub-flow2. 

Sub-flow1 has cwnd1=2 and Sub- flow2 has cwnd2=3 and for 

every respective RTT their cwnd increase by 1. Both sub-flows 

fetch data from the common queue. First sub-flow1 and sub-flow2 

transmit packets 1, 2 and 1, 2 and 3 simultaneously from a 

common queue so they are in redundant mode. Sub- flow1 is fast 

and it gets acknowledgment of packets 1,2 in its fast RTT, sub-

flow2 is still transmitting packets 1, 2 and 3.  
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Fig.16. Efficient MPTCP with redundant error scheduler 

Sub-flow1 takes new packets 3, 4, 5 for transfer. In next turn 

sub-flow2 completes its data transfer of packets 1, 2 and 3 and it 

will come to know that another fast sub-flow is available who can 

transmit 5 more packets than it, so, now sub-flow will transmit 

next 4 packets 6, 7, 8, 9 and sub-flow2 will leave the gap of 

redundant error = 5 in a common queue and sends next 3 packets 

from 11. Redundant error calculation table is also shown in 

Table.2. 

The module in Fig.20 initializes the start and end sequence 

number of all available sub-flows also it will initialize redundant 

error. Then after iterating all available sorted sub-flows, 

redundant error and their start and end sequence numbers are 

updated. Thus, planned packets are sent on each sub-flow out of 

order so that they will be received at the receiver in sequence, and 

application Wait time reduces and throughput increases. Packets 

are scheduled on all available sub-flows so bandwidth 

aggregation is also achieved. The workflow is illustrated in 

Algorithm 2. The Eq.(4)-Eq.(8) are used to calculate sequence 

numbers on sub-flows and redundant errors. 

 

Fig.17. Three phases of Efficient MPTCP scheduler 

Start sequence of fast sub-flow is calculated as: 

 seq11 = Data_sequence (4) 

 

Fig.18. Path sorting module 

End sequence of fast sub flow is calculated as: 

 seqi
2 = seqi

1+ cwnd1 + inflight1 (5) 

Start sequence of other sub flows is calculated as:  

 seqi
1 = max(dataseq, 

1

1iseq − + abs(red_error) +1) (6) 

End sequence of other sub flows is calculated as:  

 seqi
2

 = seqi
1 + cwndi – inflighti (7) 

 

Fig.19. Redundant error calculation 

Redundant error for sub flow is calculated as:  

 red_errori = seqi
1 - 2

1iseq −
 (8) 

Theoretical calculation of application delay: Theoretical 

comparison of different known schedulers with a proposed 

scheduler concerning download time is shown in Table 3. 

Initialization is done as follows. 

• RTT Path1(fast) = 5ms, W1 = 5 

• RTT Path2(slow) = 20ms, W2 = 20 

• Receiver window = 60 

Table.2. Redundant error calculation 

Time seq11 seq21 seq12 seq22 Ack1 Ack2 Ack error 

0-5 1 5 1 5 5 0 5 -4 

10 6 11 22 27 11 5 11 -10 

15 12 17 22 27 17 5 17 5 

20 18 23 28 33 23 27 27 -1 

25 28 33 28 39 33 27 33 -5 

30 34 39 51 56 39 39 39 -11 

35 40 45 51 56 45 39 45 6 

40 46 51 57 62 51 56 56 0 

Table.3. Download time of MPTCP schedulers calculated 

theoretically 

MPTCP Scheduler Download time (ms) 

Default  60 

Blest 50 

Round Robin 60 

Redundant 60 

REMPS 40 

5. EXPERIMENT AND EVALUATION 

5.1 EXPERIMENT SETUP 

Linux kernel implementation is used for MPTCP setup. This 

setup enables us to test out extreme scenarios in a safe 

environment. The Experiment is implemented by using two 

computers with 8 GB RAM, raspberry pi, and an ADSL router. 

Both the computers are MPTCP enabled with Linux kernel and 

MPTCP version of 4.19.105, MPTCP-v95 respectively. Fig.21 

shows how we set up a basic topology. A Router is used between 

MPTCP source host and MPTCP destination host. Each network 

Q = Data_sequence

1, 2, 3

Subflow1 = 1,2 Subflow2 = 1, 2, 3

Q = Data_sequence

Subflow1 = 3, 4, 5 Subflow2 = 1, 2, 3

Q = Data_sequence

6, 7, 8, 9, 10, 11, 12, 13, 14

Subflow1 = 6, 7, 8, 9 Subflow2 = 11, 12, 13,14

3, 4, 5

Red_error =5

Calculate number of packets on each sub-flow based 

on their cwnd and outstanding packets 

Calculate arrival time of each sub-flow (arrival time = 

number of total RTT’s required of all available paths) 

Sort available sub-flows in ascending order based on 

arrival time 
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link is allotted with proper bandwidth and latency with the help 

of the ’tc qdisc’ command as shown in Table.4. The default 

interface can also be set by using the ’iproute’ command. With 

proper setting each time two interface combination is made in 

experiment setup like1) Wi-F+Ethernet 2) Wi-Fi + LTE and 3) 

Wi-Fi + Wi-Fi. 

Algorithm 2: Redundant error module 

Step 1: Initialize data_seq = next_chunk_seq from send buffer, 

redundant_error = -1 and all sequence no. = 0. 

Step 2: Send redundant sequence no. packets on all available 

sub-flows. 

Step 3: Get sorted sub-flows from path sorting module basis 

cwnd ≥ sent_packets on every sub-flow. 

Step 4: Calculate start and end sequence of packets on fast sub-

flow. 

Step 5: Calculate start and end sequence of packets on rest of the 

sub-flows 

Step 6: calculate redundant_error  

Step 7: Send data on all sub-flows 

Step 8: Redundant Error Module 

 

Fig.20. Redundant error module 

 

Fig.21. MPTCP setup for Bandwidth aggregation 

Table.4. Interfaces used in Experiments 

Interface Bandwidth RTT 

Ethernet 80Mbps 10ms 

Wi-Fi 8 Mbps 50ms 

LTE 16 Mbps 70ms 

The proposed schedulers MPTCP architecture is compared 

with default MPTCP architecture using known schedulers. 

Experiments are run in two sets, first for 20 seconds and second 

for 200 seconds. For each set of experiments iperf3 traffic 

generator is used with no loss links. Experiments are run for 20 

seconds and 200seconds for the proposed scheduler and known 

schedulers individually with different data sizes 64KB, 100KB, 

500KB, 1000KB. Using Python script, System socket command 

readings are recorded and dataset for different experiments are 

collected. Collected data is analyzed using ’R tool’ concerning 

various key performance parameters. 

The proposed scheduler’s MPTCP architecture is compared 

with known scheduler’s MPTCP architectures like 

• Default Scheduler: It uses the least RTT interface for 

maximum time. For a very small amount of time, it uses a 

slow interface. To handle OFO packets and retransmissions 

it uses Penalization and retransmission algorithm. 

• Round Robin Scheduler: It uses an alternate interface for 

data transmission irrespective of knowledge of RTTs of 

interfaces. 

• Redundant Scheduler: It broadcast data on all available 

interfaces in a redundant manner. Combined data 

acknowledgment of data is sent on anyone sub-flow. 

• Blest Scheduler: It sends data on fastest sub-flow in 

priority. If fast sub-flow is not available then estimated 

transfer time of data is calculated on fast and slow sub-flow 

and whichever is less that path will be chosen for data 

transfer. 

5.2 EVALUATION 

The evaluation of proposed scheduler’s MPTCP architecture 

is made by comparing proposed scheduler with known schedulers. 

Comparison of proposed schedulers with known schedulers is 

made with respect to various key performance parameters like 

percentage path utilization, RTT behavior, average throughput, 

average application download time, and unacknowledged 

packets. 

5.2.1 Percentage Path Utilization: 

As shown in Table 5, for 20 seconds experiment, it has been 

observed that in both MinRTT and Blest schedulers, Wi-Fi 

interface is less used, only 7% in comparison to the Ethernet 

interface, which is 93%. Ethernet interface has low and consistent 

RTT whereas Wi-Fi has a large and fluctuating RTT. In a similar 

type of experiment as per the basic behavior of Round Robin and 

Redundant schedulers, they utilize both the interface almost 

equally. Due to Redundant error module designed in proposed 

scheduler it tries to use both slow and fast sub-flow equally, Wi-

Fi 48% and Ethernet 52%. It is proved that proposed algorithm 

does best bandwidth aggregation in heterogeneous scenario of 

(Wi-Fi, Ethernet) with proper sequencing of data on available 

sub-flows using redundant error calculation. 

Table.5. Path Utilization of different MPTCP schedulers 

compared with proposed scheduler for 20sec duration 

MPTCP Schedulers Wi-Fi Ethernet 

Select available sub flows with their congestion window 

Select Redundant packets on all available sub flows 

Select Data_sequence = next_chunk_seq() and read_error = -1 

Update start and end sequence of fast subflows 

Update start and end sequence of slow subflows 

Send planned packets on all available subflows 

Repeat Steps from step 2 
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Blest 7% 93% 

Default 7% 93% 

Redundant 46% 54% 

Round Robin 61% 39% 

TCP LTE 0% 100% 

TCP Wi-Fi 100% 0% 

Proposed 48% 52% 

In 200s experiment, it has been observed that, as per the 

behavior of MinRTT scheduler, it does not use interface (Wi-Fi) 

with large RTT, it prefers to use LTE interface for scheduling 

maximum data. BLEST scheduler also, uses only a minimum 

RTT interface (LTE). It uses an LTE interface and Wi-Fi interface 

in a proportion of 88% and 13% respectively as shown in Table.6. 

Round Robin and Redundant schedulers try to use both the 

interfaces. Proposed scheduler also uses both the interfaces almost 

equally. In all the experiments, it has been observed that 

Redundant scheduler (ReMP) and Proposed scheduler utilize both 

the interfaces fully. It is observed that in heterogeneous and 

homogeneous scenarios, proposed scheduler uses both the 

interfaces in equal contribution. It is possible only because of 

redundant error calculation and proper sequencing of data packets 

on available sub-flows of MPTCP architecture. 

Table 6. Path Utilization of different MPTCP schedulers 

compared with proposed scheduler for 200sec duration 

Schedulers LTE Wi-Fi 

Blest 88% 13% 

Default 90% 10% 

Redundant 50% 50% 

Round Robin 38% 62% 

TCP LTE 100% 0% 

TCP Wi-Fi 0% 100% 

Proposed 47% 53% 

In Literature [25] MPTCP is a protocol that is implemented in 

the Linux kernel. Various MPTCP scheduler algorithms for 

throughput optimization [8] and reduced download time [9] have 

been proposed by a number of writers. They warn that using a 

path with a long RTT will always cause the receive buffer size to 

overflow. Other studies, such as [9] and [14], add to the evidence 

of this problem. Furthermore, [1], [9], and [14] all provide 

experimental proof of how MPTCP output degrades when the 

receive buffer size is small. In proposed scheduler, Receiver 

buffer overflow is restricted by using all available sub-flows with 

proper data scheduling on it. 

5.2.2 Average Throughput and Application Data Download 

Time: 

Average Throughput achieved is best for the Proposed 

scheduler among all schedulers. Blest and MinRTT scheduler 

perform well in comparison to Round Robin and Redundant 

scheduler in heterogeneous scenarios, their throughput has been 

observed better than that of Round Robin and Redundant 

scheduler but their throughput is less than Proposed scheduler. 

The reason is MinRTT and Blest scheduler use fastest sub-flow 

for maximum time, and they neglect slow sub flow. Proposed 

scheduler can get the benefit of bandwidth aggregation of 

available sub-flows in MPTCP architecture by using proper 

scheduling of data on available sub-flows using redundant error 

module. There are very less re-transmission in case of proposed 

scheduler because of receiver feedback used at sender side to plan 

the data on different sub-flows. Since receiver buffer is utilized 

properly and less number of OFOs are at the receiver side, 

throughput obtained by Proposed scheduler is more in comparison 

with other MPTCP schedulers. Sometimes Round Robin and 

Redundant schedulers performance are even below single-path 

TCP as shown in Table.7. 

Table.7. Average Throughput of different MPTCP schedulers 

compared with Proposed MPTCP scheduler 

MPTCP Schedulers Throughput in Kbps 

Default 19.442 

Round Robin 16.0985 

Redundant 18.876125 

Blest 19.37375 

Proposed 29.54234 

Experiments are also run to download data of size 64KB, 

100KB, 500KB, and 1MB, and average download time in seconds 

of different schedulers of MPTCP, Proposed scheduler of MPTCP 

and vanilla TCP is observed and compared as shown in Fig.25 and 

Table 8. The download time of Proposed scheduler is least among 

all the schedulers. Overall MPTCP Schedulers with Proposed 

scheduler of MPTCP do perform bandwidth aggregation and 

reduce download time in comparison to TCP but Proposed 

MPTCP scheduler downloads application with variable data sizes 

in the least time because of proper bandwidth aggregation of all 

available sub-flows in homogeneous and heterogeneous 

scenarios. 

5.2.3 Unacknowledged Packets: 

In these experiments, in a heterogeneous environment, 

unacked packets are being observed more for the Redundant 

scheduler and unacked packets are very less for Proposed MPTCP 

scheduler. It is shown in Fig 26 and ’Table 9’. Proposed scheduler 

uses receiver feedback at the sender side to select proper sub-flow 

and to calculate redundant error, based on that data is scheduled 

in proper way on all available sub-flows and because of that OFOs 

or unacked packets are very less in case of Proposed scheduler of 

MPTCP. 

Table.8. Average application download time of different 

MPTCP schedulers compared with Proposed MPTCP scheduler 

Data Default 
Round 

Robin 
Redundant Blest Proposed 

64Kb 49.762 49.262 49.085 44.158 32.234 

100Kb 52.102 52.468 51.657 51.305 40.561 

500Kb 68.276 69.293 72.572 67.6465 51.234 

1MB 131.8 139.54 132.67 142.7106 101.22 
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Table.9. Unacknowledged packets of different MPTCP 

schedulers compared with Proposed MPTCP scheduler 

Schedulers 
Homo-

geneous 

Homo-

geneous 

Hetero-

geneous 

Hetero-

geneous 

Default 27 47 54 65 

Round Robin 27 69 53 105 

Redundant 46 70 67 120 

Blest 19 34 41 54 

Proposed 3 5 7 12 

6. CONCLUSION 

MPTCP architecture should use all available TCP sub-flows 

in multi-homed devices concurrently and efficiently. Previous 

MPTCP architectures use different schedulers but while using 

available sub-flows simultaneously, they generate many OFO 

packets at the receiver. MPTCP scheduler used in this literature 

makes MPTCP architecture efficient by using proper packet 

sequencing, receiver feedback and many key performance factors 

like RTT, cwnd, OFO packets on each sub-flow. This architecture 

uses redundant error as key measuring factor. This architecture 

uses path sorting model and Redundant error model to increase 

throughput of application and to decrease average download time 

of the application. This MPTCP architecture with redundant error-

based scheduler, improves quality of experience of the 

application. 
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