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Abstract 

Low Density Parity Check (LDPC) codes are one of the most powerful 

error correction codes available today. Its Shannon capability that 

closely matches performance and lower decoding complexity has made 

them the best choice for many wired and wireless applications. This 

Paper provides an overview of the LDPC codes and compares the 

Gallager method, the Reed-Solomon-based algebraic method, and the 

combinatorial Progressive Growth (PEG) method for constructing 

regular LDPC codes and also Overlapped and Modified overlapped 

message passing algorithm for Non-Quasi Cyclic(NQC) LDPC codes. 
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1. INTRODUCTION 

Low-Density parity-check (LDPC) codes were discovered by 

Gallager in early 1960s [1]. After being overlooked for almost 35 

years, this class of codes were recently rediscovered by Mackay 

and Neal and Wiberg [8] [14] and shown to form a class of 

Shannon limit approaching codes [2], [6]-[8]. This class of codes 

decoded with iterative decoding, such as the sum-product 

algorithm (SPA) [1, 9], performs amazingly well for a lot of 

different channels. Since their rediscovery, LDPC codes have 

become a focal point of research for a variety of applications such 

as distributed source coding [10] and Forward error correction 

(FEC) [5]. 

The paper is organized as follows: section 2 introduces the 

necessary concepts about LDPC codes and their representation. 

Section 3 describes the pseudorandom construction method 

proposed by Gallager [1] [2]. We summarize the construction 

methods based on the Reed-Solomon (RS) Codes [4] and the 

Progressive Edge Growth (PEG) Algorithm in section 4, section 

5 and section 6, respectively. Finally, section 7 concludes this 

paper. 

2. OVERVIEW 

The LDPC codes are a class of linear block codes. The name 

comes from the characteristic of their parity-check matrix which 

contains only a few 1’s in comparison to the amount of 0’s. Such 

a structure guarantees both: a lower decoding complexity and 

good distance properties [2]. We define two numbers describing 

these matrices: ρ for the number of 1’s in each row and γ for the 

columns. For an m×n matrix to be called low-density the two 

conditions γ≪m and ρ≪n must be satisfied [3]. 

A parity-check matrix is said to be regular when γ is same for 

all the columns and ρ is constant for all the rows. If an LDPC code 

is described by a regular parity-check matrix, it is called a (γ,ρ)-

regular LDPC code otherwise it is an irregular LDPC code [12].  

Generally, there are two different methods to represent LDPC 

codes. Like all linear block codes, they can be described via 

matrices. The second method is a graphical representation [13].  

2.1 MATRIX REPRESENTATION 

Let’s look at an example for a regular LDPC code. The matrix 

defined in Eq.(1) is a 4×8 parity check matrix for the (2, 4) regular 

code. This matrix cannot really be called low-density, since the 

size of H should be large enough for the condition given above to 

be satisfied. 

 

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

H

 
 
 
 
 
 

 

2.2 GRAPHICAL REPRESENTATION 

Tanner considered LDPC codes and showed how they may be 

represented effectively by a so-called bipartite graph, also known 

as Tanner graph [2]. 

It provides a complete representation of the code and it aids in 

the description of the decoding algorithm [9]. The tanner graph 

for Eq.(1) is given in Fig.1. 

 

Fig.1. Tanner graph corresponding to the parity check matrix in 

matrix Eq.(1).The marked path c2-f1-c5-f2-c2 is an example for a 

short cycle of length 4 

A bipartite or tanner graph consists of two types of nodes 

which may be connected by edges. The two types of nodes are 

‘variable’ nodes and ‘check’ nodes [16]. The Tanner graph of a 

code is drawn according to the following rule: check node j is 

f0 f1 f2 f3 

c0 c2 c4 c6 c1 c3 c5 c7 

vnodes 

cnodes 
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connected to variable node i whenever element hji in H is ‘1’. 

There are m = (n–k) check nodes, one for each check equation and 

n variable nodes, one for each code bit ci, where n is the block 

length and k denotes the number of information bits. The m rows 

of H specify the m c-node connections and the n columns of H 

specify n v-nodes. 

A cycle in a Tanner graph is a sequence of connected vertices 

which start and end at the same vertex in the graph, and which 

contains other vertices no more than once [15]. The length of a 

cycle is the number of edges it contains, and the girth of a graph 

is the size of its smallest cycle. For optimum decoding 

performance the Tanner graph should free of short cycles of 

length 4 [2]. 

3. GALLAGER’S CONSTRUCTION 

TECHNIQUE 

For a given choice of ρ and y, Gallager [1] [2] gave the 

following construction method for a class of linear codes specified 

by their parity-check matrices. Form a ky×kρ matrix H that consists 

of y(ky×kρ) submatrices, H1, H2,…,Hy. Each row of a sub matrix 

has ρ1’s and each column of a sub matrix contains a single 1 [17]. 

Thus, each sub matrix has a total of kρ 1’s. For 1≤ i ≤ k, the ith row 

of H1 contains all its ρ 1’s in columns (i-1)ρ+1 to iρ. The other sub 

matrices are merely column permutations of H1. 

Random permutations of columns of H1 to form the other sub 

matrices result in a class of LDPC codes with the properties given 

in section 2. There is no known method for finding these 

permutations to guarantee that no short cycles (especially of 

length 4) exist in the resultant code. Computer searches [2] are 

required to find good permutations and hence good LDPC codes. 

From this construction, it is clear that (1) no two rows in a sub 

matrix of H have any 1-component in common; and (2) no two 

columns of sub matrix of H have more than one 1 in common. 

The density of H is 1/k. For H to be sparse, k is chosen much 

greater than 1. 

For Example, given the regular (Gallager) LDPC code 

parameters n=20, k=5, q=4 and y=3, the resultant H is given by 

the following [3], 

1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0 

0  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0 

0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1 

1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  0  0  0  0 

0  1  0  0  0  1  0  0  0  1  0  0  0  0  0  0  1  0  0  0 

0  0  1  0  0  0  1  0  0  0  0  0  0  1  0  0  0  1  0  0 

0  0  0  1  0  0  0  0  0  0  1  0  0  0  1  0  0  0  1  0 

0  0  0  0  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1 

1  0  0  0  0  1  0  0  0  0  0  1  0  0  0  0  0  1  0  0 

0  1  0  0  0  0  1  0  0  0  1  0  0  0  0  1  0  0  0  0 

0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  0  0  0  1  0 

0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  1  0  0  0 

0  0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1 

The feature of LDPC codes to perform near the Shannon limit 

of a channel exists mostly for large block lengths. For example, 

there have been simulations that perform within 0.0045dB of the 

Shannon limit at a bit error rate of 10–6 with a block length of 107 

[7]. The large block length results in large parity-check and 

generator matrices. The complexity of multiplying a code-word 

with a matrix depends on the amount of 1’s in the matrix. If we 

put the sparse matrix H in the systematic form [PTI] then the 

generator matrix G can be calculated the Gauss Elimination 

method [3] as G=[IP].  

The sub-matrix P is generally not sparse so the encoding 

complexity will be quite high. Since the complexity grows in 

O(n2) even sparse matrices does not result in a good performance 

if the block length gets very high. 

3.1 RS-BASED REGULAR-LDPC CODES 

Djurdjevic et al. [4] proposed an algebraic method for 

constructing regular LDPC codes is presented. This construction 

method is based on the simple structure of Reed–Solomon (RS) 

codes with two information symbols. It guarantees that the Tanner 

graphs [4] of constructed LDPC codes are free of cycles of length 

4 and hence have girth at least 6. The construction results in a 

class of LDPC codes in Gallager’s original form [1]. These codes 

are simple in structure and have good minimum distances. They 

perform well with iterative decoding or SPA. Such parity check 

matrix can be masked to generate new and better LDPC codes [2]. 

3.2 RS CODES WITH TWO INFORMATION 

SYMBOLS 

Consider the Galois field GF (q) with q elements, where q is a 

positive integer power of a prime number. Let q be a positive 

integer such that 2≤q<q. The generator polynomial of cyclic (n, 

k,dmin) RS code C is given by [2]: 

 g(X) = (X-α)(X-α2),…,(X-αq-2) = g0 + g1X +,…,+Xq–2 

Notice that n = q-1, k = q-q+1, gi ∈ GF(q) and α is a primitive 

element of a field. The parity check matrix RK for a Reed-

Solomon code has size (q-2)×n. The rank of matrix RK can be 

utmost (q-2). Thus minimum distance is dmin = (q-1). 

Now consider the (q-1) tuple vector 

 g(O) =(g0, g1,…, gq–2, 0, 0,…, 0) 

Note that gq–2 = 1. By cyclically shifting g(O), we get generator 

matrix G of size k×n for code C. 

 

0 1 2

0 1 2

0 1 2

. . 1 0 . . 0

0 . . 1 0 . .

0 . . . . . 1

g g g

g g g
G

g g g

 
 
 
 
 
 

 

C is shortened by deleting the first q-q+1 information symbols 

from each code word of C [2]. The generator matrix for shortened 

RS code Cb is a sub matrix of size 2×q and it is shown below: 

0 1 2

0 1 2

. . . 1 0

0 . . . 1
b

g g g
G

g g g

 
  
 

 

4. PROPERTIES OF SHORTENED CODE Cb 

1. Since the length of code words in Cb is q and the minimum 

distance between two code words of Cb is (q-1), two code 

words in Cb only agree at most at one location. 
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2. Let c be a code word of weight q. If we multiply c by ∀p ∈ 

GF(q), we get set Cb
(1) of (q-1) code words of weight q. 

Now, length of every Cb
(1) is also q. So Cb

(1) is a MDS 

(Maximum Distance Separable) code. 

3. Let us partition Cb into a q co-sets Cb
(1), Cb

(2),…, Cb
(q) based 

on Cb
(1). Notice that Cb

(i) is a MDS code. Therefore two 

code words in any co-set Cb
(i) must differ in all the 

locations. 

5. CONSTRUCTION OF LDPC CODE CHECK 

MATRIX 

Let us now explain the explicit construction procedure for a 

LDPC code check matrix H. 

1. All q elements of GF(q) can be expressed as some power 

of a primitive element α. Let us define the location vector 

of αi as a q-tuple over GF(2) is given by: 

Z(αi) = (0,0,….,1,0,…,0), where ith element of Z(αi) is 1 

and all other elements are 0. 

 Choose one code word b = (b1, b2,…, bq) ∈ Cb(i). If we 

replace each bi(1≤i≤q) by its location vector Z(bi), we get 

Z(b) = (Z(b1), Z(b2),…, Z(bq)), which is a q q-tuple of 

weight q over GF(2). 

2. Arrange all q q-tuple of Cb
(i) as rows of a matrix and call 

this matrix as Ai. The weight of each column of Ai is 1. 

3. Choose a positive integer y, such that 1≤y≤q. Then the 

parity check matrix H of size yq×qq is defined as: 

1

2

A

A
H

A

 
 
 
 
 
 

 

Since each column of Ai has weight 1, weight of an each 

column of H is y. So, H is a (y,q)-regular matrix. Each row in Ai 

is a co set member, so each row in Ai is different. 

Two rows in Ai do not have single common element and two 

code words in Cb agree at most one symbol location (dmin = q-1). 

Hence it can be said that no two rows from Ai, Aj, Gj agree at more 

than a single element. This will imply that the Tanner graph 

corresponding to H is free of length 4. 

The Gallager-LDPC code constructed is a (6,48)-regular 

(12288,10845) code with rate 0.8825 and minimum distance at 

least 8. The error performance is shown in Table.1. At the BER 

of the code performs 1.1dB from the Shannon limit. For 

comparison, the performance of the MacKay’s computer 

generated code of the same length and rate is also given in Table.1 

We see that in this case MacKay’s code is 0.2 dB better than RS-

based Gallager-LDPC code. However, the error performance of 

the RS-based Gallager-LDPC code has larger dropping rate. The 

performance curves of the two codes may cross each other at 

lower BER. 

For Example: In Table.1, error performance with iterative 

decoding of (6,32)-regular LDPC code over GF(26) using the 

SPA is given. This (6,32) regular (2048,1723) RS-LDPC code has 

been adopted as the FEC in the IEEE 802.3an 10GBase-T 

standard [5]. 

Table.1. Error performance of the (2048, 1723) RS-based 

Gallager (6,32)-regular LDPC code with construction field 

GF(26) 

Eb/N0 

(dB) 

Uncoded 

BPSK 

RS 

FER 

RS 

BER 

MacKay 

FER 

MacKay 

BER 

Shannon 

Limit 

0 10-1.1 - - - - - 

1 10-1.4 - - - - - 

2 10-1.6 - - - - 10-3 

3 10-1.8 10-0.45 10-0.449 10-1.84 10-1.84 - 

4 10-1.9 10-4 10-3.98 10-7.78 10-7.78 - 

5 10-2.4 - - - - - 

6 10-2.7 - - - - - 

7 10-3.3 - - - - - 

8 10-3.8 - - - - - 

9 10-4.6 - - - - - 

6. PROGRESSIVE EDGE GROWTH 

ALGORITHM 

A bipartite graph can be described using variable nodes, check 

nodes and set of edges E. The Progressive Edge Growth (PEG) 

algorithm proposed by Hu et al. [10] is a general method for the 

construction of finite length regular and irregular Tanner graphs 

having large girth by establishing-edges or connections between 

the variable and check nodes in an edge-by-edge or progressive 

manner. For given variable node, an edge connects it to one of the 

check node such that girth is maximum. Thus, PEG algorithm 

yields large girth when compared to codes constructed using 

random methods [8]. Hence, code constructed using PEG 

algorithm has low error floor in comparison with code constructed 

using random methods [11]. 

The PEG algorithm generates good codes for any given block 

length and rate, provided a density-evolution optimized degree 

sequence is supplied. Its low complexity makes it suitable for 

constructing codes of very large lengths and, with a slight 

modification to avoid the Gauss Elimination step, they can 

generate linear- time-encoding LDPC codes The Gallager’s 

construction, does not have this degree of flexibility [2] [11]. 

Given the graph parameters, i.e. the number of variable nodes 

n, the number of check nodes m=n-k, and the symbol/variable 

node degree sequence Dv, an edge selection procedure is started 

such that the placement of a new edge on the graph has very less 

impact on the girth. 

The variable node degree sequence can be described as follow: 

 Dv = {dv1, dv2, dv3,…., dvn}  

where dvi represents the degree of ith variable node. 

Input: sequence Dv 

Output: parity check matrix H  

Initialize all check nodes with degree 0  

for i = 1 to n do 

for j = 1 to dvi do 

if j = 1 then 

Find minimum degree check nodes set  
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C = {c1, c2, c3,…, cm} 1≤m≤n-k 

s.t. deg(c1)≤deg(c2)≤…≤deg(cm) 

Choose check node c1 ∈ C 

Put an edge between ith variable node and check node c1 

Increase the degree of c1 by 1 

else 

For ith variable node find check nodes set  

C = {c1, c2, c3,…, cm} 1≤m≤n-k  

s.t. girth is maximum and deg(c1)≤deg(c2)≤…≤deg(cm) 

Put an edge between ith variable node and check node c1 

Increase the degree of c1 by 1 

end if 

end for 

end for 

The check node degree distribution obtained using the above 

algorithm is almost uniform. Whenever multiple choices are 

available to pick check node from set C, we can either pick first 

check node in the set C or randomly pick any check node from set 

C. In algorithm, we always choose the first member of set C.  

The Fig.3 is an example of symbol/variable node degree Dv = 

{2,2,2,2,3,3,3,3} [11]. The dashed lines represents an edges 

incident on variable of degree 2 and dark lines represents edges 

corresponding to variable nodes of degree 3. 

 

Fig.2. Tanner graph corresponding to Dv = {2, 2, 2, 2, 3, 3, 3, 3} 

7. OMP TECHNIQUE AND THE MODIFIED 

OMP ALGORITHM 

7.1 OVERLAPPED MESSAGE PASSING 

SCHEDULE 

To adopt the OMP algorithm for NQC semi-random LDPC 

codes, let us first review this technique. As is well known, the BP 

algorithm consists of two decoding processes: the VNP and the 

CNP. In general, these two processes may not overlap because 

they offer updated data to each other. However, studies have 

found that the effect of this data dependency could be reduced if 

the row and column operations followed proper sequences [11]-

[13]. If these operation sequences are taken as a kind of matrix 

permutation, the schedule finds a permutation that could 

transform the square sub-matrix into an H-matrix or the H-matrix 

into a standard matrix (refer Table.1), in which the bottom-left 

and top-right corners are the zero regions. Moreover, the VNP and 

CNP could be completely overlapped if the H-matrix is 

reconstructed in a specific mathematical pattern. 

However, these proposed methods are meaningless when 

applied to NQC semi-random LDPC codes. As the 0i;j parameters 

are random in each sub-matrix, there are several problems, as 

follows: 

First, a compatible permutation may be hard to describe 

mathematically, so ROM is needed to store the permutation for 

implementation, which would increase hardware complexity. 

Second, even if a permutation matrix could be found, the OMP 

technique may not result in any significant hardware improvement 

because the zero region may be too small for the VNP and CNP 

to overlap to any great extent.  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1  1  1 1    1  1 1   

2   1    1 1 1  1  1  

3 1 1    1 1      1 1 

4 1  1   1   1 1  1   

5 1 1   1     1  1  1 

6   1 1   1 1     1 1 

7    1 1 1  1  1 1    

 8 3 4 9 5 7 10 13 11 6 14 1 12 2 

7 1  1  1  1  1 1     

2 1 1  1  1  1 1      

6 1 1 1   1  1   1    

4  1  1   1   1  1 1  

1   1 1 1    1    1 1 

 5     1  1    1 1 1 1 

3      1  1  1 1 1  1 

 

 

 

Fig.3. OMP technique for a parity-check matrix H: matrix H 

(top) and permuted standard matrix (bottom). 

7.2 OPTIMAL BELIEF PROPAGATION (OBP)-

PROGRESSIVE EDGE GROWTH (PEG) 

CONSTRUCTION METHOD 

7.2.1 System Model and LBP Decoding Algorithm: 

A (n,k) LDPC code is described by a m×n parity check matrix 

H or the Tanner graph [1], where n denotes the number of variable 

nodes; m denotes the number of check nodes; k denotes the 

original information bits (k=n-m). The check nodes in the Tanner 

graph correspond to the parity check functions, and the variable 

nodes correspond to the coded bits including information bits and 

parity bits. {ci}(1≤i≤m) denotes the check nodes and {vj}(1≤j≤n) 

denotes the variable nodes. The posteriori probability (APP) 

message of vj is denoted by Qj. rij denotes the check-to-variable 

(CTV) extrinsic message from ci to vj. qji denotes the variable-to- 

check (VTC) extrinsic message from vj to ci. In this paper, all the 

messages are in the shape of the Log Likelihood Ratio (LLR) 

denoted by L[•]. 

f0 f1 f2 f3 

c0 c2 c4 c6 c1 c3 c5 c7 

vnodes 

cnodes 

Zero region 
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In efficient LBP algorithms, all the extrinsic messages are 

initialized to zeros, i.e., L[rij] = 0 and L[qji] = 0. Afterward, the 

CNP are operated node-by-node until all the check functions are 

satisfied or the number of iterations reaches the pre-given limit. 

CNP is a serial of operations that update the values of L[rij] and 

L[Qj] for the vj in N(i), where N(i) is the set of variable nodes 

neighboring ci. The decoded result is decided to be zero and one 

when L[Qj] > 0 and L[Qj] ≤ 0, respectively. 

7.3 BELIEF PROROGATION CONDITION (BPC) 

Based on the regulations of LBP algorithms we can 

approximately have that 

 E(L[qji]) = E(L[Qj]) - E(L[rji]) (1) 

 1- E(L[rij]) =   
 \

[1 ki

k N i j

E L q


  (2) 

 E(L[Qj]) = E(L[qji]) + E(L[rij]) (3) 

The proposed OBP-PEG method not only select the variable 

nodes having the small-value degree ratio γj (as in Eq.(6)), but also 

enhances the belief propagation of the variable nodes having 

minimum E(L[Qj]). 

  

(a) PEG Method                       (b) OBP – PEG Method 

Fig.4. Comparison of the procedure of PEG method and the 

proposed OBP-PEG method, where the latter is illustrated in 

QC-LDPC applications 

7.4 MODIFIED OVERLAPPED MESSAGE 

PASSING ALGORITHM  

To solve the above problems, we propose a modified OMP 

algorithm. We suppose that old message data will be used for 

decoding when the VNP and CNP overlap. Cj denotes the Log-

Likelihood Ratio (LLR) channel information of the jth variable 

node. N.vk denotes a set of check nodes connected to the kth 

variable nodes, while N.ck denotes a set of variable nodes 

connected to the kth check nodes. P denotes a parallelism 

parameter, and PD2m, m2N, P<L denotes the check-to-variable 

message whereas the variable-to-check message. The modified 

OMP algorithm is shown in Algorithm. 

In this algorithm, compute with the same formulation as the 

offset min-sum algorithm or the BP algorithm, but with a different 

message-passing schedule. The message passing of each square 

sub-matrix can be divided into three regions (Fig.3). In the first 

region, the message passing is the same as that of the BP 

algorithm. In the second region, check-to-variable messages 

updated in the nth iteration are used to calculate the variable-to 

check messages in the nth iteration, whereas variable to-check 

messages updated in the n1th iteration are used to calculate check-

to-variable messages in the nth iteration. 

In the third region, variable-to-check messages in the nth 

iteration are calculated using the check-to-variable messages 

updated in the n2th iteration, whereas check-to-variable messages 

in the nth iteration are calculated using the variable-to-check 

messages updated in the nC1th iteration. Compared to the OMP 

technique, the modified OMP algorithm completely overlaps the 

VNP and CNP without introducing any constraints on code 

construction. Furthermore, the parameter P can adjust the 

parallelism of the single-core decoder architecture.  

However, these message-passing tasks have different degrees 

of efficiency in their corresponding Tanner graphs. Moreover, 

when the variable-to-check messages are updated, old variable-

to-check messages are used to calculate the check-to-variable 

messages, which implies that the variable-to-check and check-to-

variable messages must be stored separately in simple two-port 

RAMs. In contrast to the BP vector partially parallel decoder, 

double memories are needed for intra-message storage. 

8. CONCLUSIONS 

Good regular LDPC codes with large block lengths 

constructed using Gallager’s pseudorandom technique are largely 

computer generated. This leads to the following limitations: 

• Do not ensure absence of short cycles. 

• Due to lack structure, the encoding complexity is very high 

for large column weights and code lengths. 

The above drawbacks are overcome using the algebraic 

method studied in section 4 which exploits the structural 

advantages of the Reed Solomon codes and results in a class of 

Gallager’s LDPC codes having simple structure, good minimum 

distances and a girth at least 6. So they work well with the SPA 

decoding. Furthermore, because of the cyclic nature of the RS-

LDPC code their encoding is simple and can be implemented 

using linear shift registers. 

depth 0 

depth 1 

depth l 

Ni
l 

Check Node 

Variable Node 

depth 0 

depth 1 

depth l 

RCC 

BPC 

WCC 

vj 

 

 

 

ci 
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The PEG algorithm also avoids the occurrence of short cycles 

by providing larger girths even better than RS-based codes. It can 

be easily tailored to construct LDPC codes having triangular 

structure which makes them linear-time encodable. Moreover 

computation and storage requirements in the encoder are also 

reduced because of sparsity of the parity check matrix. 

Thus compared with Gallager’s explicit construction, the RS-

LDPC and PEG construction in general achieves a better girth and 

minimum distance properties with much less complexity. 

However, the PEG algorithm can also be applied to generate 

irregular graphs whereas the Gallager’s and the RS-based 

construction only apply to regular codes. 
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