
K PONMOZHI AND R S RAJESH: SERVICE PROVISIONING IN MANETS USING SERVICE PROVIDER’S METRICS

DOI: 10.21917/ijct.2012.0082

580

SERVICE PROVISIONING IN MANETS USING SERVICE PROVIDER’S METRICS

K. Ponmozhi
1
 and R.S. Rajesh

2

1
Department of Information Technology, Hajee Karutha Rowther Howdia College, India

E-mail: arulchezhiyan96@gmail.com
2
Department of Computer Science and Engineering, Manonmanium Sundarnar University, India

E-mail: rs_rajesh1@yahoo.co.in

Abstract

Service discovery technologies are exploited to enable services to

advertise their existence in a dynamic way and can be discovered,

configured and used by other devices with minimum of manual

efforts. Automatic service discovery plays an important role in future

network scenarios. Service discovery in distributed environment is

difficult that too if the availability information of the services cannot

be in a centralized node. The complexity is increased even further in

the case of MANETs in which there will not be central intelligence

also, the nodes involved may be on the move. The mobility issue leads

to the situation of uncertainty about the service availability of the

service provider. In this paper we propose a decentralized discovery

mechanism. The basic idea is, distributing service information along

with the availability metrics to the nodes. The metrics will give us the

information to evaluate the goodness of the service provider. Every

node will form multi-layered overlays of service providers sorted based

on the metrics. When we send a query, each node will identify the

service provider from the overlay with the good metric among the

available providers (i.e.) the one in the first position in the overlay. We

define the message structures and methods needed for this proposal.

The simulation result shows that in the high mobile environment too

we could have a better convergence. We believe that the architecture

presented here is a necessary component of any service provision

framework.

Keywords:

Mobile Ad Hoc Networks, Service Discovery

1. INTRODUCTION

Mobile Ad hoc Networks (MANETs) are networks

comprised of mobile nodes equipped with wireless interfaces

and communicating with each other without relying on any

infrastructure. In these networks each mobile node may act as a

client, a server and a router which catches the services provided

in the vicinity. Often mobile nodes inside of MANET need to

utilize resources or services that are present on other mobile

nodes in their neighborhood.

We refer service as work or resource contributed by one or

more entities that can help accomplishing the task of other

entities. To make greater utilization of resources in vicinity, it is

important for nodes in MANET to be able to discover remote

services seamlessly and carry out transactions with service

providers. However all these processes are complicated by the

fact that there is no fixed infrastructure and established

administration. Therefore a decentralized approach is required

for maintaining service and information about the service object.

Service oriented applications involve distributed components

that can either play the role of service providers or service

clients. Service provision is generally performed in two main

steps: service discovery, during which services are advertised by

providers, which can be discovered by potential clients, and

service invocation, during which a given client actually interacts

with the provider of a previously discovered service. If there is

more than one provider in the network for the same service the

clients can be given a chance to select among the several

providers.

Though the service oriented approach is relevant for

MANETs, the changes of the unpredictability of the providers’

availability and communication delay makes it difficult to

implement as that of the wired network.

Thus, Service discovery, which allows devices to advertise

their own services to the rest of the network and to automatically

locate network services with requested attributes, is a major

component of MANETs. In the context of service discovery,

service is any hardware or software feature that can be utilized

or benefited by any node; service description is the information

that describes a service’s characteristics such as its types and

attributes, access method etc. In this paper we focus on service

discovery, which is the major issue of service provisioning. We

concentrate on the structure of the messages related to this issue.

The remaining paper is organized as follows: In section 2 we

discuss the issues to be solved for service discovery, followed by

existing architectures. In section 3 we discuss our frame work

and section 4 gives the simulation results, finally we conclude

our work followed by future work direction.

2. RELATED WORK

A number of research work concentrated on service

discovery available in the literature. Traditional service

discovery protocols like UDDI [1] and Service Location

Protocol rely on centralized nodes as look up servers. In this

architecture the service providers register their services to

service directories and service requestors are informed about the

available services in the network only through these directory

nodes. In the case of MANETs we cannot be sure of any node to

be always available and reachable by all the nodes in the

network. One of the alternatives to this approach is distributed

directory architecture, in which virtual back bone of hierarchical

directory nodes are formed [16]. The service providers have to

advertise their service to one of these directories. The clients can

access to the services by sending queries to one of these

directories. In Jini [2], where a few nodes, named Lookup

servers act as directories. In [16] the author uses adaptive

mechanism to select directory nodes. The other alternative

approach is Directory-less architecture. In this type of

architecture [12] there are no service directories to mediate

communication between the service providers and service

requestors. Service providers broadcast service advertisements

and service requestors broadcast service requests. Some

alternatives are: In [3] service providers periodically advertise

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2012, VOLUME: 03, ISSUE: 03

581

their services along with service that they became aware of. In

[12], the author decides to use multicast the advertisements,

Instead of broadcasting. But selection based on the providers’

goodness is not considered in these works.

All these service discovery architecture should have some

mechanisms to describe the services and the matching. The

descriptions formed by the servers to give the information

related to the services, the location, the accessing methods etc.

A simple but powerful service description facility and matching

mechanism can help service discovery protocol achieve high

efficiency. In many of the well known protocols they use simple

matching schemas such as interface descriptions [2] or attributes

[7][22] or even unique-identifiers [8]. Service matching is done

at a syntactic level. However syntactic level matching and

discovery is inefficient in MANET environments due to the

autonomy of service providers and the resulting heterogeneity of

their implementation and interfaces. To alleviate this problem,

there has been work to develop languages [9] to express service

requirements and facilitate flexible semantic-level service

discovery. The most widely used description format is attribute-

value structure. Some other users XML based descriptions which

enables a better classification and make use of schema for

attribute definition. GolServ[17] uses RDF for service

description, where as GSD [18] uses DAMIL+OIL.

Independent of the chosen service discovery architecture,

service information can be gathered either of these Discovery

modes: reactive, proactive and hybrid way.

In Reactive mode [12] no node sends any advertisement to

announce their service information. Therefore, the nodes in the

network do not know where services are available. A service

requestor node creates a query on-demand whenever a certain

service is desired. The query is then sent to the network either

unicast, broadcast or multicast depending on the service

discovery architecture.

In Proactive mode, service providers proactively distribute

their available services [16]. The distribution is performed either

directly to potential service clients or to service directories

depending upon the architecture used. Though this method

causes more traffic at the initial stage, the service discovery

delay will be reduced.

Hybrid discovery mode [18],[22] supports both reactive and

proactive service advertisements. Generally advertisements are

sent to a subset of nodes. This approach supports the service

information may be distributed in several ways depending upon

the topology. Some nodes may know all service information

while some nodes have no information at all and must rely on

flooding service request.

Searching request for services described in user requests or

queries. The queries comprised of the attribute value pairs. If

one attribute is not specified it is generally considered it can take

any value. Wild-card matching is supported in INS [19]. Some

protocols support filtered query flooding to enable multi-criteria

selection as in SSDS [20]. Issues on the service description and

matching are the study reserved for our future work.

3. OVERVIEW OF OUR SCHEME

Services that are available in the network can be accessed by

others in the same network. In order to enable this kind of

service reuse and access by other nodes, the nodes which are

ready to share their service should make available the

descriptions of the service to others in the network. We call

those nodes which can provide service as provider and those

which use them as clients. The set tasks to make service

availability and enabling the service access by other nodes are

called service provisioning. The basic operations to be

performed are service advertisement, service request matching

or forwarding, service reply routing, service invocation. We used

pee-to-peer caching of service advertisements. When a provider

decides to share services it should form a service advertisement

with required fields. The advertisements will be broadcasted in

the network with a hoping limit specified. We use multi-layered

overlay, where each layer represents the layer for a service

provided in the network. We assume that the client and the

provider use the same rule to form the service type. We assume

that the client and providers use the same rule to form the

service type. Each node in the network when receives an

advertisement will store the advertisement in its respective

overlay layer in the sorted order of the providers’ metric. In the

advertisement the provider specifies the time of expiration.

When the stored advertisements are timed out they will be

marked to be removed from the overlay meaning that that

service is not provided by the provider now. When we receive a

service update message or hello packet for that service again the

marking will be removed. We limit the number of entries so in

an overlay so whenever it overflows the marked items to be

removed will be replaced. When the client needs a service it will

form a service request and sent that to the SDP in its local

machine. The SDP will check for the availability of provider(s)

from its local cache of the corresponding overlay of providers of

same services to which the request is received. If the service

provider is available it will form a separate request and

forwarded to that provider in a unicast manner instead of

broadcasting. Thus instead of broadcasting service request to all

the neighbors, our scheme forwards the request towards those

node who are having the possibility to provide the service. The

provider will send response sending the descriptor of the service.

If the service is not available in the local cache it will flood the

query into the network with the TTL value specified. The node

which receives the query will check into its local cache, and if it

finds one in its cache it will send that information to the

requester. If the node itself is a provider then it will send the

address of the provider along with the descriptor. The discovery

process ends with the reception of the reply from an intermediate

node or from the provider itself. Once the response is received

the client will formulate SOAP request for the service invocation

based on the service descriptor received.

3.1 SERVICE DESCRIPTION

The provider creates and sends its service descriptor when it

receives a request from the client. The descriptor is an XML

document it has the following parts,

K PONMOZHI AND R S RAJESH: SERVICE PROVISIONING IN MANETS USING SERVICE PROVIDER’S METRICS

582

Table.1. Service descriptor

Service-

type

Functional

properties

Non-functional

properties

Context

properties

A service descriptor is a document that starts with a header

built from a number of freely chosen attribute/value that

describes the non-functional characteristics of the service

(including QoS or Semantic information such as a category or a

required security level etc.) The functional interface of the

service is given in XML which is similar to the parts of WSDL

[10]; the client can formulate its invocation requests based on

this information. Service descriptions concern not only the

functional characteristics of a service. They can also be used to

provide context awareness, scope awareness along with QoS

awareness regarding a service.

3.2 SERVICE ADVERTISEMENT AND OVERLAY

FORMATION

Each server will generate service advertisement packets

periodically and broadcast. We use the hoping limit to 3. When

a node shares a service, the node stores its service in its Sharable

Service Table, and then advertises the service. The service

advertisement is in the form of XML file. Table.1 defines an

advertisement. Each intermediate node has two tables one to

store its own sharable services, the other one is to cache the

service advertisements sent by other service providers in the

network.

Fig.1. Advertisement message

Message type - is used to differentiate different types of

messages used in the protocol.

Service type - specifies the type of service provided by this

provider. Since a provider may provide more than one service if

it wants it can create a message to advertise all its services.

Hopcount – Initially it is set to 0. When it reaches the next hop it

will be incremented. This is used to know the distance between

the provider and the receiver node.

Adv_life – specifies the time when the advertisement expires.

Adv_num – This is the number used to identify whether the

advertisement is already received. If the new advertisement

number is less or equal to the advertisement already stored then

this advertisement packet will be discarded.

TTL – This is the value set by the provider to limit the

advertisement scope. This value will be reduced by 1 at each

hop. When this value is 0, the packet will not be forwarded

further.

Parameters of providers metric are the battery power at the

time of sending (BatP), number of services provided (NS) to

other nodes. Moving speed (Speed). Based on this we can

calculate the provider metric as follows: we give less weightage

for fast moving providers,

MPi = W1 * Speed + W2 * BatP + W3 * NS

where, Wi are the weightage assigned and this can be changed

by the designed if needed.

Other Service attributes specified are divided as mandatory

attributes and secondary attributes. These attributes of the

service has to be matched against the service request parameters.

These may be defined by the application designer during

development. Application designer can decide the weight age

for the parameters.

Whenever a node receives an advertisement,

1. Access the service table with service_ type

2. Calculate the metrics and add the provider in the correct

location in the list. (see [21])

3. Add the description to the overlay for this service,

along with the context parameters and with provider_id

Fig.2. Physical Network

Let Fig.2 specifies the physical network. Let P1 to P13 be the

peers in the network. Assume that Peers P1, P9, P4 and P11 are

providing service_i ad P1, P5, P4 and P12 are providing

service_J. Fig.3 specifies the overlay two services. P9 – Peer

with the service of that service (printer) with highest rank. P11 –

is the peer with next highest metric value and so on. Whenever a

new provider with printer is advertising we will calculate it’s

metric and put it in the correct order.

P1
P2

P3

P9

P13

P7

P8

P11

P4 P6

P5

P12

P10

<?xml ?>

<message>

<message_type> Advertisement</message_type>

<sender_id> forwading peer_id </sender_id>

<provider_id> service providers id </provider_id>

<hopcount> 0</hopcount>

<Adv_num>number which will be incremented each time it

readvertise</Adv_num>

<TTL> advertisement scope value</TTL>

<Adv_life> value in terms of seconds after which the

advertisement is invalid</Adv_life>

<providers_metric>

<attribute>

<parameter>routing metric </paramenter>

<value> …</value></attribute>

<attribute> … </attribute>

</providers_metric>

<service_type> printer </service_type>

<attribute>

<parameter>… </paramenter>

<value> …</value></attribute>

…

</service_type> </message>

</service_types>

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2012, VOLUME: 03, ISSUE: 03

583

Fig.3. Overlay for a service 2 services

Service-i P11 P4 P1 P9

:

:

Service-j P1 P5 P4 P12

A provider may belong to more than one overlay if it

provides more than one services. In our example provider 4 and

1provides both service_i and service n, they will be two

overlays. Every node maintains a table to store all the

advertisements received, its local services, services provided to

other nodes, overlays. The above diagram shows the local table

with two services stored in the sorted order of their metrics.

3.3 SERVICE AVAILABILITY MAINTENANCE

3.3.1 Sending Hello Messages:

It is challenging to maintain accurate and valid service

information and service state especially in MANETs where the

inherent dynamism leads to frequent changes in service

availability. One approach is to maintain a hard state of services

where a provider must de-register its services before leaving the

ad hoc network. However, in MANETs where unpredictable

disconnections occur assuming that a provider will be able to de-

register its service before disconnecting is not realistic. The

opposite approach is to maintain a soft state of services. In this

case each service entry is associated with a time to live counter;

upon expiry the service entry is automatically deleted. It is the

job of the service provider to periodically refresh that counter by

re advertising the services in the form of hello packet, so that the

nodes will have up to date knowledge of the service availability.

We use both soft state and hard state to maintain consistency in

the SST. Fig.4 defines the structure of “hello” message.

Fig.4. Structure of “hello” message

In “hello” messages the service providers send the list of

available services for sharing, TTL value which is used to limit

the scope. Since the parameters are sent already in the

advertisement itself they need not be sent again. We have

provided a facility to send new service advertisement if it is not

sent already as a piggyback type service description. This new

service-type will be added to the list already available, the

processing is similar to the processing of the services in the

advertisement. This will make the local directory up to date, also

the nodes may know whether the providers are available or not.

Those providers’ entry, for which the hello packet has not been

received, will be removed from the table.

Upon receiving the Hello packet:

3.3.2 Service Updation:

It is a way of maintaining services consistently, if there is

need to change any of the parameters of the services already sent

that can be done by the use of these packets. Service update

packet will be generated by the server when the already

published service has been modified, or the service descriptions

have been changed.

Fig.5. Structure of Service Update

<message_type> Updation</message_type>

<senderid> forwading peer_id </sender_id>

<provider_id> providers id </provider_id>

<TTL> value </TTL>

<service_types>

<service_type> printer/service_type>

<parameter> color </parameter>

…

</service_type>

<service_type>

…

</service_type>

</service_types>

For (all the entries for this provider_id)

{

 If (Message_type = “hello”)

 For (all the services in this packet)

 {

 If (the service_type exists in the table)

 Update the time_of _expiary

 If (piggyback)

 Call the method for advertisement to add these

services to the table

 }

 For (all the service without matching entry in the

packet)

 {Delete the entry from the table}

}

 For (all the out-of-date entries regardless of the server)

{Delete the entries}

<message>

<message_type> Hello</message_type>

<senderid> forwading peer_id </sender_id>

<provider_id> service providers id </provider_id>

<TTL> value </TTL>

<service_types>

<service_type> printer/service_type>

</service_type>

<service_type>

…

</service_type>

<piggyback> <service_type> … </service_type>

</service_types> </message>

K PONMOZHI AND R S RAJESH: SERVICE PROVISIONING IN MANETS USING SERVICE PROVIDER’S METRICS

584

When the service Update packet is received:

3.3.3 Service De-registering:

This message is sent by the service providers so that the

clients of the services of this server may find new alternative

services for their continuous service usage. We send this

message only to the clients of this server. As the other nodes will

delete the entries of advertisement is the entries are timed out.

Whenever the server decides to deregister it generates deregister

message and send to the clients of this server.

When the client receives the de-register message for a

particular service:

On the client side, document called service pattern must be

created to convey the wishes of a client hoping to discover a

suitable service. The service pattern contains components similar

to those of the service descriptor, with the possibility to include

wildcards and expressions on the attribute value. The context

and some non functional properties which are mandatory will

also be mentioned in the request.

Fig.6. Structure of request message

The service request may be received by the node which may

be,

 Provider

 Intermediate node with the cached description for this

service

 Intermediate node without service information

This service request pattern is matched with the descriptors.

If a match is made from the cached descriptor actual service

request will be formulated and sent to the service provider in the

overlay formed.

Whenever the node receives a request (intermediate nodes):

Whenever the node receives a request (application client

nodes):

If service_type esists go to its corresponding overlay

For (all the providers in the list)

 If (the functional properties are matching)

{

If (the non-functional properties are matching)

{

Create service_request message and send

to the provider,

exit the loop

}

}

If no match create service_request broadcast in the

network.

If service_type esists go to its corresponding overlay

For (all the providers in the list)

 If (the functional properties are matching)

{

If (the non-functional properties are matching)

{

Send the provider details to the client

exit the loop

}

}

If no match create service_request broadcast in the

network

<message_type> request</message_type>

<requester_id> forwading peer_id </requester_id>

<req_id>…</req_id>

<TTL> value </TTL>

<service_type>

<attribute>

<parameter>…</parameter>

<value>…</value></attribute>

// list of attributes

 </service_type>

Go to the overlay of this service; take point to the entry

in the advertisement of this service from the service

advertisement table

Delete the entry from the list

Prepare the request to the provider in the overlay list for

re-selecting a new service provider for this particular

service for the application.

Notify this to the (broker) module which takes care of

service rediscovery

For (all the clients in the Service status table)

Send the deregistering message

For(all the entries for this provider_id)

{ If (Message_type = “updation”)

 For (all the services in this packet)

 {

 if (the service_type exists in the table)

 Replace the service descriptions

 Update the time_of _expiary

 Else

 Add this service to the table

 }

 }

 For (all the out-of-date entries regardless of the server)

 {Delete the entries}

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2012, VOLUME: 03, ISSUE: 03

585

Whenever the node (provider) receives a request:

If the request is received by the provider, it will send the

descriptor of the service which will specify all the details related

to invocation of the service, its input and output parameters if

any, etc. Once the client has discovered a service, service

invocation request has to be sent to the provider. SOAP is a

protocol based on HTTP for communication and on XML for

communication between services, which allows not only data to

be passed from object to object around the network but also full

objects, including code. In our approach the invocation request

will be sent to the service provider as SOAP message along with

header, which is not discussed here.

4. SIMULATION RESULTS

4.1 SIMULATION OVERVIEW

The proposed scheme was implemented using NS2. Initial

energy is set to 0.5 Joules, transmission power t x Power as 0.6

watt and r x Power as 0.3 watt. Simulation area is 500 x 900

meters. Nodes can move within the speed range 0 to 20 meters

per second. The nodes were randomly distributed using Random

Waypoint model. The random waypoint model defines the

mobility pattern of nodes by pause time and maximum node

speed. Each node began the simulation by remaining stationary

for a specified period of pause time. It then selected a random

destination and moved to that destination at a speed distributed

uniformly between 0 to some maximum node speed. Upon

reaching the destination the node paused again for the pause

time, selected another destination and move towards that. The

simulation time is 1000ms. We use different movement pattern

generated for 0, to 1000 in steps of 100. A pause time of 0

means continuous motion and 1000 is no motion since the

simulation time is set to 1000. We use 100 wireless nodes

forming ad hoc network. Among them 15 play the role of service

providers and 35 as clients. The remaining nodes act as

intermediate nodes. To start with the providers publish their

services in the form of service descriptors and wait for the

client’s service request. Every client’s objective is to invoke a

desired service once. We make ten clients to send service request

constantly at the rate of 4 packets per second. We set like this to

capture the performance of various moments of the moving

nodes. The clients for service request make a matching process

in its local cache and send as request, if not found, to its overlay

nodes. When it receives the reply, it makes the actual invocation

to the specified provider using the descriptors.

4.2 EVALUATION

We evaluate two measures the rate of success and the time

we need for the response on which the overall service discovery

performance is based. Query success rate and Query response

time.

The query success rate – this is the ratio of queries that are

replied by one or more providers over total initiated queries. The

result for various pause times is shown in Fig.7. When the

maximum node speed is 1 m/sec, the system gave about 21%

higher than the system without providers metric. When the

maximum node speed was 20 m/s, the proposed system provided

16% better query success ratio the system without providers

metric. Such an improvement is possible only because the

clients’ nodes make connections to the nodes with higher battery

power and low mobility.

Fig.7. Query success ratio

Next we evaluate the average response time. This is the time

taken from the time when the query is initiated and the time

when the requestor receives the response. Fig.8 shows for both

speeds. The system with metrics resulted 26% faster than the one

without using metrics at the maximum speed of 0 m/s, and 33%

higher than at the maximum speed of 20 m/s. This clearly shows

the advantage of using the providers’ metrics for selecting the

services.

Fig.8. Average response time

0%

15%

30%

45%

60%

1 100 200 300 400 500 600 700 800 900 1000

Q
u

er
y

 s
u

cc
e
ss

 r
a

te
 (

%
)

Pause time (sec)

With metrics (1 m/s)

without metrics (1 m/s)

without metric (20 m/s)

with metric (20 m/s)

0

4

8

12

16

1 100 200 300 400 500 600 700 800 900

a
v

er
a

g
e

re
sp

o
n

se
 t

im
e

(s
ec

)

Pause Time (m/s)

without metrics (1 m/s) with metrics (1 m/s)

without metrics (20 m/s) with metrics (20 m/s)

If (the functional properties are matching)

 {

 If (the non-functional properties are matching)

 {

 Create service_resrponse message with

description send it to the requester as unicast

communication,

 }

 }

 Reply with neg_response with the req_id

K PONMOZHI AND R S RAJESH: SERVICE PROVISIONING IN MANETS USING SERVICE PROVIDER’S METRICS

586

5. CONCLUSION AND FUTURE WORK

We presented in this paper the design and the main

implementation features of a service platform that specifically

targets MANETs. We have chosen fully distributed service

architecture which is the best suitable one for the MANETs. The

ranking of the providers based on the current execution

environment context makes the accessing of the services easier

and faster which helps to acquire better Quality of Service. We

use separate message formats for service request and reply, the

API created by us provides facilitation for service advertisement,

discovery messages, and also invocation messages. The service

descriptors we used are defined in XML to facilitate

interoperability. As the message size has direct influence in the

transmission, which has its impact on the power used and

bandwidth ultimately to the performance, our future work

direction may be on how depth the detailed information has to be

advertised.

REFERENCES

[1] Bowman M, Debray S. K and Peterson L L, “Reasoning

about naming systems”, ACM Transactions on

Programming Languages and Systems, Vol. 15, No. 5, pp.

795-825, 1993.

[2] Sun Microsystems, Jini Network Technology,

<http://www.sun.com/software/jini/>.

[3] M. Nidd, “Service Discovery in DEAPspace”, IEEE

Personal Communications, Vol. 8, No. 4, pp. 39-45, 2001.

[4] Koodli R and Perkins C E, “Service Discovery in on-

demand Ad Hoc Networks”, IETF Internet Draft, 2002.

[5] Engelstad P, Egeland G and Thanh D V, “Name Resolution

in on demand MANETs and over External IP Networks”,

IEEE International Conference on Communications, Vol.

2, pp. 1024-1032, 2003.

[6] Salutation Consortium, “Salutation architecture

Specification Version 2.0c – Part 1, The Salutation

Consortium, 1999, http://www.salutation.org

[7] Bluetooth SIG, Specification http://bluetooth.com/.

[8] R. Chinnici, J J Moreau, A Ryman and S Weerawarana,

“Web Service Description Language (WSDL) Version 2.0

– Part 1: Core Language”, 2006,

http://www.w3.org/TR/2006/CR-wsdl20-20060327.

[9] M Gudgin, M Hadley, N Mendelsohn, M Jean-Jacques and

H Frystyk Nielsen, “SOAP version 1.2 Part 1: Adjuncts”,

2003, http://www.w3.org/TR/2003/REC-soap12-part2-

20030624/

[10] S Helal, N Desai, V Verma and C Lee, “Konrark – a

Service Discovery and Delivery Protocol for Ad-Hoc

Networks”, IEEE Conference on Wireless Communications

and Networking, Vol. 3, pp. 2107-2113, 2003.

[11] D Chakraborty, A Joshi and Y Yesha, “Integrating Service

Discovery with Routing and Session Management for Ad-

Hoc Networks”, Ad Hoc Networks, Vol. 4, No. 2, pp. 204-

224, 2006.

[12] A Varshavsky, B Reid and E De Lara, “A Cross-layer

approach to service discovery and selection in MANETs”,

IEEE International Conference on Mobile Ad-Hoc and

Sensor Systems, 2005.

[13] F Zhu, M Mutka and L Ni, “Service discovery in pervasive

computing environments”, IEEE Pervasive Computing,

Vol. 4, No. 4, pp. 81-90, 2005.

[14] Cynthia Jayapal and Sumathi Vembu, “Adaptive service

discovery protocol for Mobile ad hoc networks”, European

Journal of Scientific Research, Vol. 49, No. 1, pp. 6-17,

2011.

[15] Knarig Arabshian and Henning Schulzrinne, “Gloserv:

Global service discovery architecture”, The first Annual

International Conference Mobile and Ubiquitous Systems:

Networking and Services, pp. 319-325, 2004.

[16] Dipanjan Chakraborty, Anupam Joshi, Tim Finin and

Yelena Yesha, “GSD: A novel group-based service

discovery protocol for MANETs”, Proceedings of 4
th

 IEEE

Conference on Mobile and Wireless Communications

Networks, pp. 140-144, 2002.

[17] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan,

and Jeremy Lilley, “The design and implementation of an

intentional naming system”, ACM SIGOPS Operating

Systems Review, Vol. 34, No. 2, pp. 186-201, 2000.

[18] Todd D Hodes, Steven E Czerwinski, Ben Y Zhao,

Anthony D Joseph, and Randy H Katz, “An architecture for

secure wide-area service discovery”, Wireless Networks,

Vol. 8, No. 2/3, pp. 213-230, 2002.

[19] K Ponmozhi, and R S Rajesh, “Applying P2P in MANETs

for resource sharing”, Proceedings of IEEE International

Conference on Control, Automation, Communication and

Energy Conservation, pp. 1-5, 2009.

