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Abstract 

This work presents an accurate and efficient model to compute the 

delay and slew metric of on-chip interconnect of high speed CMOS 

circuits foe ramp input. Our metric assumption is based on the Burr’s 

Distribution function. The Burr’s distribution is used to characterize 

the normalized homogeneous portion of the step response. We used 

the PERI (Probability distribution function Extension for Ramp 

Inputs) technique that extends delay metrics and slew metric for step 

inputs to the more general and realistic non-step inputs. The accuracy 

of our models is justified with the results compared with that of 

SPICE simulations. 
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1. INTRODUCTION

As the scale of process technology is steadily shrinking 

towards the ultra deep sub micrometer regime and the size of the 

design increases to a large extent, length of interconnect is 

getting longer [1]. So, efficient and accurate computation of 

delay and slew metric is crucial for enhancing the switching 

speed of present day devices. The timing verification is very 

complicated issue in IC design process because of the statistical 

variations in the device and interconnects delays. Different 

proposals have been made to meet the timing constraints. The 

Elmore delay metric [2] is a popular method for the fast 

calculation of the interconnect trees. This is because it is simple, 

closed-form, and easy to evaluate. However with development 

of the technology, interconnect delay is becoming comparable in 

value to cell delay or even dominates it, so in this case much 

more accurate interconnect delay metrics are desired [3]. Many 

approaches primarily concentrated to find the interconnect delay 

rather than gate delay so that one can increase the speed of the 

circuit by simply decreasing interconnect length. Accurate and 

exact calculation of propagation delay and slew in VLSI 

interconnects are critical to the design of high speed systems. 

Current techniques are based on either simulation or analytical 

models. Slew rate indicates the rate of change of the signal. An 

increase in slew enhances the delay through the line. Hence an 

accurate estimation of the slew metric is thus essential for 

efficient design of high speed CMOS integrated circuits. As the 

design parameters like gate oxide thickness, channel length 

reach their threshold, computation of slew metric and 

interconnect delay become crucial for both performance and 

physical design optimization for high speed CMOS integrated 

circuits[3]. AWE [4] can approach towards SPICE-like accuracy 

by computing and matching higher order moments of the 

impulse response, but AWE is not a simple closed-form formula 

and in involves computational complexity, in particular it 

involves finding a solution of a non-linear equation. So the 

desired delay and slew metric should be not only highly accurate 

but also simple and closed-form.  

In this paper, a closed form delay and slew metrics are 

presented based on the Burr’s probability distribution function. It 

is shown that the moment matching to the Burr’s distribution 

parameters produces explicit expression for delay and slew 

metrics. PERI technique [5] is used for extending the delay 

metric derived for a step input into a delay metric for a ramp 

input for RC trees and it is valid over all input slew conditions. 

Note that, the delay metric reduces to the Elmore delay of the 

circuit under the limiting case of an infinitely slow ramp, a fact 

first proved in [4] to establish the Elmore delay as an upper 

bound. 

The rest of the paper is organized as follows: Section 2 

discusses the basic theory, expressions of circuit moments in 

terms of impulse response and expressions of mean and variance 

in terms of circuit moments. Section 3 describes the properties of 

Burr’s distribution function and discusses the method to 

calculate the proposed delay and slew matrices. Section 4 shows 

the experimental results and the comparison with other 

established matrices. Finally Section 5 concludes the paper. 

2. BASIC THEORY

2.1 MOMENTS OF A LINEAR CIRCUIT RESPONSE 

Let h (t) is the circuit impulse response in the time domain 

and let H (s) be the corresponding transfer function. By 

definition, H(s) is the Laplace transform of h (t)  
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From (2) and (3), the transfer function H (s) can be expressed as: 
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2.2 CENTRAL MOMENTS 

Central moments are distribution theory concepts. 

Let us consider the moment definition given again: 
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The mean of the impulse response is given by,  
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It is straight forward to show that the first few central moments 

can be expressed in terms of circuit moments as follows [6]: 
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The central moments have the following geometrical 

interpretations [6]: 

µ0 is the area under the curve. It is generally unity, or else a 

simple scaling factor is applied. 

µ2   is the variance of the distribution. It measures the spread or 

the dispersion of the curve from the center. A larger variance 

results a larger spread of the curve. 

µ3 is a measure of the skewness of the distribution; for a 

unimodal function its sign determines if the mode (global 

maximum) is to the left or to the right of the expected value 

(mean). Its magnitude is a measure of the distance between the 

mode and the mean. 

2.3 SECOND AND THIRD CENTRAL MOMENTS IN 

RC TREES 

The second and third central moments [6] are always positive 

for RC tree impulse responses. From (8), it is obvious that the 

second order central moment is positive. 
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The impulse response, h (t), at any node in an RC tree is always 

positive. Hence, the second central moment, µ2 is always 

positive. 

2.4 MOMENTS OF PROBABILITY FUNCTION 

A probability function is a real valued set function where the 

domain is a subset of the sample space, S, and the range is a real 

number in the interval [0, 1]. Generally, a function Pr {*} should 

satisfy the three Kolmogorov axioms [8], or equivalent 

conditions, in order to be considered as the probabilities 

function: 

i. Pr {S} = l; 

ii. Pr {A} �0 for all A ⊂  S; 

iii. Pr{ A ∪  B } = Pr{ A } + Pr{ B } if A ∩ B = φ  , A ⊂  S 

, B ⊂ S . 

The distribution function of a continuous random variable T 

denoted as FT (t) provides the value of Pr {T� t} for any real 

number ∞≤≤∞− t . The associated probability density function 

(PDF) denoted as fT (t) is the derivative of the distribution 

function with respect to t, thus,  
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The median, t (0.5) , is defined by 
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Whereas, the expected value or mean, E [T] of a continuous 

random variable T with distribution fT (t) is 
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The mean is also the first moment of the distribution (or PDF). 

In general, the i
th

 moment mi of the distribution is, 
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2.5 RELATION BETWEEN PROBABILITY 

DENSITY FUNCTIONS AND CIRCUIT RESPONSES  

Any function f(t) can be treated as a probability density 

function [6] if it is defined in the range [a, b] and satisfies 
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If f (t) is equal to zero outside of the range [a, b], we can replace 

the integration limits in Eq. (13) with -� and �. Elmore was the 

first to apply moments for delay approximation of a limited class 

of circuit responses by observing that the impulse response of a 

circuit can be treated as a probability density function. Elmore 

used this observation to justify the approximation of the 50% 

point of a monotonic step response (the median point of the 

impulse response) by the first moment (mean of the impulse 

response). It was shown that the impulse response corresponding 

to an RC tree is unimodal with positive skew [6]. From this it 

follows that the mode is less than the median which is less than 

the mean and vice versa [7-8]: (Skew > 0) if and only if (mode 

<median < mean). This proved that the Elmore delay is an upper 

bound for the 50% step response delay, and was shown to hold 

for finite input signal rise time. An important observation [6] is 

that because of the variation in impulse response shapes along an 

interconnect path, the relative accuracy of the Elmore delay 

bound can be quite poor. Especially for interconnects associated 

with deep submicron technologies, more than one moment is 

needed to capture the waveform shape-characteristics. 

3. BURR DISTRIBUTION MODEL 

Elmore delay model believes the similarity between non-

negative impulse responses and probability density functions 

(PDF). In theory, Elmore’s assumption can be easily extended 

beyond simply estimating the median by the mean, if one 

considers higher order moments to characterize the distribution 

function. Once characterized, the delay can be approximated via 
table-lookup of the median value for the representative 

distribution family. In this work, a novel delay and slew metrics 

are proposed using Burr probability distribution. The Burr’s 

distribution is a two parameter continuous distribution [9]. Since 

both are unimodel and have non-negative skewness [10], one 

can match the impulse response of the generalized RC network 

to the characterize parameters of the Burr distribution. The PDF 

of Burr’s distribution [9] is shown in Fig. 1. The probability 

density function of the burr’s distribution fc,k (x), is a function of 

one variable x and two parameters c and k (positive real 

numbers)[9]. 
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Mean for the burr distribution is given as,  

( ) 

�

�


�

�
+−=

cc
kkBxEMean

1
1,

1
)(

  (15) 

Where B (x, y) is the incomplete beta function. 
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2σ )=E(x2)- [E(x)]2                         (17) 

Where E(x2) is given in terms of beta function as, 
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The relation between beta and gamma function is given as, 
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By using the gamma function approximation [11], we get,  
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By using equation (19), we get the Mean as, 
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Fig.1. Examples of several members from the burr’s distribution 

family. Each family member corresponds to specific 

values of the distribution parameters c and k 

By using (20), we get, 
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By substituting equations (22), (23) and (24) in (21) we get 
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Substituting (27), (28) and (24) in (26) we get, 
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Substituting (25) and (29) in (17) we get,  
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3.1 CALCULATION FOR THE PARAMETERS c & k 

Since Burr’s distribution has two parameters c and k for 

characterization. So, by matching the two moments completely 

represents this model. Hence, the mean and variance of burr’s 

distribution can be presented in terms of moments as given 

bellow. 
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By solving (25), (30) and (31) we get 
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3.2 CALCULATION OF MEDIAN OR 50% DELAY 

METRIC FOR RAMP INPUT 

The Median of the burr’s distribution [9] is defined as 
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Substituting the values of c and k from (32), (33) in (34), we 

have, 
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So, we can write the closed form delay expression as, 
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The expression presented above is the 50% delay metric for step 

input for generalized RC network. From (36) we can see that the 

median i.e. 50% delay metric is the simple function of the first 

two circuit moments. This is our proposed closed form model 

using burr’s distribution. 

Let us assume that the input waveform is a ramp with slope 

T, as shown in Fig. 2(a) [12]. The PDF of this waveform is a 

uniform distribution with mean µ(I) =T/2 and standard deviation 

( )
12

2T
I =σ . Thus, the delay of the output ramp is as shown in 

Fig.2(b). 
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Fig.2. Ramp input and its corresponding response of an R

network 

If µ(s) = - m1 is the Elmore delay and M(S) is the step delay

metric as given by equation (36). The delay estimation for the 

ramp response [5] is given by, 

D(R) = (1-�) µ(s) +� M(S)                                    

Where � is a constant and is given by, 
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Where 0<T<� is the slope of the ramp input as shown in 

Fig.2(a). From (36), (37) and (38), we get 
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The above derived equation (39) is the delay metric equation for 

the Burr’s Distribution function for ramp input. Th

proposed closed form delay model for model for ramp input for 

on-chip VLSI interconnect using burr probability distribution

3.2 PROPOSED SLEW MODEL 

Burr’s cumulative distribution function [9], as a function of 

is given by, 
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Now, let TLO and THI be 10% and 90% delay points, respectively. 

Matching to these points to the CDF yields from equation (
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) is the delay metric equation for 

the Burr’s Distribution function for ramp input. This is our 

for ramp input for 

distribution. 

as a function of t, 
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The Burr’s slew metric is calculated by using equat

(43) as, 

cc

LOHI
kk

TTBSM

11

1.09.0
��

�
��

�
−��

�
��

�
=−=

     

By substituting the values of the c and 

(44), we get, 
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This is the proposed closed form model for the slew metric 

step input for on-chip VLSI interconnects

distribution. From the above equation it can be seen

Slew Metric [BSM] is the mere function of the first

moments. 

The output slew is the root-mean square of 

input slew [5]. For ramp slew, 

)()()(
22

ISlewSSlewRSlew +=            

Further, (46) exhibits the right limiting behavior: 

As ∞→)(ISlew  we get ∞→)(RSlew

and as 0)( →ISlew , we have (RSlew

Where Slew(S) is the step slew metri

equation (45) and Slew (I) is the input slew which is given as,

Slew
2
 (I) =T

2
/12                                

From equations (45), (46) and (47), we get,

 

( ) ( ) ( )
.2

ln2

3
1.0

4709.2
ln2

3
9.0

916.0

2

12

1

mmm

m
RSlew












�

�

�
�
�
�
�

�

�












�

�




�

�
−












�

�












�

�




�

�



�

�−
=

The above derived equation (48) is the slew 

the Burr’s Distribution function for ramp input. Th

proposed closed form model using burr’s distributio

4. EXPERIMENTAL RESULTS

We have implemented the proposed delay

estimation method using burr’s distribution and applied it to 

widely use actual interconnect RC networks as shown in Fig. 3

For each RC network source we put a driver, where t

a voltage source followed by a resistor.

Fig.3. An RC Tree Example

In order to verify the efficiency of our model, we have 

extracted 208 routed nets containing 2024 sinks fro
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The Burr’s slew metric is calculated by using equations (42) and 

       (44) 
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proposed closed form model for the slew metric for 

chip VLSI interconnects based on the burr’s 

istribution. From the above equation it can be seen that Burr 

Slew Metric [BSM] is the mere function of the first two circuit 

mean square of the step slew and 

               (46) 
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) is the slew metric equation for 

the Burr’s Distribution function for ramp input. This is our 

proposed closed form model using burr’s distribution.    

EXPERIMENTAL RESULTS 

We have implemented the proposed delay and slew 

istribution and applied it to 

RC networks as shown in Fig. 3. 

For each RC network source we put a driver, where the driver is 

a voltage source followed by a resistor. 

 

An RC Tree Example 

ncy of our model, we have 

extracted 208 routed nets containing 2024 sinks from an 
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industrial ASIC design in 0.18 �m technology. We choose the 

nets so that the maximum sink delay is at least 10 ps and the 

delay ratio between closet and furthest sinks in the net is less 

than 0.2. It ensures that each net has at least one near end sink. 

We classify the 2244 sinks as it was taken in PERI [5] into the 

following three categories: 

• 1187 far-end sinks have delay greater or equal to 75% of the 

maximum delay to the furthest sink in the net. 

• 670 mid-end sinks which have delay between 25% and 75% of 

the maximum delay and, 

• 367 near-end sinks which have delay less than or equal to 25% 

of the maximum delay. 

In order to find the delay and slew at node 5 for ramp input, a 

saturate ramp of time period of T=100 ps is used. For both 

calculation of delay and slew, the relative error is less than 2 %. 

The calculated average, minimum, maximum values are 

compared along with standard deviation for the delay calculated 

by using PERI and with those found using the proposed model. 

The comparative results are summarized in Table 1. 

Table.1 Comparison between Proposed Delay Model and PERI 

Step 

Delay 
Delay Metric Using Two Moments 

For Ramp PERI Method Our Proposed Model 

Sinks Avg SD max min Avg SD max Min 

Near 1.25 0.33 2.25 0.50 1.26 0.39 2.13 0.45 

Mid 1.14 0.09 1.47 0.97 1.17 0.10 1.48 0.85 

Far 1.00 0.01 1.03 0.98 1.10 0.05 1.05 0.99 

Total 1.08 0.17 2.25 0.50 1.07 0.15 2.23 0.46 

The obtained average, minimum, maximum values are 
compared along with standard deviation for slew calculated by 
using PERI method and with those found using our proposed 
model. The comparative results are summarized in Table 2. 

In the final step of the experiments, we have estimated the 
effect of input slew on the delay and slew estimation for the same 
seven node RC network as shown in the Fig. 3. We have chosen 
10/90 input slew values of 250 and 500 picoseconds, respectively 
and delays and slews were estimated for each node. The 
comparative result of our proposed model with PERI [5] and 
RICE [13] are shown in the Table 3 and Table 4 for delay and 
slew, respectively. 

Table.2 Comparison between Proposed Slew Model and PERI 

Step 

Slew 
Slew Metric Using Two Moments 

For 

Ramp 
PERI Method Our Proposed Model 

Sinks Avg SD max Min Avg SD max Min 

Near 1.01 0.21 1.89 0.65 1.02 0.21 1.80 0.61 

Mid 0.89 0.07 1.21 0.75 0.95 0.07 1.27 0.78 

Far 1.13 0.06 1.25 0.98 1.17 0.08 1.25 0.95 

Total 1.04 0.15 1.89 0.66 1.04 0.16 1.81 0.64 

 

Table.3 Delay Comparison for Each Node between Proposed 

Delay Model, PERI and RICE 

Input 

Slew 
250(ps) 500(ps) 

Node PERI RICE 
Proposed 

Model 
PERI RICE 

Proposed 

Model 

1 207 210 209 235 272 273 

2 383 383 387 407 409 407 

3 484 482 481 505 498 501 

4 707 705 709 724 716 717 

5 851 849 852 867 859 866 

6 461 461 464 484 487 489 

7 925 923 937 941 933 934 

Table 4 Slew Comparison for Each Node between Proposed 

Slew Model, PERI and RICE 

Input 

Slew 
250(ps) 500(ps) 

Node PERI RICE 
Proposed 

Model 
PERI RICE 

Proposed 

Model 

1 1614 1659 1657 1671 1758 1723 

2 1725 1733 1728 1779 1816 1710 

3 1996 2003 2005 2042 2079 2073 

4 2173 2164 2163 2215 2219 2218 

5 2230 2223 2227 2271 2261 2263 

6 1743 1748 1749 1796 1826 1811 

7 2237 2233 2237 2279 2276 2274 

5. CONCLUSION 

In this paper, we have proposed an efficient and accurate 

interconnect delay and slew metric for high speed VLSI designs 

for ramp input. We have used burr distribution to find the 

desired matrices. It is found that the proposed matrices are a 

simple function of first two moments. Our model has Elmore 

delay as upper bound but with significantly less error and does 

not require any complex look up table. The novelty of our 

approach is justified by the calculated delay from the 

experiments performed on the industrial nets. 
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