
71

A HETEROGENEOUS MULTIPROCESSOR SYSTEM-ON-CHIP ARCHITECTURE

INCORPORATING MEMORY ALLOCATION

T.Thillaikkarasi
1
, A. Jagadeesan

2
 and K.Duraiswamy

3

Bannari Amman Institute of Technology, Tamil Nadu, India

Email: mails4thillai@gmail.com1, jagadeesan_a@yahoo.co.in2

3
K.S.R.College of Technology, Tiruchengode, Tamil Nadu, India

Email: ukdswamy@rediffmail.com

Abstract

This paper describes the development of a Multiprocessor System-on-

Chip (MPSoC) with a novel interconnect architecture incorporating

memory allocation. It addresses the problem of mapping a process

network with data dependent behavior and soft real time constraints

onto the heterogeneous multiprocessor System on Chip (SoC)

architectures and focuses on a memory allocation step which is based

on an integer linear programming model. An application is modeled as

Kahn Process Network (KPN) which makes the parallelism present in

the application explicit. The main contribution of our work is an MILP

based approach which can be used to map the KPN of streaming

applications with data dependent behavior and interleaved

computation and communication. Our solution minimizes hardware

cost while taking into account the performance constraints. One of the

salient features of our work is that it takes into account the additional

overheads because of data communication conflicts. It permits to

obtain an optimal distributed shared memory architecture minimizing

the global cost to access the shared data in the application, and the

memory cost. Our approach allows automatic generation of an

architecture-level specification of the application.

Keywords:

Application Specific Multiprocessors, Integer Linear Programming,

Kahn Process Networks, System on Chip, Memory Allocation.

1. INTRODUCTION

In embedded systems the memory architecture can be chosen

more or less freely, it is only constrained by the application

requirements. Different choices can lead to solutions with a very

different cost, which means that it is important to make the right

choice. For this reason, the allocation of the memory blocs major

steps in the SoC design flow. The goal of the memory allocation

and assignment is to make use of the memory architecture

freedom to minimize the cost related to background memory

storage and transfers. Many applications in fields such as multi-

media (audio and video) and image processing handle bulky and

strongly dependent data. They consequently require the

integration of a great number of memories of various types (local

private, local distributed and on-chip global shared memory).

Moreover, up to 70% of the chip area is dedicated to memory.

Unfortunately, nowadays, there is not a complete and automatic

method allowing designers to integrate all these memory types

(particularly the shared memory) technological and market

trends, including the ability to produce in the SoC from a high

abstraction level. In this paper, we address the problem of

synthesis of application specific multiprocessor SoC architectures

for process networks of streaming applications. Many streaming

applications which can be represented as Kahn Process Networks

(KPNs) show data dependent behavior with soft real time

constraints.

Traditionally the problem of mapping the application onto the

architecture has been viewed as a scheduling problem. There has

been considerable work in the direction of scheduling task graphs

with begin-end type of communication property and constant

processing time requirements. This problem has been formulated

as an MILP problem in with heterogeneous multiprocessors as the

target. All the works suffer from the limitation that the processing

requirement of a task has been assumed to be constant and

independent of input.

The main contribution of our work is an MILP based

approach which can be used to map the KPN of streaming

applications with data dependent behavior and interleaved

computation and communication. The mapping takes place along

with the synthesis of application specific multiprocessor SoC

architecture for the given application. Static scheduling is not

done at this stage. Our approach also allows one to synthesize the

interconnection architecture either along with the mapping

process or separately in a post processing stage.

Organization of rest of the paper is as follows. Section 2

provides details of previous work and contribution. Section 3

provides details of application and architecture models. In Section

4 various MILP formulations have been presented. Section 5

gives details of memory allocation. Section 6 gives the analysis

and Section 7 concludes.

2. PREVIOUS WORK & CONTRIBUTION

We have found a lot of works concerning memory integration

and optimization in the f i e ld of single or multiprocessor

system design. Some of them deal with memory allocation.

In this work we only deal with SoC. These are different from

classic general purpose architectures because they target a

specific application which makes the memory architecture and

the communication network specific to the application and

then simpler. For instance in most of these applications data

regularity is quite trivial or non existing and thus no

sophisticated data cache is required.

The contribution of our work is a full systematic

approach allowing an optimal distributed shared memory

allocation for application-specific SoCs, and automatic

architecture-level application-code generation.

3. APPLICATION & ARCHITECTURE

MODELS

As shown in Fig.1, we consider applications modeled as KPN.

ICTACT JOURNAL OF COMMUNICATION TECHNOLOGY, JUNE 2010, VOLUME: 01, ISSUE: 02ISSN: 2229-6948 (ONLINE)

DOI: 10.21917/ijct.2010.0010

T.THILLAIKKARASI et al.: A HETEROGENEOUS MULTIPROCESSOR SYSTEM-ON-CHIP ARCHITECTURE INCORPORATING MEMORY ALLOCATION

72

Fig.1. Application KPN

We assume that the processes are iterative in nature and

perform computation as soon as required data is available at their

inputs. This is a reasonable assumption for the streaming

applications. The KPN model can have more than one channel

between two processes. It can also have cycles. Unlike begin-end

type of task graphs, here computation and communication are

interleaved. Hence in our application model, an arc only means

that there is some communication from one process to another

during the course of computation.

We assume an architecture component library which contains

a number of compute units, memory modules and interconnection

components. A compute unit could be a non programmable unit

like ASIC or a programmable unit such as a RISC or DSP

processor. Along with each compute unit, there is a local

memory. There could also be a number of shared memories

which are connected to the compute units through interconnection

network.

Interconnection components consist of a number of switches.

In our formulation, buses are also called switches. The difference

between a cross-bar switch and a bus is that bus provides

low bandwidth low cost solution compared to a cross-bar

switch. The main difference between single bus and multiple bus

is that latter has higher bandwidth and a component attached

to it will have as many connections to it as many buses in

it. Motivation of having cross-bar switches in the component

library is based on the observation that in a process

network, each process communicates with only some of the

other processes. If the process network mapping onto the

architecture is properly done, then a number of smaller switches

can be employed to provide low cost high bandwidth solution.

4. OVERALL SYNTHESIS

There are two aspects of the synthesis: selection of compute

units and memories from the library and interconnection

architecture synthesis. We have done formulation in such a

manner that it allows to either perform the above two

together or interconnection architecture synthesis can be

performed in the post processing phase. This section describes

these two aspects. Due to lack of space exact equations are

omitted.

4.1. MILP FORMULATION for MAPPING

Decision Variables

There are basic binary variables which define the mapping of

processes to compute units and channels to memories. Other

variables are derived from these and correspond to connectivity

of compute units to memories and amount of data communication

conflicts.

Basic Mapping Constraints

These are the constraints which define mapping of process

network and architecture instance.

1. A process can be mapped to only one compute unit.

2. ASIC can accommodate only one process.

3. A queue is mapped onto a local memory only when its reading

and writing processes are mapped to the same compute unit.

4. A queue is mapped to either local memory of a compute unit or

shared memory module.

5. A compute unit CUk will communicate with a memory module

SMl when some reader or writer of a queue Qj is mapped onto

CUk and queue itself is mapped onto SMl.

6. A compute unit CUk is utilized only if some process Ti is

mapped onto CUk.

Performance Constraints

1. Bandwidth of shared memory module SMl should be larger

than arrival rate.

2. A compute unit offers number of time units equal to its clock

frequency (cycles per second). This must accommodate

computation overheads of processes mapped, context switch

overheads and waiting time due to data communication

interferences.

Objective function

The objective is to minimize hardware cost. In the mapping

stage, it essentially consists of cost of compute units used, local

memory modules and shared memory modules.

4.2. ILP FOR COMMUNICATION ARCHITECTURE

Synthesis of communication architecture can either be done

along with the previous stage (mapping) or as a post processing

step when mapping is already known. Former leads to an overall

minimum cost solution. Latter significantly simplifies the MILP

of mapping stage, but this might lead to overall higher cost

solution.

Decision Variables in this case define paths CUk − SWm −

SMl. These are further used to derive usage of a particular IN

component.

Constraints

1. A switch of type bus cannot be used if it does not meet

bandwidth requirement.

ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2010, ISSUE: 02

73

2. Number of compute units connected to a switch should not be

greater than number of processor side ports of the switch.

Similarly number of memory modules connected to a switch

should not be greater than number of memory side ports of a

switch.

3. Compute unit CUk is connected to switch SWm if there is at

least one communication path from CUk to some memory module

SMl and vice versa.

4. A switch is utilized only if some compute units and some

memory module are connected to it.

Objective function in communication architecture synthesis is to

minimize the total cost of switches and associated

interconnections links.

5. MEMORY ALLOCATION STEP

Our memory allocation flow (Fig.2) takes as input a system

level specification of the application (after processor allocation),

a generic architecture model and libraries containing the

estimated access time of each processor to memories and memory

costs. This flow is mainly composed of three parts. The first

consists in extracting parameters from the application code. The

second carries out the memory allocation using an integer linear

program (generated automatically). The third reads/writes

primitives of the shared data in the application code (taking into

account the memory allocation results), and generates an

architecture-level description of the application. These three parts

will be detailed in this section.

Fig.2. Memory allocation and code generation flow

5.1. PARAMETER EXTRACTION

This stage consists in extracting from the system level

description of the application some information about the handled

data, such as their names, sizes (types) and the use of the

communication channels (for each communication channel

connecting two processors, we determine the variables exchanged

through this channel).

5.2. ALLOCATION

Using the parameters extracted in the previous step and the

results of the system-level simulation of the application, we

generate automatically an integer linear program. This program

gives an exact solution for the memory blocs allocation

minimizing the memory cost and the global time to access the

shared data in the application as follows.

The objective function “F” consists in minimizing the total

access time (reading and writing) of the processors accessing the

shared data ((1), (2)) + Costs due to the memories sizes and to

their integration in the system ((3)).

“F” has to be minimized subject to the following constraints:

The sum of data sizes assigned to the memory k has to be smaller

or equal to the size of the memory k. This constraint allows us to

compute the memory sizes (4).

If the memory k is not included in the architecture, its size must

be equal to zero (5).

If the memory k is included in the architecture, its size must be

bigger than zero (6).

Each variable must be assigned to one and only one memory (7).

- The variables Xkj and Yk are binary; TMk is integer.

Thus, we obtain:

Min F = ∑ ∑ ��_����(
, �) ∑ �_����(
, �)�
���

�
���

�
��� ��� (1)

∑ ∑ ��_��
��(
, �) ∑ �_��
��(
, �)�
���

�
���

�
��� ��� (2)

 ∑ �������
�
��� + ∑ �!��"�

�
��� (3)

Subject to:

∑ ��
##�_$��(�)�
��� ��� ≤ ��� (4)

��� ≤ &"� k=1,….,m (5)

��� ≤ &"� − & + 1 k=1,….,m (6)

∑ ���
�
�∈*� = 1 j=1,…….v (7)

��� ∈ ,0,1.��� ∈ / j=1,……v et k=1……m (8)

"� ∈ ,0,1. and ��� ∈ / k=1……m (9)

P = number of processors; V = number of variables

- M = number of memories (<= P+1); TMk = size of the memory

k

- Sj = set of indexes of memories associated with processors

using the data j, plus the index of the shared memory

- Xjk = 1 if and only if the variable j is assigned to the memory k

- Yk = 1 if and only if the memory k is integrated to the

architecture

- Nb_read (i, j) (resp. Nb_write (i, j)) = the number of processor

i’s read (resp. write) accesses to the variable j (obtained by a

system level simulation)

- T_read (i, k) (resp. T_write (i, k)) = estimated read (resp. write)

access time of the processor i to the memory k

T.THILLAIKKARASI et al.: A HETEROGENEOUS MULTIPROCESSOR SYSTEM-ON-CHIP ARCHITECTURE INCORPORATING MEMORY ALLOCATION

74

- Taille_var (j) = size of the variable j

- CBMk (resp. CUMk) is the cost due to the memory k’s size

(resp. average cost of the integration of the memory k in the

architecture).

Model complexity

For a problem instance we obtain:

- at least [(P + 1).V]+ [P + 1] + [P + 1] = (P + 1) (V + 2)

variables, With:

a = number of Xjk variables,

b = number of Yk variables,

c = number of TMk variables.

- NB_constraintes = (P + 1) + (P + 1) + (P + 1) + V constraintes

Note that in the computation of the number of variables we

supposed that each one of the V shared data is used by all the

processors, this is still very theoretical. In real applications that

we know the NB_Variables tends generally to (P + 1) (V + 2)/2.

5.3. CODE TRANSFORMATION

This third module avoids the boring and error prone task of

analyzing all the application description files in order to insert the

shared memory module, and to carry out the necessary code

modifications. Indeed, it rewrites the application description at

the architecture level and adds a new module which is the shared

memory and its controller. All the read and write operations on

the shared data are changed by explicit read/write primitives on

the shared memory.

6. ANALYSIS

This application was described at the functional level mainly

in 4 interface files and 4 implementation files. Automatic

refinement adds to the specification 4 files (2 interfaces and 2

implementations) corresponding to the memory body and to the

memory’s controller (200 lines at the functional level). The

interfaces of the 4 processors were modified automatically in

order to connect them to the global shared memory, and all the

accesses to the data stocked in this memory were modified. Then,

we obtained the application code at the architecture-level with a

shared memory architecture in a complete automatic way.

The modeling of the memory allocation problem by an integer

linear programming approach presents some major advantages as:

- it is an exact method, which contrary to the heuristic based

methods, gives an optimal solution,

- it is a very generic model which allows the integration of all the

memory types (local private, local distributed and global shared

memories) in the architecture,

- it resolves two problems: allocation of the memory blocs, and

the data assignation into these blocs,

- there are many available tools which permit the resolution of

such a model.

Since some variables in our model are Boolean, the resolution

step can be slow depending on the number of such variables. So,

for the applications integrating lot of processors, we recommend

the use of stochastic methods instead of the linear model.

Our future works will consist of the development of algorithms

allowing the optimization of the variables placement in a given

memory and the automatic interface generation. These algorithms

will have to take into account the physical characteristics of the

memories and the access modes.

7. CONCLUSIONS

An MILP based approach for synthesis and mapping of

process networks onto heterogeneous multiprocessor architecture

has been presented. We use an exact method to resolve the

memory allocation problem for the fixed criteria (total access

time to the shared data and the cost of the memory architecture).

The proposed methodology permits a systematic generation of

generic memory architecture for multiprocessor embedded SoC,

from a high abstraction level distributed specification of the

application. Our MILP is extendible and optimizations such as

synthesis of low power architectures can also be performed

based on power consumption during each iteration of process and

each transaction on channel. Our approach can be effectively

used to generate application specific multiprocessor architectures

for applications modeled as KPN which show data dependent

behavior. Our approach is not restricted to KPN in the FORM of

DAG, but also allows cycles within it.

REFERENCES

[1] De Kock, E. A., Essink, G., Smits, W. J. M., vander Wolf,

P., Brunel, J. Y., Kruijtzer, W. M., Lieverse, P. and Vissers,

K. A (2000) ‘YAPI:Application Modeling for Signal

Processing Systems’, In Proc. 37th Design Automation

Conference (DAC’00), pp. 402–405.

[2] Basten, T. and Hoogerbrugge, J. (2001) ‘Efficient Execution

of Process Networks’, In Communicating Process

Architecture.

[3] Baghdadi, A. Lyonnard, D. Zergainoh, N-E. Jerraya, A.A.

(2001) ‘An Efficient Architecture Model for Systematic

Design of Application-Specific Multiprocessor SoC’, Proc.

of DATE 2001.

[4] Dwivedi, B. K., Kumar, A. and Balakrishnan, M. (2003)

‘Synthesis of Application Specific Multiprocessor

Architectures for Process Networks’, Technical report,

Dept. of Computer Science & Engg., Indian Institute of

Technology Delhi. http://www.cse.iitd.ernet.in/esproject/.

[5] Sorin, D. J., Lemon, J. L., Eager, D. L. and Vernon, M. K.

(2003), ‘Analytic Evaluation of Shared-Memory

Architectures’, IEEE Transaction on Parallel and

Distributed Systems, 14(2):pp. 166–180.

[6] Singh, A. Chhabra, A. Gangwar, A. Dwivedi, B. K.

Balakrishnan M.and. Kumar. A ,(2003)‘SoC Synthesis With

Automatic Interface Generation’ In Proc. 16th International

Conference on VLSI Design (VLSI-2003), New Delhi,

India, pp. 585–590.

[7] Dwivedi, B. K. Kumar, A. and Balakrishnan, M.(2004),

‘Synthesis of Application Specific Multiprocessor

Architectures for Process Networks’, In Proc. 17th

International Conference on VLSI Design, Mumbai, India,

pp. 780–783.

ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2010, ISSUE: 02

75

[8] Dwivedi, B. K. Kumar, A and Balakrishnan, M.,(2004),

‘Automatic Synthesis of System on Chip Multiprocessor

Architectures for Process Networks. In Proc. Int. Conf. on

Hardware/Software Codesign and System Synthesis

(CODES+ISSS 2004), Stockholm, Sweden, pp. 60–65.

[9] Dwivedi, B. K. Dhand, H. Balakrishnan M. and Kumar. A.,

(2005) ‘RPNG: A Tool for Random Process Network

Generation’, In Proc. Asia and South Pacific International

Conference in Embedded SoCs (ASPICES-2005), Bangalore,

India, July.

[10] Basant K. Dwivedi, Arun Kejariwal, Balakrishnan, M. and

Anshul Kumar. (2006) ‘Rapid Resource-Constrained

Hardware Performance Estimation’, In Proc. International

Workshop on Rapid System Prototyping (RSP06), Chania,

Crete, Greece.

