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Abstract 

This paper describes the development of a Multiprocessor System-on-

Chip (MPSoC) with a novel interconnect architecture incorporating 

memory allocation. It addresses the problem of mapping a process 

network with data dependent behavior and soft real time constraints 

onto the heterogeneous multiprocessor System on Chip (SoC) 

architectures and focuses on a memory allocation step which is based 

on an integer linear programming model. An application is modeled as 

Kahn Process Network (KPN) which makes the parallelism present in 

the application explicit. The main contribution of our work is an MILP 

based approach which can be used to map the KPN of streaming 

applications with data dependent behavior and interleaved 

computation and communication. Our solution minimizes hardware 

cost while taking into account the performance constraints. One of the 

salient features of our work is that it takes into account the additional 

overheads because of data communication conflicts. It permits to 

obtain an optimal distributed shared memory architecture minimizing 

the global cost to access the shared data in the application, and the 

memory cost. Our approach allows automatic generation of an 

architecture-level specification of the application. 
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1. INTRODUCTION

In embedded systems the memory architecture can be chosen 

more or less freely, it is only constrained by the application 

requirements. Different choices can lead to solutions with a very 

different cost, which means that it is important to make the right 

choice. For this reason, the allocation of the memory blocs major 

steps in the SoC design flow. The goal of the memory allocation 

and assignment is to make use of the memory architecture 

freedom to minimize the cost related to background memory 

storage and transfers.  Many applications in fields such as multi-

media (audio and video) and image processing handle bulky and 

strongly dependent data. They consequently require the 

integration of a great number of memories of various types (local 

private, local distributed and on-chip global shared memory). 

Moreover, up to 70% of the chip area is dedicated to memory. 

Unfortunately, nowadays, there is not a complete and automatic 

method allowing designers to integrate all these memory types 

(particularly the shared memory) technological and market 

trends, including the ability to produce in the SoC from a high 

abstraction level. In this paper, we address the problem of 

synthesis of application specific multiprocessor SoC architectures 

for process networks of streaming applications. Many streaming 

applications which can be represented as Kahn Process Networks 

(KPNs) show data dependent behavior with soft real time 

constraints. 

Traditionally the problem of mapping the application onto the 

architecture has been viewed as a scheduling problem. There has 

been considerable work in the direction of scheduling task graphs 

with begin-end type of communication property and constant 

processing time requirements. This problem has been formulated 

as an MILP problem in with heterogeneous multiprocessors as the 

target. All the works suffer from the limitation that the processing 

requirement of a task has been assumed to be constant and 

independent of input.  

The main contribution of our work is an MILP based 

approach which can be used to map the KPN of streaming 

applications with data dependent behavior and interleaved 

computation and communication. The mapping takes place along 

with the synthesis of application specific multiprocessor SoC 

architecture for the given application.  Static scheduling is not 

done at this stage. Our approach also allows one to synthesize the 

interconnection architecture either along with the mapping 

process or separately in a post processing stage.  

Organization of rest of the paper is as follows. Section 2 

provides details of previous work and contribution. Section 3 

provides details of application and architecture models. In Section 

4 various MILP formulations have been presented. Section 5 

gives details of memory allocation. Section 6 gives the analysis 

and Section 7 concludes. 

2. PREVIOUS WORK & CONTRIBUTION

We have found a lot of works concerning memory integration 

and optimization   in   the f i e ld    of single or    multiprocessor 

system design. Some of them deal with memory allocation. 

In this work we only deal with SoC.  These  are  different  from 

classic  general  purpose  architectures because  they  target  a 

specific  application which  makes  the  memory  architecture  and 

the  communication  network  specific  to  the  application  and 

then simpler. For instance in most of these applications data 

regularity is  quite  trivial  or  non  existing  and  thus  no 

sophisticated  data cache is required. 

The  contribution   of  our   work  is  a  full  systematic 

approach allowing  an  optimal  distributed  shared  memory 

allocation  for application-specific    SoCs,    and    automatic 

architecture-level application-code generation. 

3. APPLICATION & ARCHITECTURE 

MODELS 

As shown in Fig.1, we consider applications modeled as KPN. 

ICTACT JOURNAL OF COMMUNICATION TECHNOLOGY, JUNE 2010, VOLUME: 01, ISSUE: 02ISSN: 2229-6948 (ONLINE) 

DOI: 10.21917/ijct.2010.0010



T.THILLAIKKARASI et al.: A HETEROGENEOUS MULTIPROCESSOR SYSTEM-ON-CHIP ARCHITECTURE INCORPORATING MEMORY ALLOCATION  

72 
 

  

Fig.1. Application KPN 

We assume that the processes are iterative in nature and 

perform computation as soon as required data is available at their 

inputs. This is a reasonable assumption for the streaming 

applications. The KPN model can have more than one channel 

between two processes. It can also have cycles. Unlike begin-end 

type of task graphs, here computation and communication are 

interleaved. Hence in our application model, an arc only means 

that there is some communication from one process to another 

during the course of computation.  

We assume an architecture component library which contains 

a number of compute units, memory modules and interconnection 

components. A compute unit could be a non programmable unit 

like ASIC or a programmable unit such as a RISC or DSP 

processor. Along with each compute unit, there is a local 

memory. There could also be a number of shared memories 

which are connected to the compute units through interconnection 

network.  

Interconnection components consist of a number of switches. 

In our formulation, buses are also called switches. The  difference  

between  a  cross-bar  switch  and  a  bus  is that  bus  provides  

low  bandwidth  low  cost  solution  compared to a cross-bar 

switch. The main difference between single bus and multiple bus 

is that latter has higher bandwidth  and  a  component  attached  

to  it  will  have  as  many connections  to  it  as  many  buses  in  

it. Motivation  of  having  cross-bar  switches  in  the  component  

library  is  based on  the  observation  that  in  a  process  

network,  each  process  communicates  with  only  some  of  the  

other  processes. If the process network mapping onto the 

architecture is properly done, then a number of smaller switches 

can be employed to provide low cost high bandwidth solution. 

4. OVERALL SYNTHESIS 

There are two aspects of the synthesis: selection of compute 

units and memories from the library and interconnection 

architecture synthesis.  We  have  done  formulation  in such a  

manner  that  it  allows  to  either  perform  the  above two 

together or interconnection architecture synthesis can be 

performed in the post processing phase. This section describes 

these two aspects. Due to lack of space exact equations are 

omitted.  

4.1. MILP FORMULATION for MAPPING 

Decision Variables 

There are basic binary variables which define the mapping of 

processes to compute units and channels to memories. Other 

variables are derived from these and correspond to connectivity 

of compute units to memories and amount of data communication 

conflicts. 

Basic Mapping Constraints 

These are the constraints which define mapping of process 

network and architecture instance. 

1. A process can be mapped to only one compute unit. 

2. ASIC can accommodate only one process. 

3. A queue is mapped onto a local memory only when its reading 

and writing processes are mapped to the same compute unit. 

4. A queue is mapped to either local memory of a compute unit or 

shared memory module. 

5. A compute unit CUk will communicate with a memory module 

SMl when some reader or writer of a queue Qj is mapped onto 

CUk and queue itself is mapped onto SMl. 

6. A compute unit CUk is utilized only if some process Ti is 

mapped onto CUk. 

Performance Constraints 

1. Bandwidth of shared memory module SMl should be larger 

than arrival rate. 

2. A compute unit offers number of time units equal to its clock 

frequency (cycles per second). This must accommodate 

computation overheads of processes mapped, context switch 

overheads and waiting time due to data communication 

interferences. 

Objective function 

The objective is to minimize hardware cost. In the mapping 

stage, it essentially consists of cost of compute units used, local 

memory modules and shared memory modules. 

4.2. ILP FOR COMMUNICATION ARCHITECTURE 

Synthesis of communication architecture can either be done 

along with the previous stage (mapping) or as a post processing 

step when mapping is already known. Former leads to an overall 

minimum cost solution. Latter significantly simplifies the MILP 

of mapping stage, but this might lead to overall higher cost 

solution. 

Decision Variables in this case define paths CUk − SWm − 

SMl. These are further used to derive usage of a particular IN 

component. 

Constraints 

1.  A switch of type bus cannot be used if it does not meet 

bandwidth requirement. 
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2.  Number of compute units connected to a switch should not be 

greater than number of processor side ports of the switch. 

Similarly number of memory modules connected to a switch 

should not be greater than number of memory side ports of a 

switch. 

3.  Compute unit CUk is connected to switch SWm if there is at 

least one communication path from CUk to some memory module 

SMl and vice versa. 

4.  A switch is utilized only if some compute units and some 

memory module are connected to it. 

Objective function in communication architecture synthesis is to 

minimize the total cost of switches and associated 

interconnections links. 

5. MEMORY ALLOCATION STEP 

Our memory allocation flow (Fig.2) takes as input a system 

level specification of the application (after processor allocation), 

a generic architecture model and libraries containing the 

estimated access time of each processor to memories and memory 

costs. This flow is mainly composed of three parts. The first 

consists in extracting parameters from the application code. The 

second carries out the memory allocation using an integer linear 

program (generated automatically). The third reads/writes 

primitives of the shared data in the application code (taking into 

account the memory allocation results), and generates an 

architecture-level description of the application. These three parts 

will be detailed in this section. 

 

Fig.2. Memory allocation and code generation flow 

5.1. PARAMETER EXTRACTION  

This stage consists in extracting from the system level 

description of the application some information about the handled 

data, such as their names, sizes (types) and the use of the 

communication channels (for each communication channel 

connecting two processors, we determine the variables exchanged 

through this channel).  

5.2. ALLOCATION  

Using the parameters extracted in the previous step and the 

results of the system-level simulation of the application, we 

generate automatically an integer linear program. This program 

gives an exact solution for the memory blocs allocation 

minimizing the memory cost and the global time to access the 

shared data in the application as follows.  

The objective function “F” consists in minimizing the total 

access time (reading and writing) of the processors accessing the 

shared data ((1), (2)) + Costs due to the memories sizes and to 

their integration in the system ((3)).  

“F” has to be minimized subject to the following constraints:  

The sum of data sizes assigned to the memory k has to be smaller 

or equal to the size of the memory k. This constraint allows us to 

compute the memory sizes (4).  

If the memory k is not included in the architecture, its size must 

be equal to zero (5).  

If the memory k is included in the architecture, its size must be 

bigger than zero (6).  

Each variable must be assigned to one and only one memory (7).  

- The variables Xkj and Yk are binary; TMk is integer. 

Thus, we obtain: 
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P = number of processors; V = number of variables  

- M = number of memories (<= P+1); TMk = size of the memory 

k  

- Sj = set of indexes of memories associated with processors 

using the data j, plus the index of the shared memory  

- Xjk = 1 if and only if the variable j is assigned to the memory k  

- Yk = 1 if and only if the memory k is integrated to the 

architecture  

- Nb_read (i, j) (resp. Nb_write (i, j)) = the number of processor 

i’s read (resp. write) accesses to the variable j (obtained by a 

system level simulation)  

- T_read (i, k) (resp. T_write (i, k)) = estimated read (resp. write) 

access time of the processor i to the memory k  
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- Taille_var (j) = size of the variable j  

- CBMk (resp. CUMk) is the cost due to the memory k’s size 

(resp. average cost of the integration of the memory k in the 

architecture).  

Model complexity  

For a problem instance we obtain:  

- at least  [(P + 1).V]+  [P + 1]  + [P + 1]   = (P + 1) (V + 2) 

variables, With:  

a = number of Xjk variables,  

b = number of Yk variables,   

c = number of TMk variables.  

- NB_constraintes = (P + 1) + (P + 1) + (P + 1) + V constraintes   

Note that in the computation of the number of variables we 

supposed that each one of the V shared data is used by all the 

processors, this is still very theoretical. In real applications that 

we know the NB_Variables tends generally to (P + 1) (V + 2)/2. 

5.3. CODE TRANSFORMATION  

This third module avoids the boring and error prone task of 

analyzing all the application description files in order to insert the 

shared memory module, and to carry out the necessary code 

modifications. Indeed, it rewrites the application description at 

the architecture level and adds a new module which is the shared 

memory and its controller. All the read and write operations on 

the shared data are changed by explicit read/write primitives on 

the shared memory. 

6. ANALYSIS 

This application was described at the functional level mainly 

in 4 interface files and 4 implementation files. Automatic 

refinement adds to the specification 4 files (2 interfaces and 2 

implementations) corresponding to the memory body and to the 

memory’s controller (200 lines at the functional level). The 

interfaces of the 4 processors were modified automatically in 

order to connect them to the global shared memory, and all the 

accesses to the data stocked in this memory were modified. Then, 

we obtained the application code at the architecture-level with a 

shared memory architecture in a complete automatic way.  

The modeling of the memory allocation problem by an integer 

linear programming approach presents some major advantages as:  

- it is an exact method, which contrary to the heuristic based 

methods, gives an optimal solution,  

- it is a very generic model which allows the integration of all the 

memory types (local private, local distributed and global shared 

memories) in the architecture,  

- it resolves two problems: allocation of the memory blocs, and 

the data assignation into these blocs,  

- there are many available tools which permit the resolution of 

such a model.  

Since some variables in our model are Boolean, the resolution 

step can be slow depending on the number of such variables. So, 

for the applications integrating lot of processors, we recommend 

the use of stochastic methods instead of the linear model.   

Our future works will consist of the development of algorithms 

allowing the optimization of the variables placement in a given 

memory and the automatic interface generation. These algorithms 

will have to take into account the physical characteristics of the 

memories and the access modes. 

7. CONCLUSIONS 

An MILP based approach for synthesis and mapping of 

process networks onto heterogeneous multiprocessor architecture 

has been presented. We use an exact method to resolve the 

memory allocation problem for the fixed criteria (total access 

time to the shared data and the cost of the memory architecture). 

The proposed methodology permits a systematic generation of 

generic memory architecture for multiprocessor embedded SoC, 

from a high abstraction level distributed specification of the 

application. Our MILP is extendible and optimizations such  as  

synthesis  of  low  power  architectures  can  also  be performed 

based on power consumption during each iteration of process and 

each transaction on channel. Our approach can be effectively 

used to generate application specific multiprocessor architectures 

for applications modeled as KPN which show data dependent 

behavior. Our approach is not restricted to KPN in the FORM of 

DAG, but also allows cycles within it. 
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