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Abstract 

One difficult problem of mathematics that forms the basics of some 

public key cryptography systems like RSA, is finding factors of big 

numbers. To solve this problem, many factorization algorithms have 

been offered with different complexities. Many attempts have been made 

today to implement these factorization algorithms. And these 

implementations are different from various aspects. Each of these 

factorization algorithms is efficient for numbers with a specific size. 

These algorithms can be compared with regard to time and memory 

complexity. In this paper, some of these implementations are studied and 

compared and consequently the most appropriate one will be introduced. 
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1. INTRODUCTION

Public key cryptography based on complexity of hard problem 

in mathematics. Security in some current cryptography methods, 

like RSA public key cryptography systems, depends on complexity 

of factorization of integer numbers to their prime factors. Such 

algorithms are widely used in order to maintain security in 

networks and exchange data in a confidential and authentic way 

through insecure communicational channels. This heightens 

competition for a more efficient and beneficial attack at the main 

core of this group of algorithms which is complexity of number 

factorization. Introduction of new methods and reports of new 

developments in number factorization bear evidence to this claim. 

The problem of number factorization has many years history. So, 

with the passage of time, different algorithms have been 

introduced each of which has been variously implemented. In most 

of them, the purpose is reaching a more optimal implementation 

and a higher speed of factorization. This paper studies some 

implementations of factorization algorithms. Factorization 

algorithms and their complexity, size of the appropriate numbers 

for them, and the records reached by them are included in the 

second part of the paper. The third section introduces some 

software implementations. The results will follow as the final part. 

2. ALGORITHMS

As mentioned before, in number factorization many 

algorithms with different features regarding speed and interval of 

factorization and different functions have been designed [10]; 

such as trial division, Pollard, ECM [19], quadratic sieve [5][8], 

[21] and number field sieve [7]. 

2.1 COMPLEXITY 

The most important reason for this variety and as a result, 

dissatisfaction with the existing algorithms was a decrease in the 

algorithms’ complexity in integer numbers' factorization which is 

especially important for big numbers. So, as the following Table.1 

shows the most significant feature of the more recent algorithms 

compared to the old ones is their decreased complexity. Of course, 

it must be pointed out that designing a new algorithm does not 

necessarily mean the previous algorithms' abandonment. It is 

because number factorization algorithms have different functions 

and they keep working in other functions or in factorization of 

small intervals. 

Table.1. Complexity of number factorization algorithms 

Name Inventor Date Complexity Depends on 

Trial Division - - P ~ N^(1/2) Size of p 

Fermat D. Fermat 
Circa 

1650 
N^(1/2) Size of N 

SQUFOF D. Shanks 1971 N^(1/4) Size of N 

Lehman 

(Fermat) 
R. Lehman 1974 N^(1/3) Size of N 

P-1 

P+1 

J. Pollard 

H. Williams 

1974 

1982 
BlogB 

Smoothness 

of factor 

Pollard's Rho J. Pollard 1975 P^(1/2) Monte carlo 

Continued 

Fractions 

Brillhart, 

Morrison 
1975 

Ln[1/2, 

sqrt(2)] 
Size of N 

ECM H. Lenstra 1987 
Ln[1/2, 

sqrt(2)] 
Size of p 

Dixon's J. Dixon 1981 
Ln[1/2, 2 

sqrt(2)] 
Size of N 

Quadratic 

Sieve 
C. Pomerance 1981 Ln[1/2. 1] Size of N 

MPQS R. Silverman 1987 Ln[1/2, 1] Size of N 

SIQS 
P. 

Montgomery 
1993 Ln[1/2, 1] Size of N 

Number Fiels 

Sieve(Special 

NFS) 

J. Pollard 
1993 

1988 

Ln[1/3, 1.92] 

Ln[1/3, 1.52] 
Size of N 

2.2 ALGORITHM INTERVAL 

One touchstone for choosing the right algorithm is complexity 

of their implementation. For example, implementation of the trial 

division and Pollard is very easy. About ECM and the quadratic 

sieve, it is hard to reach an implementation with a proper speed. 

Likewise, implementation of the number field sieve [6][14] is 

very complex. On the other hand, preprocesses needed for some 
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algorithms decrease speed of factorization. Thus, each of them is 

highly efficient in a specific interval. With regard to complexity 

of factorization algorithms, it is very logical for each of them to 

be appropriate for factorization of numbers with specific sizes. 

 The ECM algorithm is appropriate for numbers with less 

than 30 digits. 

 The QS algorithm is the best choice for numbers with 

between 30-60 digits. 

 The MPQS is most efficient for numbers with between 60-

120 digits. 

 The NFS algorithm is proper for numbers with more than 

120 digits.  

However, improvements of the ECM algorithm and its very 

optimal implementation i.e. GMP-ECM, in addition to using 

hardware implementations, have all made it possible for the ECM 

algorithm to be applied in factorization of numbers as big as 200 

bits. 

2.3 FACTORIZATION RECORDS 

In the area of number factorization, different records have 

been gathered/compiled with different purposes. About the 

records one must note that: 

 All these records are gathered by the public number field 

sieve algorithm. 

 The sieving stage in this method is very time consuming; in 

fact, the whole complexity of the factorization is due to this 

stage. Therefore, the current paper focuses on the time 

required for this sieving. 

 The previous records would compute time based on MIPS 

standards i.e. the number of years a computer needed to 

factorize a number by performing 1 million directions per 

second. But, nowadays, Pentium or AMP processors are 

mostly used; and time computations based on the number of 

years a Pentium 1GHz processor needs to complete sieving 

have been done till now [8]. 

Table.2. Some factorization records [8] 

Number Digits 
Date 

completed 
Sieving time 

C158  158 January, 2002 3.4 Pentium 1GHz CPU years 

RSA-160  160 March, 2003 2.7 Pentium 1GHz CPU years 

RSA-576  174 
December, 

2003 
13.2 Pentium 1GHz CPU years 

C176  176 May, 2005 48.6 Pentium 1GHz CPU years 

RSA-200  200 May, 2005 121 Pentium 1GHz CPU years 

RSA-768  232 Dec, 2009 3300 Opteron 1GHz CPU years 

As mentioned earlier and is clear in the above Table.2, to 

factorize RSA cryptography systems, number field sieve 

algorithm must be used. This is because this algorithm has the sub 

exponential complexity [1], [2], [3], [4], [11], [12]. However, 

efficient implementation of this algorithm requires great cost and 

time [13], [16], [24]. To reduce them, different software 

implementations for NFS have been offered; some of which are 

introduced below. 

3 SOME IMPLEMENTATIONS 

There are various implementations in number factorization; 

each designed with a specific purpose and includes one or more 

instance(s) of number factorization algorithms. 

3.1 GMP-ECM 

It is a free, open source implementation of ECM method 

which is used for number factorization. The main goal of this 

project is finding factors with 50 or more digits through the ECM 

method. Significance of this method is because it is the fastest one 

introduced for factorization of almost less than 200 bits numbers. 

It is worth noting that number factorization in small intervals is 

not independently important. They are used in algorithms such as 

quadratic sieve and number field sieve in which millions of small 

numbers get factorized in a big number’s factorization process. 

That is why efficiency of small numbers factorization has 

attracted much attention and many attempts have been made to 

make these factorizations faster. The GMP-ECM library is 

considered the fastest and the most authentic existing library in 

this field. Experiments already have done bear evidence to this 

claim. The experiments have been performed on various number 

intervals. In this library, implementations existed in the LiDIA 

[15] - a library for working with the elliptic curves, and the 

implementations in the NTL library [18] - a library about number 

theory - alongside independent implementations. 

Table.3. Records of the ECM implementations in our work 

Size Bit/Digit 
GMP 

ECM 

LiDIA 

ECM 

NTL 

ECM 
Personal ECM 

16 /5 <1ms <1ms <1ms NO RESULT 

32 / 10 <1ms 0.030 0.030 NO RESULT 

50 / 15 0.001 16.540 13.250 0.001 

64 / 19 0.01 4647.71 7278.22 0.01 

80 / 24 0.028 ~ ~ 0.04 

100 / 30 0.188 ~ ~ 0.55 

128 / 39 3.112 ~ ~ 4.09 

150 / 45 12.86 ~ ~ 14.19 

170 / 51 155.26 ~ ~ 173.6 

The main problem with using LiDIA and NTL was their 

weakness against number factorization of the RSA numbers (the 

numbers included two factors of p and q) which made it 

practically impossible to factorize these numbers. 

Of course, our implementation and the GMP-ECM [7, 23] 

have been separately compared. The results are shown in the 

Table.3, Fig.1 and Fig.2. It must be noted that these numbers have 

specific features; thus, the ECM algorithm will not be able to 

factorize every composite number as big as the mentioned 

numbers. 

http://www.crypto-world.com/announcements/c158.txt
http://www.crypto-world.com/announcements/rsa160.txt
http://www.crypto-world.com/announcements/rsa576.txt
http://www.crypto-world.com/announcements/c176.txt
http://www.crypto-world.com/announcements/rsa200.txt
http://www.crypto-world.com/announcements/rsa768.txt
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Fig.1. A comparison between our implementation of ECM and 

GMP-ECM in an interval smaller than 100 bits 

 

Fig.2. A comparison between our implementation of ECM and 

GMP-ECM in a 110-140 bits interval 

Note: However contrary to Fig.1 and Fig.2, Personal ECM has 

proved to be better in specific instances. In fact GMP-ECM is 

more efficient most of the times. 

In addition to these tests, many records are published by the 

GMP-ECM that will come in Table.4. 

Table.4. Records of finding the factor by GMP-ECM [25] 

Digit Factor From Date Who 

69 

47494233937696747587

19603217626142542908

10243038880418971061

342256529 

2^1822+1 
20 Feb 

2011 
B. Dodson 

67 30433922592068709674

82500082233986390424
2^1151+1 

06 May 

2011 
J. Bos, T. 

Kleinjung, A. 

27895732225880158451

4334307 

Lenstra, P. 

Montgomery 

64 

72138209024349633641

51186560559158420921

58633984503832846830

5677 

3^634+1 
27 Mar 

2011 
S. Wagstaff 

64 

30991179455811575174

72560817353548774282

45029953990368874736

6609 

2^964+1 
04 Apr 

2011 

J. Bos, T. 

Kleinjung, A. 

Lenstra, P. 

Montgomery 

64 

29857053402558779743

84457755217875800152

02118215146887548612

1347 

2^1051+1 
12 May 

2011 

J. Bos, T. 

Kleinjung, A. 

Lenstra, P. 

Montgomery 

63 

84441961245219856131

07200800387993419728

11718390811373415844

777 

3^723-1 
24 Apr 

2011 
S. Wagstaff 

63 

76774958718808089124

68227314966416444238

48612695929371145177

219 

2^1049+1 
10 Mar 

2011 

J. Bos, T. 

Kleinjung, A. 

Lenstra, P. 

Montgomery 

63 

11298556375500526398

75262480188694319624

85492728920337098962

673 

2^1109+1 
21 Mar 

2011 

J. Bos, T. 

Kleinjung, A. 

Lenstra, P. 

Montgomery 

62 

55046695546239509301

37560315887597678374

19833205721663507213

91 

11^289-1 
02 Apr 

2011 
B. Dodson 

3.2 MIRACL 

It is a complete package dealing with big numbers. At present, 

its 5.5 version is published. It is consisted of a quite complete set 

of number factorization algorithms. This package has fine 

examples of working with number factorization algorithms. 

Unfortunately it has a low speed and cannot be practically used in 

big numbers factorization [17]. 

3.3 PARI/GP 

This package is a complete algebraic system whose 2.3.5 

versions have been introduced. It includes Pollard, ECM, MPQS 

and SQUFOF algorithms. The codes related to small numbers 

have been properly implemented. But about the MPQS algorithm, 

it is not well developed. So, it is a good package only for numbers 

with about 47 digits [20]. 

3.4 FLINT 

It is an algebraic library including trial division, Quadratic 

sieve, MPQS and SQUFOF methods. In this library, the focus is 

on the logic of polynomials. Nevertheless, its efficiency is limited 

to the interval of numbers with about 55 digits. 
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3.5 YAFU 

It is an instrument to factorize numbers. Its 1.12 version 

includes almost all factorization algorithms except for the number 

field sieve. It can properly select the appropriate algorithm in 

different intervals. The SIQS method is quite optimally 

implemented. This leads to the package’s very high speed in 

factorizing numbers with between 50-100 digits [22]. 

3.6 MSIEVE  

It is a complete package of number factorization consisting of 

almost all existing algorithms. When the inputs are less than 25 

digits, small current routines perform factorization. For bigger 

numbers, it applies GMP-ECM library which makes use of p+1 

and p-1 and ECM method with an amount chosen by the user. If 

all these methods did not lead to the complete factorization of the 

input, the library shifts to a stronger method i.e. the quadratic 

sieve algorithm with internal primary numbering. Msieve also 

includes a complete implementation of the number field sieve 

algorithm which can be applied in bigger numbers’ factorization. 

At present, it covers numbers with about 275 digits. However, 

programmers of the library do not expect the package to perform 

a complete factorization of numbers bigger than 120 digits 

independently. Notice that it has a low speed in the sieving stage, 

in addition to an optimal implementation of choosing the 

polynomial stage which is related to the number field sieve 

algorithm. 

3.7 GGNFS  

It is a package specifically focused on the number field sieve 

algorithm and offers an appropriate implementation of it. At 

present, its 0.77.1 version is available which can be used in 

factorization of specific numbers with about 180 digits and 

general numbers with an interval of 140 digits. Of course, bigger 

numbers have also been factorized with the same quality. But 

there are some points about the software which make the bigger 

factorizations somehow harder. In other words, for using its 

different parts, special techniques are required. Making use of 

basic functions of the GMP, ability for parallel running and it’s 

very easy application are some other features of this library [16]. 

3.8 CADO-NFS 

It is a complete implementation of the number field sieve 

algorithm. Corresponding to different phases of the algorithm, it 

has different programs. A script has also been prepared to run 

them. In addition, there is the possibility of under-web parallel 

running of the computers. Its primary development is based Linux 

x86-64 with gcc 4.4 which has been run on the processor Intel. 

On other 64-bit systems, it also gets regularly checked. 

Nevertheless, there is the possibility of its implementation on 

systems other than the main platform. Of course, it may have 

some errors too. For instance, it can be run on the 32-bit Linux, 

but not on the windows. Anyway, this package is able to compete 

with the best implementations available to MPQS (i.e. Msieve, as 

is generally agreed) for numbers bigger than 95 digits. According 

to its programmers, factorization of a number with120 digits by 

this software takes 3 or 4 days on the core of a typical computer. 

Factorization of a 140- digits number requires a month on a core. 

Also, a 160-digits number needs 6 or 7 months on one core to be 

factorized. The integer number entered must not be very small, 

i.e. not less than 60 digits (CADO is efficient for numbers with 

more than 85 digits) and it is best to remove its small factors [24]. 

Below is a table of the results of testing these implementations 

and the algorithms applied in them. 

Table.5. Results of the algorithms [25] 

Name 0.02 second 1 second 1 minute 1 hour 

Trial 

Division 
15 18 21 24 

Fermat 17 19 23 27 

Pollard's 

Rho 
18 25 33 39 

SQUFOF 19 25 32 40 

MPQS 

32 (YAFU) 

33 (FLINT) 

26 (Msieve) 

50 (YAFU) 

52 (FLINT) 

54 (Msieve) 

68 (YAFU) 

70 (FLINT) 

71 (Msieve) 

 

80 (FLINT) 

92 (Msieve) 

SIQS 22 (YAFU) 55 (YAFU) 77 (YAFU) 97 (YAFU) 

Number 

Fiels Sieve 
- - - 

98 (GGNFS 

+ ms) 

MIX 

25 (MIRACL) 

26 (Msieve) 

32 (PARI) 

-- (YAFU) 

35 (MIRACL) 

48 (PARI) 

53 (Msieve) 

50 (YAFU) 

62 (MIRACL) 

66 (PARI) 

71 (Msieve) 

76 (YAFU) 

75 

(MIRACL) 

83 (PARI) 

91 (Msieve) 

97 (YAFU) 

4. CONCLUSION 

Existing implementations and algorithms in integer numbers’ 

factorization have different functions. However, according to the 

comparisons, one can conclude that for 200 bits numbers, using 

GMP-ECM which is based on the ECM algorithm is very 

efficient. Moreover, for extra big numbers, implementation of 

CADO-NFS which is based on the NFS algorithm is highly 

applicable. 

REFERENCES 

[1] Aoki Kazumaro, Yujim Kida, Takeshi Shimoyama and Hi-

roki Ueda, “GNFS Factoring Statistics of RSA-100, 110, . . 

., 150”, IACR Cryptology ePrint Archive, pp. 1-9, 2004.  

[2] Friedrich Bahr, Jens Franke, Thorsten Kleinjung and M. 

Bohm, “RSA-640 e-mail Announcement”, 2005. 

[3] Friedrich Bahr, Jens Franke, Thorsten Kleinjung, M. 

Lochter and M. Böhm, “RSA-160 e-mail Announcement”, 

2003. 

[4] Friedrich Bahr, Jens Franke, Thorsten Kleinjung, M. Lochter 

and M. Böhm, “RSA-200 e-mail Announcement”, 2005. 

[5] Henk Boender and Herman Te Riele, “Factoring Integers 

with Large-prime Variations of the Quadratic Sieve”, Exper-

imental Mathematics, Vol. 5, No. 4, pp. 257-273, 1996. 



REZA ALIMORADI AND HAMID REZA ARKIAN: INTEGER FACTORIZATION IMPLEMENTATIONS 

1314 

[6] Matthew Briggs, “An Introduction to the General Number 

Field Sieve”, Ph.D Dissertation, Department of Mathemat-

ics, Virginia Polytechnic Institute and State University, 

1998. 

[7] T. Charron, T. Daminelli, T. Granlund, P. Leyland and P. 

Zimmermann, “The ECMNET Project”, Available at: 

http://mathforum.org/library/view/17102.html. 

[8] General Purpose Factoring Records, Available at: 

http://www.crypto-world.com/FactorRecords.html. 

[9] R.M. Elkenbracht Huizing, “Factoring integers with the 

Number Field Sieve”, Ph.D Dissertation, Leiden University, 

1997. 

[10] Dana A. Jacobsen, “Methods and Implementations for Inte-

ger Factorization”, CS567 Cryptology I, Boise State Univer-

sity, 2009. 

[11] James Cowie, Bruce Dodson, R. Marije Elkenbracht Huiz-

ing, Arjen K. Lenstra, Peter L. Montgomery and Jorg Zayer, 

“A Worldwide Number Field Sieve Factoring Record on to 

512 Bits”, Proceedings of International Conference on the 

Theory and Applications of Cryptology and Information, pp. 

382-394, 1996. 

[12] Jens Franke, “On the factorization of RSA200”, Workshop 

on Special Purpose Hardware for Attacking Cryptographic 

Systems, 2006. 

[13] Per Leslie Jensen, Pgnf, Available at: http://pgnfs.org/ 

[14] A.K. Lenstra, H.W. Lenstra Jr., M.S. Manasse and J.M. Pol-

lard, “The Number Field Sieve”, Proceedings of the 22nd An-

nual ACM Symposium on Theory of Computing, pp. 564-

572, 1990. 

[15] LiDIA: A C++ Library For Computational Number Theory, 

Available at: http://www3.cs.stonybrook.edu/~algorith/im-

plement/lidia/implement.shtml 

[16] GGNFS - A Number Field Sieve Implementation, Available 

at: http://www.math.ttu.edu/~cmonico/software/ggnfs/ 

[17] Multiprecision Integer and Rational Arithmetic C/C++ Li-

brary, Available at: http://www.shamus.ie/ 

[18] NTL: A Library for doing Number Theory, Available at: 

http://www.shoup.net/ntl/ 

[19] R.P. Brent, “Some integer factorization algorithms using el-

liptic curves”, Australian Computer Science Communica-

tions, Vol. 8, pp. 149-163, 1986. 

[20] Pari/Gp, Available at : http://pari.math.u-bordeaux.fr/ 

[21] Carl Pomerance, “The Quadratic Sieve Factoring Algo-

rithm”, Advances in Cryptology, Proceedings of Eurocrypt 

84, Vol. 209, pp. 169-182, 1985. 

[22] Yet Another Factorization Utility, Available at: 

http://yafu.sourceforge.net/ 

[23] Paul Zimmermann and Bruce Dodson, “20 Years of ECM”, 

Available at: https://hal.inria.fr/inria-00070192v2/document 

[24] CADO-NFS: An Implementation of The Number Field 

Sieve, Available at :http://cado-nfs.gforge.inria.fr 

[25] http://www.loria.fr/~zimmerma/records/top50.html.

 

http://www.springerlink.com/content/978-3-540-16076-2/

