
REZA ALIMORADI AND HAMID REZA ARKIAN: INTEGER FACTORIZATION IMPLEMENTATIONS

DOI: 10.21917/ijct.2016.0192

1310

INTEGER FACTORIZATION IMPLEMENTATIONS

1Reza Alimoradi and 2Hamid Reza Arkian
1Department of Mathematics and Computer Science, Faculty of Science, University of Qom, Iran

E-mail: 1r.alimoradi@qom.ac.ir, alimoradi.r@gmail.com
2Research Center of Developing Advanced Technologies, Iran

E-mail: 2arkian@rcdat.ir

Abstract

One difficult problem of mathematics that forms the basics of some

public key cryptography systems like RSA, is finding factors of big

numbers. To solve this problem, many factorization algorithms have

been offered with different complexities. Many attempts have been made

today to implement these factorization algorithms. And these

implementations are different from various aspects. Each of these

factorization algorithms is efficient for numbers with a specific size.

These algorithms can be compared with regard to time and memory

complexity. In this paper, some of these implementations are studied and

compared and consequently the most appropriate one will be introduced.

Keywords:

Factorization, GMP-ECM, CADO-NFS, NFS, RSA, ECM

1. INTRODUCTION

Public key cryptography based on complexity of hard problem

in mathematics. Security in some current cryptography methods,

like RSA public key cryptography systems, depends on complexity

of factorization of integer numbers to their prime factors. Such

algorithms are widely used in order to maintain security in

networks and exchange data in a confidential and authentic way

through insecure communicational channels. This heightens

competition for a more efficient and beneficial attack at the main

core of this group of algorithms which is complexity of number

factorization. Introduction of new methods and reports of new

developments in number factorization bear evidence to this claim.

The problem of number factorization has many years history. So,

with the passage of time, different algorithms have been

introduced each of which has been variously implemented. In most

of them, the purpose is reaching a more optimal implementation

and a higher speed of factorization. This paper studies some

implementations of factorization algorithms. Factorization

algorithms and their complexity, size of the appropriate numbers

for them, and the records reached by them are included in the

second part of the paper. The third section introduces some

software implementations. The results will follow as the final part.

2. ALGORITHMS

As mentioned before, in number factorization many

algorithms with different features regarding speed and interval of

factorization and different functions have been designed [10];

such as trial division, Pollard, ECM [19], quadratic sieve [5][8],

[21] and number field sieve [7].

2.1 COMPLEXITY

The most important reason for this variety and as a result,

dissatisfaction with the existing algorithms was a decrease in the

algorithms’ complexity in integer numbers' factorization which is

especially important for big numbers. So, as the following Table.1

shows the most significant feature of the more recent algorithms

compared to the old ones is their decreased complexity. Of course,

it must be pointed out that designing a new algorithm does not

necessarily mean the previous algorithms' abandonment. It is

because number factorization algorithms have different functions

and they keep working in other functions or in factorization of

small intervals.

Table.1. Complexity of number factorization algorithms

Name Inventor Date Complexity Depends on

Trial Division - - P ~ N^(1/2) Size of p

Fermat D. Fermat
Circa

1650
N^(1/2) Size of N

SQUFOF D. Shanks 1971 N^(1/4) Size of N

Lehman

(Fermat)
R. Lehman 1974 N^(1/3) Size of N

P-1

P+1

J. Pollard

H. Williams

1974

1982
BlogB

Smoothness

of factor

Pollard's Rho J. Pollard 1975 P^(1/2) Monte carlo

Continued

Fractions

Brillhart,

Morrison
1975

Ln[1/2,

sqrt(2)]
Size of N

ECM H. Lenstra 1987
Ln[1/2,

sqrt(2)]
Size of p

Dixon's J. Dixon 1981
Ln[1/2, 2

sqrt(2)]
Size of N

Quadratic

Sieve
C. Pomerance 1981 Ln[1/2. 1] Size of N

MPQS R. Silverman 1987 Ln[1/2, 1] Size of N

SIQS
P.

Montgomery
1993 Ln[1/2, 1] Size of N

Number Fiels

Sieve(Special

NFS)

J. Pollard
1993

1988

Ln[1/3, 1.92]

Ln[1/3, 1.52]
Size of N

2.2 ALGORITHM INTERVAL

One touchstone for choosing the right algorithm is complexity

of their implementation. For example, implementation of the trial

division and Pollard is very easy. About ECM and the quadratic

sieve, it is hard to reach an implementation with a proper speed.

Likewise, implementation of the number field sieve [6][14] is

very complex. On the other hand, preprocesses needed for some

mailto:r.alimoradi@qom.ac.ir
mailto:arkian@rcdat.ir

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2016, VOLUME: 07, ISSUE: 02

1311

algorithms decrease speed of factorization. Thus, each of them is

highly efficient in a specific interval. With regard to complexity

of factorization algorithms, it is very logical for each of them to

be appropriate for factorization of numbers with specific sizes.

 The ECM algorithm is appropriate for numbers with less

than 30 digits.

 The QS algorithm is the best choice for numbers with

between 30-60 digits.

 The MPQS is most efficient for numbers with between 60-

120 digits.

 The NFS algorithm is proper for numbers with more than

120 digits.

However, improvements of the ECM algorithm and its very

optimal implementation i.e. GMP-ECM, in addition to using

hardware implementations, have all made it possible for the ECM

algorithm to be applied in factorization of numbers as big as 200

bits.

2.3 FACTORIZATION RECORDS

In the area of number factorization, different records have

been gathered/compiled with different purposes. About the

records one must note that:

 All these records are gathered by the public number field

sieve algorithm.

 The sieving stage in this method is very time consuming; in

fact, the whole complexity of the factorization is due to this

stage. Therefore, the current paper focuses on the time

required for this sieving.

 The previous records would compute time based on MIPS

standards i.e. the number of years a computer needed to

factorize a number by performing 1 million directions per

second. But, nowadays, Pentium or AMP processors are

mostly used; and time computations based on the number of

years a Pentium 1GHz processor needs to complete sieving

have been done till now [8].

Table.2. Some factorization records [8]

Number Digits
Date

completed
Sieving time

C158 158 January, 2002 3.4 Pentium 1GHz CPU years

RSA-160 160 March, 2003 2.7 Pentium 1GHz CPU years

RSA-576 174
December,

2003
13.2 Pentium 1GHz CPU years

C176 176 May, 2005 48.6 Pentium 1GHz CPU years

RSA-200 200 May, 2005 121 Pentium 1GHz CPU years

RSA-768 232 Dec, 2009 3300 Opteron 1GHz CPU years

As mentioned earlier and is clear in the above Table.2, to

factorize RSA cryptography systems, number field sieve

algorithm must be used. This is because this algorithm has the sub

exponential complexity [1], [2], [3], [4], [11], [12]. However,

efficient implementation of this algorithm requires great cost and

time [13], [16], [24]. To reduce them, different software

implementations for NFS have been offered; some of which are

introduced below.

3 SOME IMPLEMENTATIONS

There are various implementations in number factorization;

each designed with a specific purpose and includes one or more

instance(s) of number factorization algorithms.

3.1 GMP-ECM

It is a free, open source implementation of ECM method

which is used for number factorization. The main goal of this

project is finding factors with 50 or more digits through the ECM

method. Significance of this method is because it is the fastest one

introduced for factorization of almost less than 200 bits numbers.

It is worth noting that number factorization in small intervals is

not independently important. They are used in algorithms such as

quadratic sieve and number field sieve in which millions of small

numbers get factorized in a big number’s factorization process.

That is why efficiency of small numbers factorization has

attracted much attention and many attempts have been made to

make these factorizations faster. The GMP-ECM library is

considered the fastest and the most authentic existing library in

this field. Experiments already have done bear evidence to this

claim. The experiments have been performed on various number

intervals. In this library, implementations existed in the LiDIA

[15] - a library for working with the elliptic curves, and the

implementations in the NTL library [18] - a library about number

theory - alongside independent implementations.

Table.3. Records of the ECM implementations in our work

Size Bit/Digit
GMP

ECM

LiDIA

ECM

NTL

ECM
Personal ECM

16 /5 <1ms <1ms <1ms NO RESULT

32 / 10 <1ms 0.030 0.030 NO RESULT

50 / 15 0.001 16.540 13.250 0.001

64 / 19 0.01 4647.71 7278.22 0.01

80 / 24 0.028 ~ ~ 0.04

100 / 30 0.188 ~ ~ 0.55

128 / 39 3.112 ~ ~ 4.09

150 / 45 12.86 ~ ~ 14.19

170 / 51 155.26 ~ ~ 173.6

The main problem with using LiDIA and NTL was their

weakness against number factorization of the RSA numbers (the

numbers included two factors of p and q) which made it

practically impossible to factorize these numbers.

Of course, our implementation and the GMP-ECM [7, 23]

have been separately compared. The results are shown in the

Table.3, Fig.1 and Fig.2. It must be noted that these numbers have

specific features; thus, the ECM algorithm will not be able to

factorize every composite number as big as the mentioned

numbers.

http://www.crypto-world.com/announcements/c158.txt
http://www.crypto-world.com/announcements/rsa160.txt
http://www.crypto-world.com/announcements/rsa576.txt
http://www.crypto-world.com/announcements/c176.txt
http://www.crypto-world.com/announcements/rsa200.txt
http://www.crypto-world.com/announcements/rsa768.txt

REZA ALIMORADI AND HAMID REZA ARKIAN: INTEGER FACTORIZATION IMPLEMENTATIONS

1312

Fig.1. A comparison between our implementation of ECM and

GMP-ECM in an interval smaller than 100 bits

Fig.2. A comparison between our implementation of ECM and

GMP-ECM in a 110-140 bits interval

Note: However contrary to Fig.1 and Fig.2, Personal ECM has

proved to be better in specific instances. In fact GMP-ECM is

more efficient most of the times.

In addition to these tests, many records are published by the

GMP-ECM that will come in Table.4.

Table.4. Records of finding the factor by GMP-ECM [25]

Digit Factor From Date Who

69

47494233937696747587

19603217626142542908

10243038880418971061

342256529

2^1822+1
20 Feb

2011
B. Dodson

67 30433922592068709674

82500082233986390424
2^1151+1

06 May

2011
J. Bos, T.

Kleinjung, A.

27895732225880158451

4334307

Lenstra, P.

Montgomery

64

72138209024349633641

51186560559158420921

58633984503832846830

5677

3^634+1
27 Mar

2011
S. Wagstaff

64

30991179455811575174

72560817353548774282

45029953990368874736

6609

2^964+1
04 Apr

2011

J. Bos, T.

Kleinjung, A.

Lenstra, P.

Montgomery

64

29857053402558779743

84457755217875800152

02118215146887548612

1347

2^1051+1
12 May

2011

J. Bos, T.

Kleinjung, A.

Lenstra, P.

Montgomery

63

84441961245219856131

07200800387993419728

11718390811373415844

777

3^723-1
24 Apr

2011
S. Wagstaff

63

76774958718808089124

68227314966416444238

48612695929371145177

219

2^1049+1
10 Mar

2011

J. Bos, T.

Kleinjung, A.

Lenstra, P.

Montgomery

63

11298556375500526398

75262480188694319624

85492728920337098962

673

2^1109+1
21 Mar

2011

J. Bos, T.

Kleinjung, A.

Lenstra, P.

Montgomery

62

55046695546239509301

37560315887597678374

19833205721663507213

91

11^289-1
02 Apr

2011
B. Dodson

3.2 MIRACL

It is a complete package dealing with big numbers. At present,

its 5.5 version is published. It is consisted of a quite complete set

of number factorization algorithms. This package has fine

examples of working with number factorization algorithms.

Unfortunately it has a low speed and cannot be practically used in

big numbers factorization [17].

3.3 PARI/GP

This package is a complete algebraic system whose 2.3.5

versions have been introduced. It includes Pollard, ECM, MPQS

and SQUFOF algorithms. The codes related to small numbers

have been properly implemented. But about the MPQS algorithm,

it is not well developed. So, it is a good package only for numbers

with about 47 digits [20].

3.4 FLINT

It is an algebraic library including trial division, Quadratic

sieve, MPQS and SQUFOF methods. In this library, the focus is

on the logic of polynomials. Nevertheless, its efficiency is limited

to the interval of numbers with about 55 digits.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 56 60 64 72 80 88 100

T
im

e
(s

)

Number of bits

GMP-ECM

Personal-ECM

0

5

10

15

20

25

110 120 128 136 140

T
im

e
(s

)

Number of bits

GMP-ECM

Personal-ECM

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, JUNE 2016, VOLUME: 07, ISSUE: 02

1313

3.5 YAFU

It is an instrument to factorize numbers. Its 1.12 version

includes almost all factorization algorithms except for the number

field sieve. It can properly select the appropriate algorithm in

different intervals. The SIQS method is quite optimally

implemented. This leads to the package’s very high speed in

factorizing numbers with between 50-100 digits [22].

3.6 MSIEVE

It is a complete package of number factorization consisting of

almost all existing algorithms. When the inputs are less than 25

digits, small current routines perform factorization. For bigger

numbers, it applies GMP-ECM library which makes use of p+1

and p-1 and ECM method with an amount chosen by the user. If

all these methods did not lead to the complete factorization of the

input, the library shifts to a stronger method i.e. the quadratic

sieve algorithm with internal primary numbering. Msieve also

includes a complete implementation of the number field sieve

algorithm which can be applied in bigger numbers’ factorization.

At present, it covers numbers with about 275 digits. However,

programmers of the library do not expect the package to perform

a complete factorization of numbers bigger than 120 digits

independently. Notice that it has a low speed in the sieving stage,

in addition to an optimal implementation of choosing the

polynomial stage which is related to the number field sieve

algorithm.

3.7 GGNFS

It is a package specifically focused on the number field sieve

algorithm and offers an appropriate implementation of it. At

present, its 0.77.1 version is available which can be used in

factorization of specific numbers with about 180 digits and

general numbers with an interval of 140 digits. Of course, bigger

numbers have also been factorized with the same quality. But

there are some points about the software which make the bigger

factorizations somehow harder. In other words, for using its

different parts, special techniques are required. Making use of

basic functions of the GMP, ability for parallel running and it’s

very easy application are some other features of this library [16].

3.8 CADO-NFS

It is a complete implementation of the number field sieve

algorithm. Corresponding to different phases of the algorithm, it

has different programs. A script has also been prepared to run

them. In addition, there is the possibility of under-web parallel

running of the computers. Its primary development is based Linux

x86-64 with gcc 4.4 which has been run on the processor Intel.

On other 64-bit systems, it also gets regularly checked.

Nevertheless, there is the possibility of its implementation on

systems other than the main platform. Of course, it may have

some errors too. For instance, it can be run on the 32-bit Linux,

but not on the windows. Anyway, this package is able to compete

with the best implementations available to MPQS (i.e. Msieve, as

is generally agreed) for numbers bigger than 95 digits. According

to its programmers, factorization of a number with120 digits by

this software takes 3 or 4 days on the core of a typical computer.

Factorization of a 140- digits number requires a month on a core.

Also, a 160-digits number needs 6 or 7 months on one core to be

factorized. The integer number entered must not be very small,

i.e. not less than 60 digits (CADO is efficient for numbers with

more than 85 digits) and it is best to remove its small factors [24].

Below is a table of the results of testing these implementations

and the algorithms applied in them.

Table.5. Results of the algorithms [25]

Name 0.02 second 1 second 1 minute 1 hour

Trial

Division
15 18 21 24

Fermat 17 19 23 27

Pollard's

Rho
18 25 33 39

SQUFOF 19 25 32 40

MPQS

32 (YAFU)

33 (FLINT)

26 (Msieve)

50 (YAFU)

52 (FLINT)

54 (Msieve)

68 (YAFU)

70 (FLINT)

71 (Msieve)

80 (FLINT)

92 (Msieve)

SIQS 22 (YAFU) 55 (YAFU) 77 (YAFU) 97 (YAFU)

Number

Fiels Sieve
- - -

98 (GGNFS

+ ms)

MIX

25 (MIRACL)

26 (Msieve)

32 (PARI)

-- (YAFU)

35 (MIRACL)

48 (PARI)

53 (Msieve)

50 (YAFU)

62 (MIRACL)

66 (PARI)

71 (Msieve)

76 (YAFU)

75

(MIRACL)

83 (PARI)

91 (Msieve)

97 (YAFU)

4. CONCLUSION

Existing implementations and algorithms in integer numbers’

factorization have different functions. However, according to the

comparisons, one can conclude that for 200 bits numbers, using

GMP-ECM which is based on the ECM algorithm is very

efficient. Moreover, for extra big numbers, implementation of

CADO-NFS which is based on the NFS algorithm is highly

applicable.

REFERENCES

[1] Aoki Kazumaro, Yujim Kida, Takeshi Shimoyama and Hi-

roki Ueda, “GNFS Factoring Statistics of RSA-100, 110, . .

., 150”, IACR Cryptology ePrint Archive, pp. 1-9, 2004.

[2] Friedrich Bahr, Jens Franke, Thorsten Kleinjung and M.

Bohm, “RSA-640 e-mail Announcement”, 2005.

[3] Friedrich Bahr, Jens Franke, Thorsten Kleinjung, M.

Lochter and M. Böhm, “RSA-160 e-mail Announcement”,

2003.

[4] Friedrich Bahr, Jens Franke, Thorsten Kleinjung, M. Lochter

and M. Böhm, “RSA-200 e-mail Announcement”, 2005.

[5] Henk Boender and Herman Te Riele, “Factoring Integers

with Large-prime Variations of the Quadratic Sieve”, Exper-

imental Mathematics, Vol. 5, No. 4, pp. 257-273, 1996.

REZA ALIMORADI AND HAMID REZA ARKIAN: INTEGER FACTORIZATION IMPLEMENTATIONS

1314

[6] Matthew Briggs, “An Introduction to the General Number

Field Sieve”, Ph.D Dissertation, Department of Mathemat-

ics, Virginia Polytechnic Institute and State University,

1998.

[7] T. Charron, T. Daminelli, T. Granlund, P. Leyland and P.

Zimmermann, “The ECMNET Project”, Available at:

http://mathforum.org/library/view/17102.html.

[8] General Purpose Factoring Records, Available at:

http://www.crypto-world.com/FactorRecords.html.

[9] R.M. Elkenbracht Huizing, “Factoring integers with the

Number Field Sieve”, Ph.D Dissertation, Leiden University,

1997.

[10] Dana A. Jacobsen, “Methods and Implementations for Inte-

ger Factorization”, CS567 Cryptology I, Boise State Univer-

sity, 2009.

[11] James Cowie, Bruce Dodson, R. Marije Elkenbracht Huiz-

ing, Arjen K. Lenstra, Peter L. Montgomery and Jorg Zayer,

“A Worldwide Number Field Sieve Factoring Record on to

512 Bits”, Proceedings of International Conference on the

Theory and Applications of Cryptology and Information, pp.

382-394, 1996.

[12] Jens Franke, “On the factorization of RSA200”, Workshop

on Special Purpose Hardware for Attacking Cryptographic

Systems, 2006.

[13] Per Leslie Jensen, Pgnf, Available at: http://pgnfs.org/

[14] A.K. Lenstra, H.W. Lenstra Jr., M.S. Manasse and J.M. Pol-

lard, “The Number Field Sieve”, Proceedings of the 22nd An-

nual ACM Symposium on Theory of Computing, pp. 564-

572, 1990.

[15] LiDIA: A C++ Library For Computational Number Theory,

Available at: http://www3.cs.stonybrook.edu/~algorith/im-

plement/lidia/implement.shtml

[16] GGNFS - A Number Field Sieve Implementation, Available

at: http://www.math.ttu.edu/~cmonico/software/ggnfs/

[17] Multiprecision Integer and Rational Arithmetic C/C++ Li-

brary, Available at: http://www.shamus.ie/

[18] NTL: A Library for doing Number Theory, Available at:

http://www.shoup.net/ntl/

[19] R.P. Brent, “Some integer factorization algorithms using el-

liptic curves”, Australian Computer Science Communica-

tions, Vol. 8, pp. 149-163, 1986.

[20] Pari/Gp, Available at : http://pari.math.u-bordeaux.fr/

[21] Carl Pomerance, “The Quadratic Sieve Factoring Algo-

rithm”, Advances in Cryptology, Proceedings of Eurocrypt

84, Vol. 209, pp. 169-182, 1985.

[22] Yet Another Factorization Utility, Available at:

http://yafu.sourceforge.net/

[23] Paul Zimmermann and Bruce Dodson, “20 Years of ECM”,

Available at: https://hal.inria.fr/inria-00070192v2/document

[24] CADO-NFS: An Implementation of The Number Field

Sieve, Available at :http://cado-nfs.gforge.inria.fr

[25] http://www.loria.fr/~zimmerma/records/top50.html.

http://www.springerlink.com/content/978-3-540-16076-2/

