
ISSN: 2229-6948(ONLINE)

DOI: 10.21917/ijct.2016.0184
 ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2016, VOLUME: 07, ISSUE: 01

1255

STRENGTHENING ENCRYPTION SECRECY FOR PRIVATE SEARCH USING

FULLY HOMOMORPHIC ENCRYPTION

J. Ramya1 and M. Saravanan2
Department of Computer Science and Engineering, K. Ramakrishnan College of Engineering, India

E-mail: jramyakrce@gmail.com

Department of Computer Science and Engineering, Sri Ramakrishna College of Engineering, India

E-mail: srisaravana.c@gmail.com

Abstract

A system for private searching on streaming data, allows client to send

the encrypted search query to the remote server. The server uses the

encrypted query on a stream of documents and returns the matching

documents to the client without revealing the features of the query. A

novel technique for private searching on streaming data is proposed

which is based on keyword frequency that is the number of times that

a keyword appears in the document is required to be higher or lower

than a given threshold. This form of query searching can help the

client in locating more related documents. Using fully homomorphic

encryption techniques, the server can perform search for retrieving the

related documents even though the search query is in encrypted form.

Our scheme provides number of vital benefits for the client. They

provide provable secrecy for encryption, in the view that the untrusted

server cannot gather any information about the plaintext. They also

reinforce hidden queries, so that the client may ask the remote server

to search for a secret word without revealing the word to the server.

Keywords:

Homomorphic Encryption, Private Searching on Streaming Data,

Trusted Security, Query Search, Efficient Retrieval

1. INTRODUCTION

The objective of encryption is to ensure confidentiality of data

in communication and storage processes. The crucial problem

crop ups when there is a constraint for computing publicly over

untrusted server with private data and while ensuring the privacy.

To evade this situation, the client transmits only an encrypted

version of the data to the untrusted server to process. The server

will perform the computation on this encrypted data without

recognizing anything about its real value. Finally, it will dispatch

the result back to the client, and the client will decrypt it. The

decrypted result will be equal to the expected computed value if

acted upon the original data. This is where Homomorphic

cryptosystems can be used, since this system facilitates

computations on encrypted data.

Ostrovsky and Skeith [3] gave a basic solution for private

searching on streaming data using the concept of public/private

key obfuscation. The basic idea can be briefly explained as

follows,

Consider the public dictionary of possible keywords is D =

{w1, w2…, w|D|}. To search for documents containing one or more

of keywords Kw = {k1, k2…, k|Kw|}  D, the client generates a

public/private key pair and constructs a program P, composed of

an encrypted dictionary (D) from Kw and a buffer B which will

store matching documents. Then the client dispatches the program

P to a public server, where P filters a streaming document and

stores the encryptions of matching documents in the buffer B.

After the buffer B returns, the client decrypts the buffer and

retrieves the matching documents. The searching criterion is kept

classified, because both the keywords and the buffer are in

encrypted form.

Consider a scenario for a cloud service governing electronic

medical records (EMR), where devices continuously collect vital

health information, and stream them to a server who then

computes some statistics and apparently decide on the course of

treatment.

The volume of the data comprised is large and thus the patient

presumably does not want to store and manage all this data in the

neighborhood, she may prefer the assistance of cloud storage and

computation. To protect patient privacy, all the data is uploaded

in encrypted form, and thus the cloud must perform operations on

the encrypted data in order to return encrypted alerts, predictions,

or summaries of the results to the patient.

The existing solutions for private searching on streaming data

have not considered keyword frequency, the number of times that

keyword is used in a document. That is, a novel private query,

which explores for documents based on keyword frequency, such

that a number of times that a keyword appears in a matching

document is required to be higher or lower than a given threshold.

For example, find documents containing keywords {k1, k2, . .

., kn} such that the frequency of the keyword ki in the document is

higher than fti.

2. PRELIMINARIES

2.1 FULLY HOMOMORPHIC ENCRYPTION

ALGORITHM

Dijk et al. [2] proposed the fully Homomorphic encryption

algorithm and explained as follows:

To protect privacy, all the data is uploaded in encrypted form,

and thus the cloud must perform operations on the encrypted data

in order to return encrypted alerts, predictions.

2.2 KeyGen(k)

Takes the security parameter k and outputs a pair of secret key

and public key.

1. Takes the security parameter k.

2. Determines the parameters ƞ, ρ, γ, τ satisfying certain

conditions.

3. Choose a random odd ƞ bit integer p from

4. (2ℤ +1) ∩ (2ƞ-1,2ƞ) as the secret key sk.

J RAMYA AND M SARAVANAN: STRENGTHENING ENCRYPTION SECRECY FOR PRIVATE SEARCH USING FULLY HOMOMORPHIC ENCRYPTION

1256

5. Arbitarily choose q0,q1,…qτ from (1,2γ/p), to the condition

that qi is odd and re-label q0,q1,…qτ so, that q0 is largest.

6. Randomly choose r0,r1,…rτ from ℤ ∩ (2-ρ,2ρ).

7. Calculate x0 = q0p+2r0 and xi = (qip+2ri)% x0

8. The Public Key, pk =<x0,x1,…,xτ>.

Encrypt(pk,m):

Takes input as public key, pk and message to be encoded, m

and returns the cipher texts, c.

1. Choose m as m  {0,1}

2. Choose a random subset S  {1,2,..,τ} and a random

integer r from (2-ρ,2ρ).

3. Generate the cipher texts using Eq.(1),

   


si i xxrmmc 0mod2 (1)

Decrypt(sk,c):

Takes input as secret key and cipher text and returns the

original message m.

   2modmod kscm  (2)

2.3 FULLY HOMOMORPHIC ENCRYPTION

PROPERTIES

Some of the fully Homomorphic encryption properties are

listed below,

In the Goldwasser–Micali cryptosystem [11], add each

component of cipher texts, and the decrypted result is equivalent

to the XORed values of the plaintext.

(x1) + (x2) = (x1  x2).

In the ElGamal cryptosystem, multiply each component of

cipher texts, and the decrypted result is equivalent to the

multiplication of the plaintext values.

(x1) . (x2) = (x1x2).

In Paillier cryptosystem [12], multiply each component of

cipher texts, and the decrypted result is equivalent to the addition

of the plaintext values.

(x1) . (x2) = (x1) + (x2), where x1, x2  {0, 1}.

2.4 BINARY ADDITION

For a positive integer S expressed in binary form where S =

(s1, s2,…, sl). Assume (S1) = ((a1), (a2),…, (al)) and (S2) = ((b1),

(b2),…. (bl)), we can construct (S1+S2) as follows.

Consider (a1, a2, … al) + (b1, b2,… bl) = (d0, d1, d2,… dl) where

d0 is the carry bit. On the basis of binary integer addition [8],

   iiiiii cbabac 1

 ,iiii cbad  (3)

 for i = 1,2,…l, then (d0) = (c0) and S = (S1 ⊞ S2)

2.5 INTEGER COMPARISON

Consider two positive integers S1 and S2. It is possible to

compare by S1 and S2, by calculating the 2’s complement of -S2 as

2S .

If S1 ≥ S2, then MSB of 21 SS  is 0 and 1 otherwise.

We can compare S1 and S2 by computing,

  21 SS  = (s12) + (s22) + 1,…, (s11) + (s21) + 1 + 1,

 =  1S ⊞  2S (4)

3. PROPOSED METHOD

In Fig.1, the client will take a security parameter k and

generates a pair of public and secret keys (pk, sk) by executing

KeyGen(k) function and constructs a program P which holds an

encrypted dictionary (D), an encrypted search query (sq) and the

public key pk. The program P is sent to the server.

The public server takes the stream of documents S, and

searches for the document containing the search query sq, sq  Si.

The server stores up to m encrypted matching document in a

buffer B, and finally outputs an encrypted buffer B to the client.

The client will decrypt the buffer B using secret key sk.

Fig.1. Architecture of private stream searching system

Table.1. Notations

Symbols Explanation

D Dictionary of potential keywords

|D|
Number of potential keywords in

dictionary

Kw Set of keywords

wi
A word present either in dictionary or

document

ki A keyword

S Set of documents in streaming data

B Buffer to store matching documents

C Set of cipher texts

<pk, sk> Public and Secret key pair

⊞ Homomorphic addition of integers

fti Frequency threshold of keyword ki

f(ki)
Frequency of the keyword ki in document

S

Ĉ

Set of common words in the document S

and the dictionary D and their frequencies

in S.

B

Public

Server

S

P P

B S

D

pk

sq

Client

(pk, sk)

Reply

Query

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2016, VOLUME: 07, ISSUE: 01

1257

For set of keywords Kw = {k1, k2,…, k3}, disjunctive threshold

query can be stated as,

(f(k1) ≥ ft1) ∨ (f(k2) ≥ ft2) ∨ ….. ∨ (f(kn) ≥ ftn),

where, f(ki) is the frequency of the keyword ki and fti is the

frequency threshold.

Our scheme for disjunctive threshold query consists of 5

algorithms like Key generation, Keyword frequency construction,

Word collection, Keyword frequency comparison and Buffer

decryption. Our scheme is formally explained as follows,

Key Generation: Client executes this function in fully

Homomorphic encryption algorithm and returns a pair of public

key pk and secret key sk.

Frequency Threshold Construction: This algorithm takes an

encrypted dictionary D, set of keywords Kw and document to be

searched S and outputs ft, which holds frequency threshold for

each word in dictionary.

Assume that the public dictionary D = {w1, w2… w|D|},

Keywords Kw = {k1, k2,…, k|Kw|}  D, p = [log2|S|] where |S|

denotes the maximal number of words in the document S.

Calculate the frequency of each and every word in the dictionary

using Eq.(5),

(D) = {(w1), (w2)… (w|D|)}

where, (wi) = (fti)










Kw

Kkwk
ft

i
p

jij
i

 if12

 iffor thresholdfrequency
 (5)

Because the document S contains at most 2p – 1 words, the

frequency of any word in S is less than 2p – 1. The algorithm for

frequency threshold comparison is explained in Algorithm 1.

Algorithm 1: Frequency Threshold Construction

Name : FrequencyThreshold(D,K,S)

Input : D – set of words in dictionary, Kw – set of

keywords, S – document to be searched

Output : et – encrypted value of frequency

threshold for each word in dictionary

Begin

P = (log(S.length)/log2);

for each word in D as i

for each word in Kw as j

 if(Di == kj)

fti = Compute the frequency of kj;

 else

fti = 2p-1;

for each word in D as i

fti = 2’sComp(fti);

eti = Encrypt(pk,fti);

return et;

End

Word Collection: This function inputs a dictionary D and a

document S and outputs a set of common words in the document

S and the dictionary D and their frequencies in encrypted form,

 Ĉ = {wi, f(wi) | wi∈S ∩ D} (6)

where, f(wi) is the frequency of wi in the document S.

Then the frequencies f(wi) of wi are encrypted. That is, the

encryption of f(wi) = {a1, a2,… al} denoted as,

(f(wi)) = {d(0), (a1), (a2),… (al)}

The algorithm for word collection is explained in Algorithm

2.

Algorithm 2: Word Collection

Name : WordCollection(D,S)

Input : D – set of words in dictionary, S – document

to be searched

Output : Ĉ – Encrypted set of common words in the

document S and the dictionary D and their

frequencies in S.

Begin

for each word in D as i

 for each word in S as j

if(Di == Sj)

 count+=1; /* count calculates the frequency */

 if(count!=0)

Ĉi0 = D[i];

Ĉi1 = count;

 end for

end for

for each word in Ĉ as i

Ĉi1= Encrypt(Hi1)

return Ĉ;

End

Keyword Frequency Comparison: For each word wi in Ĉ, the

system homomorphically compares the frequency (f(wi))and the

frequency threshold  ift .

 (f(wi) + ift = (f(wi)) ⊞ ift

 = ((ci0), (ci1), (ci2),…., (cid)).

From this (ci0) is extracted.

In 2’s Complement system, if ci0 = 0, then f(wi) ≥ fti and

otherwise f(wi) < fti. The encrypted values of ci0 are stored in the

buffer B and is sent to the client.

The algorithm for keyword frequency comparison is explained

in Algorithm 3.

Algorithm 3: Keyword Frequency Comparison

Name : KeywordFrequencyComparison(D,Kw,S)

Input : D – set of words in dictionary, kw – set of

keywords, S – document to be searched

Output : Returns Buffer B

Begin

 et = ThresholdAssignment(D,Kw,S);

Ĉ = WordCollection(D,S);

for each word in Ĉ as i

 for each word in et as j

if(Ĉi == eti)

z = BinaryAddition(Ĉi1,ftj1)

B[flag] = z[1];

 flag++;

end if

end for

J RAMYA AND M SARAVANAN: STRENGTHENING ENCRYPTION SECRECY FOR PRIVATE SEARCH USING FULLY HOMOMORPHIC ENCRYPTION

1258

 end for

return B;

End

Buffer Decryption: The client receives the buffer B from the

server. The encrypted values in B are decrypted using the secret

key sk. It computes the values c, using Eq.(7),

 c ⋁ = Bi  1. (7)

If c value is 0, then the document is the matching document.

Else if nonzero, then the document is not a matching document.

The algorithm for buffer decryption is explained in Algorithm 4.

Algorithm 4: Buffer Decryption

Name : BufferDecryption(B,sk)

Input : B – buffer, sk – secret key

Output : Returns whether S is matching document

or not

Begin

 for each value in B as i

Bi = decrypt(Bi, sk);

c⋁ = Bi ⊕ 1

end for

if (c == 0)

return S is matching document

else

return S is not a matching document

End

4. PERFORMANCE EVALUATION

The client performs only two operations. It can perform

encryption and decryption step. In other words the client needs to

encrypt the frequency of each keyword in the phase of the filter

program generation and to decrypt the buffer B to retrieve the

matching documents after the buffer returns.

Complexity

The computation complexity of the client is O(|Kw|)

encryptions to generate the program P where |Kw| is the total

number of the keywords. To decrypt the buffer B, it holds O(|m|)

decryptions where m is the total number of matching documents.

The server executes two operations. It performs word

collection and frequency comparison steps. Specifically, after

receiving the filter program P, the server processes each

document Si. At Word collection step, consider μ = |Si ∩ D| =

number of common words in both document S and dictionary D.

It takes O(μ) complexity. At Frequency comparison step, it takes

O(μ) complexity. So, The total complexity at server side = O(μ).

4.1 EXPERIMENTAL RESULTS

4.1.1 Encryption and Decryption Algorithm Results:

Key Generation:

Consider the chosen values for the parameters ρ, γ, ρ = 1, γ =

9, τ = 5. The system arbitrarily picks a 4-bit odd integer 13 as a

secret key sk. It randomly choses an odd integer in the range (1,

39) for the parameters q0, q1, q2, q3, q4, q5 and re-label q0, q1, q2,

q3, q4, q5 so, that q0 is largest. Randomly chooses r0, r1, r2, r3, r4,

r5 from the range (-1, 2). Calculates x0 = q0p + 2r0 = ((37*13) +

(2*2)) = 485 and xi = (qip + 2ri) % x0.x1 = ((37*13) + (2*2)) %

485 = 0 and so on. The key generation results are listed in Table.2.

Encryption:

The system has chosen a message to be encoded as 0. It picks

a random subset S as 5 and a random integer r from (-1, 2). It

generates cipher texts using Eq.(1),

c = 0 + 2 * 0 + (0+403+277+247+121) = 1048.

Checks whether the generated cipher text satisfies the

condition, (c % sk) % 2 == m. (1048 % 13) % 2 = 0. The

encryption results are listed in Table.2.

Decryption:

The function decrypts the cipher text using the secret key 13

and returns the decrypted result. The value of the plain text will

be equal to the decrypted result.

4.1.2 Frequency Threshold Computation:

In this algorithm, the frequency of each and every word in the

dictionary is computed. The function takes dictionary D,

keywords Kw which consists of set of keywords that are present in

the dictionary and the document to be searched S holds more

number of words. Consider the partial dataset values for

dictionary D, Keyword Kw and Document to be searched S as,

D = {1100, 0111, 1110, 0011, 1000, 1001, 0001, 0010, 0100,

1111}

K = {1100, 0000, 1110, 1111};

M = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 0000,

0001, 0010, 1000, 1000, 1111, 1111, 0001, 1110, 0000, 1100,

0011, 0011, 1111, 1100, 1110, 0000, 1100}

It computes the frequency threshold, if the word in a

dictionary D contains in keyword Kw (i.e) wi in D  Kw, then the

frequency of the word wi is counted and stores in fti. If not, then

2p-1 value is assigned to the frequency of the word wi.

The word in dictionary w1 = 1101 contains in the keyword. So,

the value of fti = 3 and the word in dictionary w2 = 111 does not

belongs to the word in keyword. So the value of fti = 2p-1 = 5. It

converts the fti values to binary form and calculates the two’s

complement for the number. The resulted two’s complement

values are encrypted in bit by bit fashion. The sample results to

calculate the frequency threshold is listed in Table.3.

Table.2. Encryption and Decryption Results

Key generation

 Chosen values are ƞ = 4, ρ = 1, γ = 9, τ = 5

 Secret Key: 13

 Before Relabeling…

 q[0]:9, q[1]:21, q[2]:37, q[3]:19, q[4]:31, q[5]:37 in the

range (1, 39)

 After Relabeling the parameters, so that q[0] is largest…

 q[0]:37, q[1]:37, q[2]:31, q[3]:21, q[4]:19, q[5]:9 r[0]:2,

r[1]:2, r[2]:0, r[3]:2, r[4]:0, r[5]:2 in the range (-1, 2)

 The Public keys are < 485, 0, 403, 277, 247, 121>

Encryption:

 Assume m = 0

 The Cipher Text is 1048

Decryption:

 m = 0

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2016, VOLUME: 07, ISSUE: 01

1259

4.1.3 Word Collection:

In word collection step, the function collects the set of

common words in both dictionary and document S with their

frequencies. It computes the frequencies (f(wi)) of those common

words in S. It converts the f(wi) values to binary form. The binary

values are encrypted in bit by bit fashion. The function outputs

the words in D ∩ S and their frequencies in encrypted form. The

sample result to collect the common word in S and D and the

calculation of their frequencies as cipher texts are listed in

Table.4.

Table.3. Frequency threshold Computation Results

Word Frequency (ft) -ft (-ft)

1100 11 0101 98,31,237,47

111 11 0101 4,15,98,101

1110 101 1011 234,98,15,47

11 10 0110 15,101,237

1000 101 1011 47,30,234,101

1001 101 1011 15,98,234,47

1 101 1011 31,4,47,237

10 101 1011 234,98,15,47

100 101 1011 101,237,15,234

1111 11 0101 30,101,78,63

Table.4. Word Collection Step Results

Word

in

D∩S

Frequency (f)

1100 11 237,47

111 1 15

1110 10 101,30

11 11 47,679

1000 10 234,98

1 11 234,101

10 10 659,98

100 01 15

1111 11 101,47

1100 11 237,47

4.1.4 Frequency Threshold Comparison:

In this step, the function performs frequency comparison and

returns a buffer B which holds the MSB bits of the compared

results. For each word wi in Ĉ, the function homomorphically

compares the frequency Ĉ = (f(wi)) and the frequency threshold et

=  ift . The system compares for the word 1100, then f(1100)

is 0011 and ft(1100) is 0011. Two’s complement of ft is -ft(1100)

= 0101. The cipher texts generated for these values are (f(1100))

= <4, 30, 234, 101>, (-ft(1100)) = <98, 31, 237, 47> . The function

converts the cipher text values to binary and performs binary

summation. The MSB of the result are stored in the buffer B.

Finally, it returns the buffer B to the client. The result for keyword

frequency comparison is listed in Table.5.

Table.5. Keyword Frequency Comparison Results

f(1100)=0011, t(1100)=0011

(f(1100)) = (0011) = < 4, 30, 234, 101> ,

(-ft(1101)) = (0101) = < 98, 31, 237, 47>

(f(1100))) = < 100, 11110, 11101010, 1100101>

(-ft(1101)) = < 1100010, 11111, 11101101, 101111>

Sum[] = 1100110, 111101, 111010111, 10010100

Add Sum[0] value to the Buffer B

f(111)=0001, t(111)=0011

(f(111)) = (0001) = < 4, 237, 30, 15>,

(-ft(111)) = (0101) = < 4, 15, 98, 101>

(f(111)) = <100, 11101101, 11110, 1111>

(-ft(111)) = <100, 1111, 1100010, 1100101 >

Sum[] = 1000, 11111100, 10000000, 1110100

Add Sum[0] value to the Buffer B

4.1.5 Buffer Decryption:

The client receives the buffer B from the server. The encrypted

values in B are decrypted using the secret key. It computes the

values c0 using Eq.(6).

If c0 value is 0, then the document is the matching document,

otherwise the document is not a matching document. The result

for buffer decryption is listed in Table.6.

Table.6. Buffer Decryption Results

B[0] = 102

Decrypt the value (102) =

(102%7)%2

B1=0

B[1]=8

Decrypt the value(8) =

(8%7)%2

B2=1

B[2] = 501

Decrypt the value(501) =

(501%7)%2

B3=0

B[3]=96

Decrypt the value(96) =

(96%7)%2

B4=1

c0⋁ = Bi⊕ 1

c0=(0 ⊕ 1) ⋁ (1 ⊕ 1) ⋁ (0 ⊕ 1) ⋁ (1 ⊕ 1)

c0=1

As c0 = 1, so the given document m is the matching document

4.1.6 Matching Document Computation Without Encryption:

Consider the function, which performs matching document

computation without encrypting the frequencies and returns a

buffer B which holds the MSB bits of the compared results. For

each word wi in Ĉ, the function homomorphically compares the

frequency Ĉ = f(wi) and the frequency threshold et = ift (wi).

The system compares for the word 1100, then f(1100) is 0011 and

ft(1100) is 0011. Two’s complement of ft is -ft(1100) = 1101. The

function performs binary summation. The MSB of the result are

J RAMYA AND M SARAVANAN: STRENGTHENING ENCRYPTION SECRECY FOR PRIVATE SEARCH USING FULLY HOMOMORPHIC ENCRYPTION

1260

stored in the buffer B. Finally, it returns the buffer B to the client.

The result for keyword frequency comparison without encryption

is listed in Table.7.

Table.7. Matching Document Computation without Encryption

Results

f(1100)=11 ft(1100)=11

Two's Complement of ft=1101

Sum f(1100) + -ft(1100) = 00000

Sum[0] = 0, Add Sum[0] value to the Buffer B

f(111)=11 ft(111)=101

Two's Complement of ft=1011

Sum f(111) + -ft(111) = 11100

Sum[0] = 1, Add Sum[0] value to the Buffer B

f(1110)=10 ft(1110)=10

Two's Complement of ft=1110

Sum f(1110) + -ft(1110) = 00000

Sum[0] = 0, Add Sum[0] value to the Buffer B

f(11)=11 ft(11)=101

Two's Complement of ft=1011

Sum f(11) + -ft(11) = 11110

Sum[0] = 1, Add Sum[0] value to the Buffer B

f(1000)=10 ft(1000)=101

Two's Complement of ft=1011

Sum f(11) + -ft(11) = 11101

Sum[0] = 1, Add Sum[0] value to the Buffer B

Collect all the Buffer value B={0,1,0,1,1}

c0⋁ = Bi⊕ 1

c0=(0 ⊕ 1) ⋁ (1 ⊕ 1) ⋁ (0 ⊕ 1) ⋁ (1 ⊕ 1) ⋁ (1 ⊕ 1)

c0=1

So, The given m is the matching document

The matching document computation is carried out in both

encrypted text and plain text. Thus, using fully Homomorphic

encryption the searching can be performed even in encrypted

domain.

5. CONCLUSION

On the account of the fully Homomorphic encryption

techniques, disjunctive threshold queries based on keyword

frequency has been presented. It has been believed that the

protocols for private threshold queries based on keyword frequency

will be made practical with the performance improvement of fully

homomorphic encryption techniques in the future.

Privacy becomes a major concern and it is securing higher

attention among the users. In cloud computing, it will become

viable only if privacy of users is completely protected. For example,

Google Alerts [15] is a service offered by the Google, the service

sends emails to the user when it finds new results such as web

pages, newspaper articles, or blogs that match the user's search

criteria. In this the search criteria should be kept classified to

Google. This should evade the situation of AOL search data leak

[16].

By this private searching, it is viable for a user to construct a

filter program according to the frequencies of some classified

keywords and submit it to Google, which executes the program

on all latest Web and news pages. The program lists the relevant

pages to the user as its discovery conferring to the search criteria

specified by them. Whereas the program is executed by Google,

the search criteria of the user can be kept confidential to Google.

REFERENCES

[1] Craig Gentry, “Fully Homomorphic Encryption Scheme”,

Ph.D Thesis, Department of Computer Science, Stanford

University, 2009.

[2] Marten Van Dijk, Craig Gentry, Shai Halevi and Vinod

Vaikuntanathan, “Fully Homomorphic Encryption over the

Integers”, Proceedings of 29th Annual International

Conference on the Theory and Applications of

Cryptographic Techniques, Vol. 6110, pp. 24-43, 2010.

[3] Rafail Ostrovsky and William E. Skeith, “Private Searching

on Streaming Data”, Journal of Cryptology, Vol. 20, No. 4,

pp. 397-430, 2007.

[4] John Bethencourt, Dawn Song and Brent Water, “New

Construction and Practical Applications for Private Stream

Searching (Extended Abstract)”, Proceedings of IEEE

Symposium on Security and Privacy, pp. 132-139, 2006.

[5] J. Bethencourt, D. Song and B. Waters, “New Techniques

for Private Stream Searching”, ACM Transactions on

Information and System Security, Vol. 12, No. 3, pp. 1-32,

2009.

[6] N.P. Smart and F. Vercauteren, “Fully Homomorphic

Encryption with Relatively Small Key and Ciphertext

Sizes”, Proceedings of 13th International Conference on

Practice and Theory in Public Key Cryptography, Vol.

6056, pp. 420-443, 2010.

[7] Damien Stehle and Ron Steinfeld, “Faster Fully

Homomorphic Encryption”, Proceedings of 16th

International Conference on the Theory and Application of

Cryptology and Information Security, Vol. 6477, pp. 377-

394, 2010.

[8] David Money Harris, and Sarah L. Harris, “Digital Design

and Computer Architecture”, Morgan Kaufmann, 2007.

[9] Caroline Fontaine and Fabien Galand, “A Survey of

Homomorphic Encryption for Nonspecialists”, Journal of

Information Security, Vol. 1, pp. 41-50, 2009.

[10] Craig Gentry, “Computing Arbitrary Functions of Encrypted

Data”, Communications of the ACM, Vol. 53, No. 3, pp. 97-

105, 2009.

[11] Shafi Goldwasser and Silvio Micali, “Probabilistic

Encryption and How to Play Mental Poker Keeping Secret

all Partial Information”, Proceedings of the 14th Annual

ACM Symposium on Theory of Computing, pp. 365-377,

1982.

[12] Pascal Paillier, “Public Key Cryptosystems Based on

Composite Degree Residuosity Classes”, Proceedings of

International Conference on the Theory and Application of

Cryptographic Techniques, Vol. 1592, pp. 223-238, 1999.

[13] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky and

Giuseppe Persiano, “Public Key Encryption with Keyword

Search”, Proceedings of International Conference on the

Theory and Applications of Cryptographic Techniques, Vol.

3027, pp. 506-522, 2004.

