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Abstract 

Target detection and localization is an active research area due to its 

importance in a wide range of application such as biomedical and 

military applications. In this paper, a novel method for the detection 

and estimation of signal parameters such as range and direction of 

arrival for multiple far- field target using wideband echo chirp signals 

is proposed. Sonar and radar are the active detection systems transmit 

well defined signals into a region of interest. A model preprocessing 

procedure is designed for the echo signal. The parameters estimation 

method for multiple targets is developed based on the Linear Canonical 

transform and the Fast Root MUSIC algorithm which is a high 

resolution DOA estimation method originally proposed for any 

arbitrary arrays to reduce the computational complexity in existing 

systems. The proposed method provides high accuracy of detection and 

resolution even in very low SNR values. 
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1. INTRODUCTION

Accurate localization of multiple targets is one of the fundamental 

and challenging problems in signal processing. Due to its importance 

in a wide range of applications such as military and biomedical 

applications, it provides an active research area. In this paper, the 

problem of localizing multiple far-field targets using radar system is 

addressed. In active radar system, a known waveform is transmitted 

and the signal reflected from the target of interest is used to estimate 

its parameters. Typically, the received signal is modeled as a scaled, 

delayed, and Doppler-shifted version of the transmitted signal. 

Estimation of the time delay and Doppler shift provides information 

about the range and radial velocity of the target [1]. Linearly 

frequency modulated (LFM) signals are often used in active detection 

systems as they provide good target detection sensitivity of low 

Doppler targets while having high range resolution [2]. 

Target range and velocity estimation of moving targets using high 

resolution is a topic of great interest. To achieve this goal, there are 

two problems to be considered. The first problem is how to obtain 

high range resolution. It is known that the range resolution is directly 

proportional to bandwidth of the transmitting signal. So ultra-

wideband signal processing is a well known technique to obtain high 

range resolution. The second problem is how correctly the range and 

velocity of the moving target measure [3]. When the target of interest 

is stationary, its position can be estimated by inverse discrete Fourier 

transform on the received echo signal. However, when the target is 

moving, it is necessary to deal with following difficulties. Firstly, the 

radial velocity of the target may cause range estimate shifted, which 

is called range-Doppler coupling, and both range position and radial 

velocity cannot be correctly retrieved in the received signal. 

Secondly, for high speed target such as airplane or missile, the 

received signal in the form of 2π modulo folding called phase 

wrapping [4]. Fast root-MUSIC algorithm is used to robustly resolve 

both the range-Doppler coupling and the phase wrapping. The radar 

transmits and receives wideband signal with different carrier 

frequencies and the linear canonical transform is operated on every 

pulse train [5].  

Generally the estimation of the direction of arrival (DOA) of a 

target is the classical delay and sum beamforming, but it results in 

low resolution and high side lobe levels. Multiple signal classification 

(MUSIC) and estimation of signal parameters via rotational 

invariance techniques (ESPRIT) provides high resolution DOA 

estimation of multiple targets, but they were only applicable to 

narrowband applications. For wideband signals, DOA estimators 

based on fast root-MUSIC method is used.  

The rotation of the time-frequency plane could be carried out to 

improve the energy concentration of signals which are not sparse in 

either the time or the frequency domain. For analyzing chirp signals, 

Radon ambiguity and Radon-Wigner transforms were useful but they 

suffer from cross-terms and hence high computational complexity. 

The Linear canonical transform which is gaining much attention 

recently is a signal processing tool based on the rotation of the time-

frequency plane [6]. It is a generalization of the Fractional Fourier 

transform and is a representation of signals using an orthonormal 

basis formed by chirps. It is therefore expected that the multiple chirp 

signals can be conveniently separated in a carefully chosen domain. 

In this paper, we propose an efficient method for estimating the 

location and radial velocities of multiple targets from the received 

echo chirp signals and the block diagram is shown in Fig.1.  

Fig.1. The block diagram of the proposed method for 

simultaneously estimating the range, velocity and direction of 

arrival of multiple targets 

A wideband signal is used to transmit the signal in a far field 

area and then a modal preprocessing step is carried out to 

transform the received signals at different modes. By further 

processing the signals at different modes, the parameters of the 

targets are estimated. The properties of the linear canonical 

transform of chirps are used to estimate the range and radial 

velocity of the targets while the DOA of each of the targets can be 

estimated using fast root-MUSIC algorithm.  
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The paper is organized as follows: Radar model of an active 

detection system is described in section 2. The definition of the 

linear canonical transform and the properties are discussed in 

section 3. Section 4 describes how the parameters of the targets 

can be estimated from the signals at the different modes. Section 

5 describes the result obtained in simulation. The final section 

summarizes the main contribution of this paper. 

2. RADAR MODEL  

Radar which is an active detection system transmits a well 

defined signal into a region of interest and by processing the 

echoes reflected from the targets present, detects and estimates the 

signal parameters such as range, velocity and direction of arrival 

[7]. The total number of target in the region of interest be denoted 

by P. At a particular time instance, each of the P targets is located 

at a range Dp at direction up from the transmitter and each of them 

moves with an independent constant velocity VTp. 

Let the transmitted signal be s(t). Following the slowly 

fluctuating transmitted signal and assuming that the targets are 

located in the far field, the received signal at the antenna at time 

can be written as, 

      tntStx q

P

p

pqppq 
1

  (1) 

where, γp is the range dependent attenuation factor in the 

propagation path to and back from the p
th

 target, τpq=hq.up/c is the 

propagation delay of the received signal from the p
th

 target with c 

being the speed of signal propagation.                                                                          

3. LINEAR CANONICAL TRANSFROM(LCT) 

The linear canonical transform (LCT) is a much more general 

integral transform which has the Fourier transform, Fractional 

Fourier transform, Fresnel transform etc as its special cases. As it 

is well known that fractional Fourier transform is the powerful 

mathematical tool and is widely used for spectral analysis, signal 

processing, optical system analysis etc., the LCT which is the 

generalization of FrFT has obviously more ability and potential 

due to its four parameters (a, b, c, d) which has the ability to 

change the values based on the need. 

The LCT of a signal x(t) is defined as,  
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where, a, b, c, d are the real numbers and satisfying ad-bc = 1. It 

is easy to verify that the classical FT, FrFT, the chirp operation 

and the scaling operation are all the special cases of the LCT as 

shown in the following: 

1) When (a, b, c, d) = (0, 1, -1, 0), the LCT becomes the FT: 

 
         utfFTjutfL  0,1,1,0

 (3) 

2) When (a, b, c, d) = (cosθ, sinθ, -sinθ, -cosθ), the LCT 

becomes FrFT: 

         tfFeutfL j   cos,sin,sin,cos  (4) 

3) When (a, b, c, d) = (1, 0, τ, 1), the LCT becomes the chirp 

operation: 

        ufeutfL

uj

21,,0,1

2
   (5) 

4) When (a, b, c, d) = (σ, 0, 0, σ-1), the LCT becomes the 

scaling operation: 

 
         ufutfL 11,0,0, 1   

 (6) 

It shows that the LCT is one of the most important non 

stationary signal processing tools applicable in many areas. It can 

be seen that the magnitude of the LCT of the delayed signal is a 

delayed version of the magnitude LCT of the original signal, and 

the delay observed in the LCT is linearly proportional to τ. 

Therefore, the LCT would be powerful signal processing tool to 

estimate the time of arrival of signals at the receiving end. 

It not only handles a much more general family of integrals, 

but also effectively addresses certain difficulties, limitation and 

trade off during the separation of overlapped signal. Hence, 

applications benefiting from the LCT require minimal additional 

implementation cost compared to FrFT. 

Separation of the individual LFM signals [8] from the 

composite signal is a three stage process: 

1) LCT is performed on the composite signal transforming 

the overlapping LFM signals in the time domain into 

separable pulses in the fractional domain. 

2) The individual pulses are identified and windowed creating 

multiple signals each containing one pulse. 

3) The signals containing the windowed pulses are restored to 

the time domain using LCT and thus the individual LFM 

signals are separated. 

The Fig.2 illustrates the signal flow diagram for separation of 

temporally overlapping LFM signal using the LCT. The optimum 

transform order αopt can be defined as  

    aopt 21tan2 1   (7) 

where, a = B/T is the chirp rate, B is the bandwidth in Hertz and T 

is the total signal duration in seconds. It should be noted that 

calculation of αopt only requires knowledge of the chirp rate, a 

known excitaion parameter. 

 

Fig.2. Signal flow diagram for seperation of temprorally 

overlapping LFM signals using theLCT 
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4. OBSERVABLE TARGET PARAMETERS   

In this section, we describe how the parameters (range, radial 

velocity and DOA) of the targets present can be estimated from 

the received signals. The radar is used to detect objects in the 

observation area and to retrieve the objects. The waveform plays 

an important role in the ability of the radar to detect objects and 

measure their parameters. For detection and measurements the 

radar transmits the waveform and interprets the objects 

backscattered echo signals. The signals at different modes can be 

written as,  

 Z(ω) = AS(ω) + N(ω) (8) 

where, N(ω) is the noise at the different modes. These signals at 

the different modes are in a form that can be further processed for 

multiple target detection and localization. The proposed 

parameter estimation method is developed based on the properties 

of the linear canonical transform of chirps and fast root-MUSIC, 

which provides high resolution DOA estimation of signals 

received at arbitrary array. 

4.1 TARGET RANGE 

The target range parameter R refers to the distance between 

the radar antenna and the target [9]. The target range is 

proportional to the time τ it takes the signal to travel from the 

radar transmitter to the reflecting target and back to the radar 

receiver: 

 R = (c.τ)/2 (9) 

where, c is the speed of light. 

4.2 TARGET VELOCITY 

The relative radial velocity vr between the target and radar is 

determined by the frequency of a received sound wave is changed 

depending on the relative velocity between transmitter and 

receiver called Doppler Effect [10]. It is caused by the continuous 

change of distance between the radar and the target that squeezes 

or expands the received signal in time. Assuming a target at initial 

range R0 with constant radial velocity vr, the received signal r(t) is 

delayed by the time dependent signal propagation delay τ(t) ≈ 

[2(R0 + vrt)]/c. in the case of a transmit signal s(t) being a 

harmonic oscillation with frequency fc, the Doppler shift of the 

received oscillation can be determined as,  

 s(t) = sin(2πfct) (10) 
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The middle term of the sine function argument contains the 

Doppler frequency shift: 
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where, λ is the signal’s wavelength. Only the radial component of 

the relative target velocity has an impact on the Doppler 

frequency. 

A linear chirp pulse is transmitted isotropically and the echoes 

reflected from the independent and distinct targets in vicinity are 

processed to estimate their positions and velocities. The reflected 

signal from the target is defined as, 

 Sp(t) = S(pt-p) (14) 

where, τp = 2Dp/c is   the delay parameter of the p
th

 target and   σp 

= 1+2vp/c is the time compression/stretching parameter of the p
th

 

target. It is a scaled and delayed version of the original 

transmitted signal, associated with the p
th

 target as seen at the 

origin of receiver end. 

The received signal at each mode is a summation of the 

signals associated with each target multiplied by a complex 

exponential term dependent on the mode number and DOA of the 

target. The magnitude of the LCT of a received echo chirp signal 

has a mainlobe with a width and center dependent on the delay 

parameter τ and the compression/stretching parameter σ 

associated with the range and velocity of the target reflecting the 

signal [11]. Therefore, by estimating the locations and widths of 

the peaks detected in the magnitude of the received signal, the 

range and radial velocity of each target from the origin of the 

receiving end can be estimated. 

4.3 DIRECTION OF ARRIVAL (DOA) ESTIMATION 

Direction of arrival estimation is an important algorithm in 

array processing. Most traditional DOA estimation methods focus 

on narrow band sources. Wideband DOA estimation, echo gain at 

each direction is calculated based on group delay compensation. 

Estimation methods such as maximum likelihood (ML), multiple 

signal classification (MUSIC) [12] and ESPRIT [13] are based on 

narrowband model which provides low resolution. In this section, 

a DOA estimation method based on fast root-MUSIC for 

wideband signal which provides high resolution estimation using 

linear canonical transform which has the capability of separating 

chirp signals for arbitrary arrays. 

Consider an array of N antenna element operating in the 

presence of M uncorrelated wideband sources. By using manifold 

separation technique (MST) [14], the manifold vector S(r, θ) can 

be written as, 

         drGrS ,  (15) 

where, the matrix G(r) depends on array geometry only. The 

Vandermonde structured vector d() is a function of direction of 

arrival (DOA) only, defined as, 
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where, z = e
-j 

and θ is the DOA. The modeling error  can be 

safely neglected, provided that q is a sufficiently large number. A 

polynomial is constructed as follows:  
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Taking into account the Hermitian property, one obtains
*

ii bb  where, (.)* represents complex conjugate operation. This 

implies that f(z) is a Laurent polynomial. Also f(z) is non-negative 

because     0,
2
 rSEzf H

n , where, . denotes the Euclidean 

norm of a vector, then f(z) can be factorized as, 
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      **
111 1 zfzfczf   (18) 

where, c1 is a positive constant. The roots of f(z) appear in 

conjugate reciprocal pairs, i.e. if z1 is a root of f(z), then (
1

1
z )* is 

also a root. This property suggests that computing half of the 

roots (i.e. roots of f1 (z)) is sufficient to find the roots of interest. 

A fast spectral factorization method based on the Schur algorithm 

is applied, which can be implemented in the following steps: 

1) Initialize a (Q × 2) matrix B0 as, 

   0k for
bbb

bbb
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2) For k = 1, 2. Until convergence, iterate the following steps: 

a) Bk = Bk-1Uk, where Uk is a (2 × 2) matrix defined as, 

 
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with    
1,112,11  kk BB ,i.e. the ratio of the two 

entries of the first row of Bk-1. 

b) Shift up the second column of Bk by one element 

while keeping the first column unaltered 

c) Test for convergence 1,1,1  kk bb < threshold, 

where, b1,k and b1,k-1 denote the first column of Bk and 

Bk-1, respectively. If converged, go to step(3), else 

return to step 2a. 

3) The coefficient of f1(z) are
*
,1 kb . 

Now the polynomial factor f1(z) which has all its roots on or 

inside the unit circle, is obtained. To find the roots one can construct 

an unsymmetric companion matrix M the Eigenvalues of which 

correspond to the roots of f1(z). Because the Eigenvalues of interest 

must be the largest ones, one can make use of the Arnoldi iteration to 

calculate only the M largest Eigenvalues. 

The fast root-MUSIC algorithm for arbitrary arrays can be 

accomplished via the following steps: 

1) Compute the sampling matrix G(r). 

2) Form the received data covariance matrix and perform 

Eigen value decomposition. 

3) Perform fast spectral factorization on f(z) via the Schur 

algorithm to obtain the polynomial factor f1(z) and the 

companion matrix M. 

4) Apply the Arnoldi iteration method to calculate the M 

largest Eigenvalues of M, then DOAs can be estimated by 

the phase angles of these Eigenvalues. 

Rather than computing all the roots as in the conventional 

approaches, the proposed fast root-MUSIC algorithm computes only 

the roots of interest (those corresponding to the true DOAs). 

5. RESULTS AND DISCUSSION 

In order to verify the results in this article and show the 

advantage of the LCT in the signal detection, the simulations are 

performed in this section. From these simulations, it is easy to see 

that the LCT has a better performance in detections of the target 

than the traditional one. The performance metric used is the root 

mean square error for each parameter estimated for each of the P 

targets, which is defined as, 

 




M

m

p
m
pp

M
RMS

1

21



 (21) 

where, µp and p̂  are the true and estimated parameter of the P
th

 

target in the m
th

 run and M is the total number of Monte Carlo 

runs. The parameters µ tested are the range D, radial velocity v 

and DOA p̂ . Therefore, in our simulations here, the 

performance of the proposed estimation is compared with the 

fractional Fourier transform based method for single or multiple 

sources. 

5.1 SINGLE TARGET 

The capability of estimating the root mean square error (RMS) 

for single target is shown in Figs.3, 4 and 5. It can be seen that 

using the proposed method, all the parameters of the target can be 

estimated with acceptable accuracy even at low SNR values. 

In Fig.3, estimation of range for single target is compared with 

existing algorithm. The RMS error of single target is maintained 

constant at around 3 dB. 

 

Fig.3. The RMS range error for single targets over different SNR 

values 

The Fig.4 shows the estimation of velocity for single target 

having different SNR values. The proposed method reduces the 

RMS error by 0.04 dB and maintained constant at 13 dB SNR 

value.  

Besides that, the proposed algorithm is computationally less 

complex than the existing algorithm as it does not involve a 

search over a range of transform angles to estimate the range and 

velocity of the target.   

The root- MUSIC based DOA estimation method has similar 

performance to the proposed method in high SNR cases (>15 dB). 

However, its error increases more rapidly compared to the 

proposed method when the SNR value decreases. 

 



ISSN: 2229-6948(ONLINE)                                                                             ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2014, VOLUME: 05, ISSUE: 04 

1043 

 

Fig.4. The RMS velocity error for single targets over different 

SNR values 

The Fig.5 demonstrate the estimation of direction of arrival for 

single target. 

 

Fig.5. The DOA error of two closely spaced targets over different 

SNR values 

5.2 TWO CLOSELY SPACED TARGET 

The capabilities of the proposed method in separating two 

closely spaced targets are then examined. In the Cartesian co-

ordinates, the target is originally located at [100, 100] km and the 

RMS error for range of the proposed method is shown in Fig.6. 

 

Fig.6. The RMS range error of two targets over different SNR 

values 

Here improvement in RMS error in a range of about 2 dB. 

However it shows the capability for estimating even in low SNR 

values below -10 dB.  

 

Fig.7. The RMS range error of two closely spaced targets over 

different SNR values 

In Fig.7, the velocity error of closely spaced target is 

estimated. It can be shown that using the proposed method, all the 

parameters of the target can be estimated with acceptable 

accuracy even at low SNR values. The DOA of each of the two 

targets over a range of SNR values are shown in Fig.8.  
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Fig.8. The RMS DOA error of two closely spaced targets over 

different SNR values 

It can be produce the result even at low SNR values below    -

10 dB. By using the proposed method, the RMS errors of the 

estimated range and DOA are clearly determined. 

5.3 P>2 TARGET 

The RMS performance curves of the proposed method in 

estimating the parameters of a number of P > 2 targets is similar 

to that shown for a single and two closely spaced targets. The 

error for each of the target is shown in Fig.9. 

 

Fig.9. The RMS DOA error of three targets over different SNR 

values 

There is no limit on the number of targets detectable as long as 

the signals associated with each independent target is separable in the 

Linear canonical transform domain of the transmitted signal. 

6. CONCLUSION 

In this paper, the multiple target localization based on linear 

canonical transform is presented. It is especially applicable in fast, 

time-varying environments, where multiple targets maneuver 

quickly and randomly. A modal preprocessing technique allows 

fast direction of arrival estimation designed for arbitrary 

configurations. It can be shown that the proposed method 

outperforms both the conventional FrFT and root-MUSIC 

technique. Simulation result showing the accuracy of the 

proposed analysis is presented. 
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