
ISSN: 2229-6948(ONLINE)

DOI: 10.21917/ijct.2014.0140
ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: 03

977

AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION

ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

Latha Sahukar
1
 and M. Madhavi Latha

2

1
Department of Electronics and Communication Engineering, Aurora’s Technological and Research Institute, India

E-mail: lathasahukar@gmail.com
2
Department of Electronics and Communication Engineering, JNTUH College of Engineering Hyderabad, India

E-mail: mlmakkena@yahoo.com

Abstract

The modern software defined radios (SDRs) use complex signal

processing algorithms to realize efficient wireless communication

schemes. Several such algorithms require a specific symbol to

sample ratio to be maintained. In this context the fractional rate

converter (FRC) becomes a crucial block in the receiver part of

SDR. The paper presents an area optimized dynamic FRC block,

for low power SDR applications. The limitations of conventional

cascaded interpolator and decimator architecture for FRC are also

presented. Extending the SINC function interpolation based

architecture; towards high area optimization and providing run

time configuration with time register are presented. The area and

speed analysis are carried with Xilinx FPGA synthesis tools. Only

15% area occupancy with maximum clock speed of 133 MHz are

reported on Spartan-6 Lx45 Field Programmable Gate Array

(FPGA).

Keywords:

Decimation, Interpolation, Sample Rate Conversion, Fractional

Rate Conversion

1. INTRODUCTION

1.1 SAMPLE RATE CONVERSION (SRC)

The sample rate conversion (SRC) block in a digital signal

processing (DSP) system computes the samples at a new rate

using the samples available at different sampling rate. The

SRC blocks, used in several applications include the

following.

 Immediately after the Analog to Digital Converter (ADC)

to reduce the sampling rate as per the bandwidth

 Just before the Digital to Analog Converter (DAC) to

increase the sampling rate to match the DAC

specifications

 In demodulators to achieve fixed samples per symbol

 In multi-rate filters

The software defined radio (SDR) uses reconfigurable

architecture to adopt different modulation or demodulation

schemes with dynamically selectable parameters [1], [9] such

as carrier frequency, bandwidth, channel coding etc. As the

SDRs are required to provide high level flexibility to handle

bandwidths and modulation schemes, the SRC become

crucial block. The filtering tasks and control logic that are

required to deliver a high-performance and flexible up-

conversion system that is typically required at the physical

layer in a modern adhoc networks is given in [1].

The SRC can be achieved by either time domain and

frequency domain techniques. The core benefits of frequency

domain SRC are described for wide band applications in [2]. In

recent days the research towards power and speed optimized

SRC implementation is gaining importance. The architectures

presented in [3] utilize the Farrow based finite impulse

response (FIR) filters with parallel hardware approach for high

speed and increased throughput for SDR applications.

The work given in [4] presents Design Approach of Low

Power VLSI using Multirate digital signal processing system

which includes sampling rate conversion. However only the

context of integer rate conversion are discussed here.

In paper [5] properties of the SRC algorithm based on

fractional delay (FD) filters have been presented. The

dissimilarities of different methods of the FD filter design

have been analyzed using the overall filter or the overall

window. Based on the observed properties the classification

of FD filter design methods into three categories have been

proposed; optimal fractional filter design, offset window

method and polyphase decomposition.

A parallel processing SRC structure is proposed in [6] to

achieve high speed data transmission for multiband OFDM

based SDR systems. The proposed technique derives an

impulse response matrix from the sequential SRC structure,

which in turn is calculated from a block of input samples

which has less complexity than conventional Farrow structure.

The optimum and minimum order structures is proposed in

[7] for sampling rate conversion from 44.1 KHz compact disc

(CD) to 48 KHz digital audio tape (DAT). The proposed

techniques apply multistage up-sampling and down-sampling

technique to obtain the optimum or minimum order

configurations.

Towards the high speed SRC systems the Cascaded

Integrator and comb filters become more suitable option due

to the requirement of only addition being carried out in the

higher clock domain. The work given in [8] utilizes signed

digit (SD) algorithm to incorporate the key features of the

conventional number system with a signed digit (SD) to

improve the addition time with high power constraints in an

optimized fashion. A sharpening polynomial to improve the

stop-band characteristic and the grading technique

compensated for the pass-band characteristic in the CIC

integer rate conversion architecture is used in [9].

However this architecture cannot handle fractional rate

conversion requirements hence shall result in limited

configurability in SDR based architectures.

The applications of SRC are spread across communication,

DSP, RADAR, SONAR and audio applications [10]. Most of

mailto:lathasahukar@gmail.com
mailto:mlmakkena@yahoo.com
mailto:mlmakkena@yahoo.com

LATHA SAHUKAR AND M MADHAVI LATHA: AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

978

the algorithms used in these applications use multi-rate signal

processing techniques. As the efficient implementation of

multi rate systems on FPGA heavily depends on architecture

level optimization of SRC modules [11], the present work is

useful in majority of these applications. The work presented

in this paper proposes an area efficient fractional sample rate

conversion (FRC) scheme which finds potential applications

in different communication applications.

1.2 FREQUENCY DOMAIN TECHNIQUES AND

FRACTION DELAY FILTERS

The basic frequency domain based SRC [12] scheme uses

Fast Fourier Transform (FFT) and Inverse Fast Fourier

Transform (IFFT) blocks. The advantage of achieving the

frequency shift property with rotation of FFT bin values is

presented in [2] for addressing wide band signal handling

challenges. The conventional complex NCO multiplication is

achieved with direct spectrum rotation and various

possibilities for frequency domain filtering are discussed.

Fig.1. Block diagram of frequency domain SRC

The overlap and add method at the output of IFFT is

employed to reconstruct the time domain signal. The Fig.1

shows the high level block diagram of SRC module of

architecture implemented in [2].

This technique for fractional sample rate conversion based

on an iterative sinc method is given in [13]. The proposed

algorithm is evaluated against the Farrow resampler, and

performance simulation targeting different signal-to-noise

ratios. The architecture is implemented in 65 nm CMOS

technology, and synthesis results claim that the ISRC requires

at least 23% less silicon area, compared to a Farrow filter

with similar performance.

As described in [14] the coherent resampling (CR)

algorithm can greatly reduce the DFT leakage as well as the

errors of DFT-based measurements. This technique can also

improve the accuracy of frequency estimation systems. The

algorithm uses extended Kalman filter for instantaneous

frequency tracking and fractional B-spline resampler for

signal approximation. The CR algorithm is a software counter

part of synchronous sampling, i.e., sampling, synchronized

with fundamental frequency of the signal.

The OFDM signaling, resampling for time-scaling

compensation is investigated and shown to be a reduced-rank

signal processing strategy in [15], for multiscale–multilag

signals occurring in underwater acoustic communications.

The architecture presented in [16] allows the same RF

front end and digitization to be used for many waveforms and

symbol rates, but requires the demodulator to generate

symbol based samples from the asynchronous input samples.

A method for jointly removing timing delay and timing drift

is also proposed.

A variable fractional delay (VFD) filter is widely used in

applications such as symbol timing recovery [17], arbitrary

sampling rate conversion and echo cancellation.

The interpolator and control mechanism that maintains the

proper interpolation ratio through the range of frequency

tolerance and slow drift of the input and output sampling

clocks is given in [18].

The design of batch and streaming resamplers with

arbitrary sample rate change, prescribed accuracy and known

exact delay are described in [19]. The main concern is in

applying these resamplers in digital radar systems to provide

exact delay through the resampler implementation.

Section 2 details the issues in handling fractional rate

conversion by conventional cascaded interpolation and

decimation stages. It also illustrates the high level block

diagram of typical integer rate conversion modules of any

DSP system. Section 3 explains the principle of fractional

rate conversion using sinc based virtual DAC and ADC

method. Section 4 provides the architecture details and

optimization techniques for FPGA implementation of

proposed FRC. Section 5 has the simulation, synthesis and

onchip verification results. Section 6 concludes the work.

2. INTEGER RATE CONVERSION (IRC)

AND FRACTIONAL RATE CONVERSION

(FRC)

2.1 INTEGER RATE CONVERSION

ARCHITECTURES

The SRC architectures for decimation or interpolation by

integer factor are realized with digital filters in combination

with the multi clock domain register blocks. These blocks

become directly suitable for streaming purpose applications

as they maintain samples guaranteed in real time for next

blocks in signal processing chain. For example in a decimator

block with decimation by integer value D, the output gets one

sample for every D clock cycles with respect to the input

clock period. Similarly for integer interpolator, for every

input sample, (I−1) additional samples are filled-in within

each clock period.

The Fig.2 has the block diagrams for decimation and

interpolation SRC blocks. The functional block diagrams

illustrate that both these SRC architectures involve low pass

filters. However there are several area and speed optimized

architectures for efficient implementation of these blocks on

FPGAs/ASICs, which are not discussed here.

The decimator block filters the inputs signal by fs/D cutoff

frequency and then selects one sample for every D samples.

The filter ensures that the (D–1) fs/D to fs band is attenuated

to the stop band attenuation level, so that it doesn’t introduce

distortion when it gets aliased to the 0 to fs/D band after

decimation. Similarly the Interpolator block need to filter out

the images of the signal after adding the I−1 zeros in between

X(k)

k Zero

padding

N+P-1 point

FFT x[n]

PING

PONG

buffer

Variable IFFT

with maximum

N+P-1

Overlap and

add x1[n]

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: 03

979

the original input samples. It is to be noted that the required

filtering in both types of SRC are finite impulse response

(FIR) type filters. Hence the choice of higher filter order and

higher word lengths allows ideal characteristics for resulting

SRC implementation.

Let x(n) be input signal with impulse response h(n), the

frequency domain equivalent of decimated output, is, thus,

equal to the sum of the down sampled and the aliased

components, divided by the decimation factor.

 V(k) = X(k)H(k) k = 0,1,…N-1 (1)

   1...2101
1

0









 



 D

N
,,k

D

Ni
kvDkY

D

i
 (2)

Here, V(k) and Y(k) are considered as the filtered and

decimated outputs in frequency domain and D as the

decimation factor.

Interpolation process contains insertion of (I−1) zeros

between successive samples of input signal and filtering with

impulse response h(n) for an interpolation factor of I. In

frequency domain the same can be denoted as below.

 V(Wy) = X(IWy) (3)

 Y(Wy) = V(Wy)H(Wy) (4)

where, ωx and ωy are the continuous frequency variables of

x(n) and y(n) respectively. If the frequency variable ωx varies

from 0 to 2π/I, then ωy varies from 0 to 2π. The spectrum

V(ωy) contains (I−1) images of spectrum X(ωx) along with

actual spectrum of x(n). In general, this can be expressed

  kX
I

iN
kV 








 (5)

where, k = 0,1,..N/I -1 and i = 0, 1, 2,…I–1.

The discrete equivalent of filtered output spectrum is simply

obtained by multiplying this spectrum with that of H(ωy).

 Y(k) = V(k)H(k) (6)

where, k = 0 to N − 1.

Fig.2(a)

Fig.2(b)

Fig.2. Generalized rate conversion architectures for

(a). Decimation, (b). Interpolation

In Fig.2(a) the digital clock manager (DCM) generates the

decimated clock, which has output clock period equal to D

times input clock’s period. The input sample is registered by

the input register on rising edge of input clock. The anti-

aliasing filter performs low pass filtering as explain above.

The filtered output is registered with respect to output clock.

In Fig.2(b) the DCM generates interpolated clock, with

output clock frequency equals to I times of input clock

frequency. In other words the clock period gets reduced by

factor of I from input to output. The input register loads the

value on rising edge of input clock. Since in one cycle interval

of input clock the output clock makes I number of cycles. The

input register holds same value for I number of output clock

periods. The Mod-I counter runs as per output clock and

generates count value between 0 to I−1. As a result, the

multiplexer output generates a signal pattern with I-1 zeros

inserted between each two adjacent input samples. The anti

imaging filter produces output at output clock rate. The output

register loads the filter output on rising edge of output clock.

2.2 LIMITATIONS OF CASCADED I AND D

STAGES

To achieve a fractional rate conversion (FRC) one

approach could be to implement the required fraction with

cascaded I and D stages.

Fig.3(a)

Fig.3(b)

Fig.3. Two possible schemes of cascaded interpolator with

I = 3 and decimator D = 4 stages

The Fig.3(a) shows the cascaded interpolator followed by

decimator to achieve FRC of 0.75. The Fig.3(b) shows other

possible combination decimator followed by interpolator.

The resulting sampling rates in both cases are indicated. It

is to be observed that in case of Fig.3(a), the sampling rate at

the output of interpolator stage is I times that of input

sampling rate Fsin. Hence the decimator stage must be able to

handle the sample coming at this higher sampling rate. In

situation where higher precision SRC is required in the

required fraction I/D, both the I and D value will be higher.

Then realizing the I stage with such large I value becomes

practically impossible.

Where, as in Fig.3(b), the sampling rate at the output of D

stage is only
D

SinF
, this can be easily handled by I stage.

However this approach has got major drawback that the

D I

 D = 4 I = 3

D

SinF

Fsin D

SinFI.

I D

 I = 3 D = 4

D

SinFI.

Fsin I.Fsin

DCM

× I

D Q

Input

samples

Input clock

D Q

Counter

Mod I

Anti-

Imaging

filter

0,1,2..

I-1

0

I-1

DCM

÷ D

Anti-

Aliasing

filter

D Q Input

samples

Input clock

D Q

LATHA SAHUKAR AND M MADHAVI LATHA: AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

980

information bandwidth is only preserved up to
D

SinF

2
 after

decimation stage. Even after interpolation the sampling clock

increases to
D

SinFI.
 but the information bandwidth remains

same. Hence this scheme is suitable only if the maximum

information bandwidth requirement is less than this value.

The role of filter in the efficient sampling rate converter is

twofold: it acts as the anti-imaging filter HI(z), and also as the

anti-aliasing filter HD(z). For the adequate removal of images,

the stop-band edge frequency of the low-pass filter must be

below π/L, and avoiding of aliasing requires the stop-band

edge below π/M. The stop-band edge frequency at ωs, which

is given by,

 









DI
sW


,min (7)

Choosing ωs according to Eq.(7) ensures the elimination

of imaging which appears in interpolation, and at the same

time ensures the suppression of aliasing that may be caused

by decimation. Hence, the ideal specifications for the

magnitude response of filter are given by,



























otherwise

DI
wLjweH

,0

,min,


 (8)

It is important to observe that for a large L or M, filters

with very narrow pass bands are required.

 However here an asynchronous memory based FIFO

would be required to read the samples at the required output

sampling rate. Based on these limitations, it can be concluded

that the cascaded I and D architecture based SRC cannot suit

for high precision FRC.

2.3 RATE CONVERSION SEEN AS

INTERPOLATION PROBLEM (FOR FRC)

Instead of treating the FRC as low pass filtering problem, it can be

attempted as interpolation problem. The input samples are treated as

sample values available at Ts intervals of time, and based on the required

FRC, the new sample values will be computed with interpolation. The

interpolation method for a given signal x(t) is illustrated in Fig.4.

Interpolator computes the new sample values y(l) at arbitrary

points tl = (nl + µl)Tin. The output sample time is determined by the

fractional interval or delay µl € [0 1) and the integer index nl. The lth

output sample y(l) = ya(tl) as tl = (nl+µl)Tin. The interpolation filter

calculates the y(l) according to the convolution after knowing nl and

µl parameters as given in Eq.(9).

      lkh

N

Nk

klnxly ,

1
2

2







 (9)

where, N is the length and h(k, µl) is the impulse response of the

interpolation filter.

Fig.4(a)

Fig.4(b)

Fig.4(a). input and outputs of interpolator, (b) Interpolation in

time domain, computing y(l) from x(n)

For the interpretation of convolution sum, first we have to

find the existing sample preceding the new sample instant tl,

denoted by nl. Based on the location of this sample, existing

samples located at n = nl−N/2+1, nl−N/2+2,···, nl+N/2 are

used. Second, the distance between tl and nl. Tin is measured

as a fraction of Tin, giving the fractional interval µl. The

coefficient values for the above convolution are determined

by using µl.

Interpolation filters can be designed using many types of

mathematical functions, among which polynomials are most

efficient technique for hardware implementation. Simplest

polynomial interpolation is linear interpolation which has the

degree of one and interpolates between two samples and filter

has two coefficients for this interpolation. The popularly used

interpolation techniques are listed below.

 Linear interpolator

 Cubic interpoloator

 Sinc interpolator

Linear interpolator equation can be written as given in Eq.(10).

 y[l] = x[mk+1]k+x[mk](1-k) (10)

Linear interpolator can be considered as a filter with 2

coefficients µk and µk+1.

In cubic interpolator the y[k] is evaluated using nested

evaluation. Two types of cubic interpolators are available for

implementation.

 Cubic Lagrange Interpolant

 Cubic B-spline Interpolant

Cubic Lagrange Interpolant equation can be written as

given in Eq.(11)

  























2,0

21,
3

6

12

6

11
1

1,
3

2

12

2

1
1

t

tttt

tttt

tg (11)

The most commonly used B-spline in practice is the cubic

B-spline, equation can be written as given in Eq.(12)

  

 

 























2,0

21,
3

2
6

1

1,2
2

2

1

3

2

t

tt

ttt

tg (12)
1 n1

y(l) x(n) Interpolation

h(k, l)

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: 03

981

The time domain and frequency domain characteristics of

these interpolators are given in Fig.5. The Sinc interpolator

which is explained in next section is also illustrated here for

comparison.

Fig.5(a). Coefficient value (amplitude)

Fig.5(b). Spectrum of interpolator (normalized dB scale)

Fig.5(a) Time domain, (b) frequency domain characteristics

of interpolators

It is to be observed that linear and basic form of cubic

interpolators cannot meet the wide band modern SDR

communication requirements which demand higher

accuracies and sharp spectral characteristics. However some

of these architectures find applications, where a reasonable

accuracy is sufficient.

In this paper with simulation it is illustrated that, the sinc

interpolator with multiple zero crossing based architecture

having sufficient coefficients in each zero crossing interval

can give very precise interpolation. The details are presented

in further sections.

3. FRC WITH VIRTUAL DAC AND ADC

The sinc interpolator is equivalent to adopting a virtual

DAC whose conversion rate is equal to input sampling rate

followed by a virtual ADC whose sampling rate is equal to

desired new sampling rate.

Fig.6. SINC interpolation equivalent to virtual DAC followed

by ADC

The virtual DAC implements low pass filter to only allow

the spectrum around zero frequency and reject other images

of spectrum which are around ±Fs. In ideal low pass filter, to

maintain rectangular window type frequency domain

characteristics, the filter requires infinite length coefficients

forming sinc function. The time domain filtering is

convolution of these filter coefficients with digital sample

values, i.e. the weighted sinc functions at each sample instant

with weight equal to sample value are added to obtain the

virtual DAC output.

Fig.7(a)

Fig.7(b)

Fig.7(a). Filter coefficients for DAC, (b). Virtual DAC output

for input with 5 non-zero samples with value 1

The Fig.7 illustrates the virtual DAC computational

requirement for an input signal with 5 consecutive nonzero

samples with value 1. The reconstructed analog signal,

showing the rectangular pulse can be observed. The

contribution of signal value at a given time is more (higher

weightage by sinc function) for the nearby digital sample

values and less for the samples which are away from the

instant where value is computed.

The analog signal x(t) input to the ADC is given in Eq.(13)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time scale(Normalized to Ts)

C
o

ef
fi

ci
en

t
v

a
lu

a
(a

m
p

li
tu

d
e)

Time domain repsonse

sinc

linear

cubic Lagrange

Cubic B-spline

0 0.5 1 1.5 2 2.5 3 3.5 4
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

S
p

ec
tr

u
m

 o
f

In
te

rp
o

la
to

r(
N

o
rm

a
li

ze
d

 d
B

 s
ca

le
)

Frequency scale(normalized to Fs)

Frequency domain repsonse

sinc

linear

cubic Lagrange

Cubic B-spline

Virtual

analog

signal Virtual

DAC
Virtual

ADC

Input

digital

samples

Output

digital

samples

FSin FSout

LATHA SAHUKAR AND M MADHAVI LATHA: AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

982

    



















  m
inT

t
c

m

inmTxt sin

     

















 m

inT

t
c

m
mdxt sin (13)

Here xd[m] = x(mTin) denotes the discrete-time sampled signal

obtained from the ADC.

To alter the sampling interval to some other output value, say

Tout, we would like to generate the discrete-time sequence

yd[n] = x((n+)Tout, where ε is some fractional sampling offset

parameter which satisfies 0 ≤ ε < 1.

      































  mn
outF

inF
c

m

mdxndy sin

       mnc
m

mdxndy 



 sin (14)

Here,
inT

inF
1

 and
outT

outF
1

 denote, respectively, the

input and output sampling rates, whereas
outF

inF
 denotes the

sampling rate conversion factor.

As the practical implementation cannot take infinite

length sinc function, based on the expected accuracy levels

the length of sinc function can be selected. The number of

zero crossings Nz up to the sinc function selected is usually

considered as the design parameter. In that case Nz number of

samples on either side are sufficient for estimating the value

for the required time. In digital implementation, the number

of samples stored between two crossings decide the time

resolution accuracy during FRC. For example if 1024

samples between two zero crossings are stored in ROM then

it allows 1024 time steps between two sample intervals.

Hence in the resampling factor upto 10 fractional bits, the

rate conversion can be achieved with this ROM.

The virtual DAC is implemented by storing sinc function

in ROM up to few zero crossings. The virtual ADC is the

estimation of the digital sample value by taking the weighted

(from sinc function) sum of adjacent samples.

The following equation describes the practically

implemented logic with windowed finite length sinc function

ĝ , where Nz is the selected number of zero crossings over

which the non zero sinc function is considered.

       





Nz

Nzm
mngmdCndy ˆ (15)

With the proposed SINC based interpolation the algorithm

for fractional rate conversion is summarized below.

Algorithm Configuration parameters

a) Number of zero crossings for the SINC function (Nz)

b) Length of the ROM with sampled SINC values (L)

c) Time register size (MQN)

d) Input sample Buffer size

Algorithm runtime I/Os

a) Input - Time register value based on the required FRC

rate

b) Input - Input samples as per input clock domain

c) Output - output samples as per the output clock

domain

Algorithm

a) Load the input samples in input sample buffer (true

asynchronous dual port RAM) with input clock and

control signals

b) Increment the time register for every clock cycle

c) Generate the address for read port of input sample

buffer by considering the integer part of the time

register

d) Read (2Nz) values from sample buffer

e) Generate the address for ROMs with SINC function as

per the fractional part of time register

f) Multiply the 2Nz ROM outputs with input samples and

compute the output sample

g) Generate the output value and enable in output clock

domain

4. RTL IMPLEMENTATION

The block diagram of Register Transfer Level (RTL)

implementation of the proposed FRC block is show in Fig.8.

VHDL is used for this implementation. Only synthesizable

constructs of VHDL are used to ensure that the module works

on FPGA.

The input sample memory allows samples to be buffered

before using them for fractional rate conversion. This is

implemented with true asynchronous FIFO in FPGA to

enable the FRC between two independent clock domains. The

input clock can be from any different source. All the

computations are performed with respect to output clock

domain. However the required FRC factor needs to be given

in terms of input sample writing clock.

Fig.8. RTL block diagram for proposed FRC

The FRC factor will be specified by a ratio of required

clock period to input clock period.

FRC

Outtput

Clk_In

Enable

Data

Input Sample

Memory

Sync

ROM

Interpolator

ROM Data

Time Reg

Overflow

Time Reg

Time Reg

Int

Effective time reg

Clk_RS

Clk_RS

Sync

ROMs
Addr

Gen

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: 03

983

period clock writingFIFO

period sampleDesired
FRC_factor  (16)

The time register is loaded with this value represented in

MQN unsigned fixed point format. The M-N bits indicate the

integer part to decide the maximum decimation possible and

LSB N bits describe the fractional part of FRC_factor. The

present implementation uses 24Q16 format. The loaded

FRC_factor value is incremented after every output sample

computation. The integer part is used to offset the read

address pointer in the input sample memory and fractional

part is used for sinc interpolation. The accumulated result of

fractional part is compared with 1 and to detect overflow. The

overflow will result in one additional increment of read

address pointer of input sample memory.

Based on these conditions the address is computed for input

sample memory and sinc ROM. To enable parallel computation,

multiple ROMs are used to store the sinc function. The

interpolator block performs the multiplication of input samples

with sinc function values and computes sum of these products.

The output value is produced with enable signal.

To enable high speed implementation pipelining technique

is adopted in all stages. As the sinc function is symmetric the

sample values of sinc function are stored for only positive

side. The negative side sinc values are computed by using

same ROMs.

5. SIMULATION AND FPGA VERIFICATION

5.1 SIMULATION WITH MODELSIM

The implemented FRC module is simulated using Mentor's

Modelsim simulator and functionality is verified for several signal

conditions. The Fig.9 shows the simulation results for sine wave

input.

Fig.9. Simulation results for implemented FRC module

The FRC_factor of 2.125 is considered for simulation.

The validation of the FRC without any spectral

aliasing/imaging is proved through MATLAB analysis of

captured results. The details are explained in next section.

5.2 FPGA SYNTHESIS AND TIMING

SIMULATION

The FRC module is synthesized with Xilinx ISE 12.3

version for Spartan-6 L45T FPGA. The Table.1 shows the

area occupancy for various Xilinx devices. As the

architecture is highly area optimized it can observed that the

module occupies less than 15% resources. This capability is

essential in SDR applications as the necessity is for complex

FRC module having again two instances, one for I and other

for Q. It also shows the device utilization summary produced

by Xilinx ISE tool.

Table.1. Device utilization summary of FRC module for

Spartan 6 family L45TFPGA

Project File:
Ise_for_area_and_spe

ed.xise
Parser Errors: No Errors

Module Name: resampler_top
Implementation

State:
Synthesized

Target Device: xc6slx45t-2fgg484  Errors: No Errors

Product

Version:
ISE 12.3  Warnings:

3 Warnings

(0 new)

Design Goal: Balanced
 Routing

Results:

Design

Strategy:

Xilinix

Default(unlocked)
 Timing

Constraints:

Environment: System Settings
 Final Timing

Score:

Device Utilization Summary(estimated value)

Logic Utilization Used Available Utilization

Number of Slice

Registers
700 54576 1%

Number of Slice LUTs 958 27288 3%

Number of fully used

LUT-FF pairs
265 1393 19%

Number of bonded

IOBs
81 296 27%

Number of Block

RAM/FIFO
8 116 6%

Number of

BUFG/BUFGCTRLs
2 16 12%

Number of DSP48A1s 8 58 13%

The FRC module is also speed optimized by using

pipelining at various stages to achieve clock speeds up to 100

MHz. The Fig.10 below has the snap shot of timing summary

generated by Xilinx ISE tool.

Fig.10. The timing summary produced by Xilinx ISE tool

The usable maximum frequency is considered as 100 MHz

(10ns period with 2.5ns slack period), which is suitable for all

the wide band communication applications. The minimum

input arrival time and maximum output required time can be

ignored as they correspond to FPGA pin level delays.

5.3 VERIFICATION USING XILINX

CHIPSCOPE TOOL

The Xilinx Chipscope tool is used to capture the input and

output waveforms of FRC module and then the data is

Timing Summary:

Speed Grade: -3

Minimum period: 7.465ns (Maximum Frequency:

133.962 MHz)

Minimum input arrival time before clock: 6.789ns

Maximum output required time after clock: 5.862ns

Maximum combinational path delay: 1.222ns

LATHA SAHUKAR AND M MADHAVI LATHA: AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

984

analyzed using MATLAB to verify the results. The

relationship between sampling frequency and peak bin

number are used to verify the correctness of FRC. The Fig.11

shows the FFT results of both input and output of

implemented FRC module. The ratio of peak observed bins is

matching with the FRC factor of 2.125.

Fig.11(a). FFT pot for input signal spectrum

Fig.11(b). FFT pot for output signal spectrum

Fig.11. Matlab's FFT plots for captured chipscope data

5.4 VERIFICATION FOR 16-QAM SIGNALS

To verify the performance of developed FRC on wideband

random signals, a 16-QAM signal generated with 100 MHz

sampling rate and with symbol rate 40.96 M symbol/sec is

applied as input signal to the module. Recorded signal data

from signal generator is applied through ROM as test input.

The FRC factor of 1.2205 is applied to achieve exactly 2

samples per symbol. The input and output signals of FRC

module are captured in chipscope and results are analyzed

with MATLAB. The Fig.12 has the time domain and

frequency domain representation of input and output signals.

Fig.12(a). Time domain representation of input

Fig. 12(b). Time domain representation of output of FRC

module

 Fig.12(c). Frequency domain representation of input

500 1000 1500 2000 2500 3000 3500 4000
20

40

60

80

100

120

140

160

FFT pot for input signal spectrum

FFT index

M
a

g
n

it
u

d
e

sp
ec

tr
u

m
(d

B
)

500 1000 1500 2000 2500 3000 3500 4000
20

40

60

80

100

120

140

160

FFT pot for output signal spectrum

FFT index

M
a

g
n

it
u

d
e

sp
ec

tr
u

m
(d

B
)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

In phase (I) component (real part)

Q
u

a
d

ra
tu

re
 (

Q
)

co
m

p
o

n
en

t
(i

m
a

g
 p

a
rt

)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

In phase (I) component (real part)

Q
u

a
d

ra
tu

re
 (

Q
)

co
m

p
o

n
en

t
(i

m
a

g
 p

a
rt

)

0 1000 2000 3000 4000 5000 6000 7000
-30

-20

-10

0

10

20

30

40

50

FFT bin number

S
p

ec
tr

u
m

 (
d

B
)

Input Spectrum

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: 03

985

Fig.12(d). Frequency domain representation of output of FRC

module

It can be observed that as the selected FRC type is

decimation (above 1) the number of output samples is less in

comparison with input, and hence the FFT point size is less

for output while computing the spectrum. Note that no zero

padding is performed while computing FFT. This test case

verifies that the FRC module is capable of handling wide

band signals and finds application in several emerging

wideband communication architectures. As the output sample

rate is twice of symbol rate the output I-Q constellation

results in16-QAM constellation.

6. CONCLUSION

The necessity of integer and fractional sample rate

conversion blocks in software defined radio applications are

discussed. The architectural challenges in FRC are presented.

The principle of virtual DAC and ADC based rate converter

is explained. An area efficient approach with 8 zero crossing

long sinc function based rate converter is proposed. The

results for high bandwidth signals are verified both at

simulation level and hardware level. To verify the

performance aspects, the synthesis results are analyzed. Only

15% area occupancy with maximum clock speed of 133 MHz

is reported on Spartan-6 L45 FPGA. The developed FRC is

tested for real wideband 16-QAM signals and validated for its

time domain and frequency domain characteristics.

ACKNOWLEDGEMENT

The authors would like to acknowledge Aurora’s

Technological and Research Institute, Hyderabad and

Jawaharlal Nehru Technological University, Hyderabad for its

support in carrying out the research work.

REFERENCES

[1] Latha Sahukar and M. Madhavi Latha, “FPGA based

low power reconfigurable modulator with Digital Up

Converter for adhoc networks”, Journal of

Telecommunications, Vol. 11, No. 2, pp. 49-53, 2011.

[2] Latha Sahukar and M. Madhavi Latha, “Area Efficient

Architecture for Frequency Domain Multi Channel

Digital Down Conversion for Randomly Spaced

Signals”, Advances in Intelligent Systems and

Computing-Springer Link, Vol. 177, pp. 233-241, 2013.

[3] J. P. Long and J. A. Torres, “High throughput Farrow re-

samplers utilizing reduced complexity FIR filters”, IEEE

Military Communications Conference, pp. 1-6, 2012.

[4] R. M. Rewatkar and S. L. Badjate, “A Design Approach

of Low Power VLSI for Downsampler Using Multirate

Technique”, IEEE International Conference on

Communication Systems and Network Technologies, pp.

727-731, 2013.

[5] M. Blok, “Fractional delay filter design for sample rate

conversion”, IEEE Federated Conference on Computer

Science and Information Systems, pp. 701-706, 2012.

[6] Xiaojing Huang, Jayasri Joseph, Jian A. Zhang and Y.

Jay Guo, “Sample rate conversion with parallel

processing for high speed multiband OFDM systems”,

IEEE Wireless Communications and Networking

Conference, pp. 2754-2759, 2013.

[7] Mahdi Mottaghi-Kashtiban, Saeed Farazi and Mahrokh

G. Shayesteh, “The Optimum Configuration for

Sampling Rate Conversion from CD to DAT using

Multistage Interpolation and Decimation”, 12
th

International Workshop on Systems, Signals and Image

Processing, pp. 101-104, 2005.

[8] V. Awasthi and K. Raj, “Power performance analysis of

compensated Cascaded Integrator Comb (CIC) filter in

optimum computing”, International Conference on

Power and Energy in NERIST, pp. 1-6, 2012.

[9] Min-Wei Qin, Jia-Mei Feng, Yuan-Cheng Yao and Jian-

Hao Hu, “An improved wideband CIC filter design of

software radio receivers”, International Journal of

Wireless and Mobile Computing, Vol. 5, No. 3, pp. 263-

270, 2012.

[10] S. Cucchi, F. Desinan, G. Parladori and G. Sicuranza,

“DSP implementation of arbitrary sampling frequency

conversion for high quality sound application”,

International Conference on Acoustics, Speech, and

Signal Processing, Vol. 5, pp. 3609-3612, 1991.

[11] Roger Woods, John McAllister, Gaye Lightbody and

Ying Yi, “FPGA-based Implementation of Signal

Processing Systems”, John Wiley and Sons, Ltd.,

Publication, 2008.

[12] Guoan Bi and S. K. Mitra, “FFT-based sampling rate

conversion”, IEEE Conference on Industrial Electronics

and Applications, pp. 428-431, 2012.

[13] M. Stala, C. Bilgin, R. Gangarajaiah and J. N. Rodrigues,

“Hardware Implementation of an Iterative Sampling

Rate Converter for Wireless Communication”, IEEE

Global Telecommunications Conference, pp. 1-6, 2010.

[14] D. Borkowski and A. Bien, “Improvement of Accuracy

of Power System Spectral Analysis by Coherent

Resampling”, IEEE Transactions on Power Delivery,

Vol. 24, No. 3, pp. 1004-1013, 2009.

[15] S. Yerramalli and U. Mitra, “Optimal Resampling of

OFDM Signals for Multiscale-Multilag Underwater

0 1000 2000 3000 4000 5000 6000
-20

-10

0

10

20

30

40

50

FFT bin number

S
p

ec
tr

u
m

 (
d

B
)

output Spectrum

LATHA SAHUKAR AND M MADHAVI LATHA: AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

986

Acoustic Channels”, IEEE Journal of Oceanic

Engineering, Vol. 36, No.1, pp. 126-138, 2011.

[16] G. Maalouli and D. R. Stephens, “Joint, fractional

resampler with delay equalization for high

synchronization accuracy with a reduced number of

samples per symbol”, Proceedings of the IEEE

International Conference on Acoustics, Speech and

Signal Processing, Vol. 5, pp. V-349-V-352, 2004.

[17] U. Nithirochananont, S. Chivapreecha and K. Dejhan,

“An FPGA-based implementation of variable fractional

delay filters”, 5
th

 International Colloquium on Signal

Processing and Its Applications, pp. 104-107, 2009.

[18] C. Dick and F. Harris, “Options for arbitrary resamplers

in FPGA-based modulators”, Conference Record of the

Thirty-Eighth Asilomar Conference on Signals, Systems

and Computers, Vol. 1, pp. 777-781, 2004.

[19] J. P. Horridge, Frazer and J. Gordon, “Accurate arbitrary

resampling with exact delay for radar applications”,

International Conference on Radar, pp. 123-127, 2008.

