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Abstract 

Machine learning schemes can be employed in cognitive radio 

systems to intelligently locate the spectrum holes with some knowledge 

about the operating environment. In this paper, we formulate a 

variation of Actor Critic Learning algorithm known as Continuous 

Actor Critic Learning Automaton (CACLA) and compare this scheme 

with Actor Critic Learning scheme and existing Q–learning scheme. 

Simulation results show that our CACLA scheme has lesser execution 

time and achieves higher throughput compared to other two schemes. 

Keywords: 

Markov Decision Process, Reinforcement Learning, Q–learning, 

Actor–critic Learning, CACLA 

1. INTRODUCTION

The radio spectrum is under a great demand due to the 

tremendous development in wireless technology. Regrettably the 

supply of spectrum has not met the requirement of emerging 

systems. The dearth in supply of spectrum is chiefly due to the 

ineffective, rigid and stable nature of the surviving spectrum 

utilization methods and emphatically not because of the 

scarceness of operable spectrum [1]. Hence, it is mandatory to 

improve mechanisms that provide effectual exploitation of these 

available spectrums. In order to enhance the efficient spectrum 

utilization, FCC promoted the opportunistic spectrum access 

(OSA) that allows secondary users to independently search for 

and exploit instantaneous spectrum availability. To realize OSA 

cognitive radio has been advocated by many. CRs are viewed as 

intelligent wireless communication systems that are capable of 

self-learning from their surrounding environment and auto 

adapting in their real time to improve spectrum efficiency with 

no interventions [2].  

Research in protocol design [3, 4] has increased because of 

high interest in OSA where the MAC protocols provides the 

secondary users to explore and make use of the spectrum which 

is left unused in a way that constrains the level of interference to 

the primary users. A new analytical approach has been provided 

for the problem of spectrum agility [5] in which the over 

utilization of the spectral bands and underutilization are 

diagnosed and controlled by means of an analytical model. 

Spectrum sharing [6] plays a major role in communication which 

are analyzed and efficiently utilized by providing a statistical 

trade off. In [7] the opportunistic access is solved by using a 

slotted transmission protocol for secondary users by means of 

periodic channel sensing strategy. The spectrum sensing and 

accessing policies results in the interference among the primary 

users is overcome by assuming that these users have their 

distribution parameters as unknown random parameters[8].Liu 

and Zhao [9] reckoned a distributed secondary users 

environment where they communicate among each other without 

the transmission of information. 

The activities of the Primary Users follow the Markovian 

process model. The OSA environment follows a distinct feature 

which makes it too hard to fabricate models which predicts the 

dynamics. So it is very important to develop techniques that can 

accomplish the same optimal behaviors without considering the 

models of the environmental dynamics. The reinforcement 

learning (RL) [10] is a sub–field of machine intelligence which 

is a basis of learning & interaction among the user and the 

environment. In [11], Pavithra Venkatraman introduced a type of 

scheme called Q–learning in cognitive radio to efficiently use 

the spectrum. Other learning schemes used in cognitive radio are 

discussed in [12]–[14]. A Nash equilibrium based 

Reinforcement Learning scheme for power control is designed 

with low implementation complexity for CR networks [12].The 

scheme does not require the interference channel and power 

strategy information among CR users. To solve the problem of 

distributed learning and channel access, a distributed learning 

with logarithmic regret is developed which achieves optimal 

cognitive system throughput [13]. The policies minimize the 

sum regret in distributed learning which is the loss is in 

secondary throughput due to learning and distributed access. 

Jayakrishnan Unnikrishnan [14] proposed RL–DSA for DSA in 

the on text of next–generation downlink OFDMA–based 

networks. RL–DSA maximizes a reward signal targeting an 

efficient spectrum usage with QoS assurance. Moreover, RL–

DSA had shown best tradeoff between spectral efficiency, QoS 

fulfillment and fairness among different spectrum assignment 

strategies. 

In this paper, we compare our proposed Reinforcement 

Learning scheme namely Continuous Actor Critic Learning 

Automaton (CACLA) scheme with Actor–Critic learning [10, 

15] and existing Q–learning schemes in terms of execution time,

bit rate and throughput. Simulation results show that our 

CACLA scheme achieves high throughput performance and less 

execution time compared to other two schemes. 

The remainder of this paper is organized as follows. Section 

2 describes the system architecture. Section 3 details the 

proposed RL schemes. Section 4 evaluates the performance of 

all the three RL schemes. Section 5 concludes this paper. 

2. SYSTEM ARCHITECTURE

2.1 PROBLEM FORMULATION 

We assume that the spectrum is divided into m bands and 

each band is associated with a PU [11]. Moreover, we assume 

that the SUs are non–cooperative. Therefore each SU maintains 

its own Q/V/P/A table. At each time step the SU reports to 

decision center which makes the decision regarding which band 

to switch over from the available spectrum opportunities (Fig.1). 
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Then the SU switches to that band and starts communicating on 

it. The identification of spectrum opportunities depends upon the 

quality metrics such as the SNR, band width, and probability of 

PU returning to band. 

 

Fig.1. Reinforcement learning for SUs 

The rest of this section describes about the Markov Decision 

process and the RL schemes. 

2.2 MDP 

Markov decision process (MDP), is defined as follows. 

State Set S: S is made up of m states {s1, s2,….sm}. When the SU 

is in the state si then it means that the SU is in band bi with 

minimum probability of PU returning to band bi. 

Action Set A: The number of actions is always equal to the 

number of bands. At each time step while in band bi, the SU 

with the help of decision center explores by searching for new 

spectrum opportunities. The SU senses the bands {b1, b2, …bm} 

sequentially, until it finds the first available band. After finding a 

band, the SU switches to and starts using it until the next time 

step. 

Reward Function: The reward function 
iaisr ,  specifies the 

reward the SU obtains when taking action ai from the action set 

A while in state si  S. Actions are selected using ε – greedy 

exploration strategy which states that action which gives 

maximum Q/V value is selected with (1 – ) + /m probability 

and any other action is selected with /m probability where m is 

the number of bands. The reward obtained by the SU depends on 

the actions chosen by other users. We assume each band bi has 

its own bandwidth capacity vi and when more than one SU uses 

the same band the bandwidth is equally divided among all the 

users who use the same band. For example if there are three 

SUs, namely A, B, C each taking an action i, j, k respectively, 

their reward of SU A, can be calculated as [16]. 
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The reward perceived by the SU also depends on the 

probability that the PU return back to each band and SNR. 

2.3 Q–LEARNING SCHEME 

At each time step, each secondary user uses the Q-learning 

scheme to select a spectrum band among all the bands. The aim 

of the SU is to learn a policy (band to be switched over) : SA 

for choosing the next action 𝑎𝑖  based on its current state si  that 

gives the maximum reward. A function Q: S × AR is defined 

for each state–action (si, ai) pair as the maximum reward that can 

be achieved when taking action ai from state si according to the 

ε–greedy exploration strategy. Hence, with the help of the Q–

function, the SUs can optimally select actions that maximize 

iaisQ ,  at each state. The Q–learning algorithm works by 

selecting actions and observing the following state and the 

resulting reward. With this information, Q is updated via the 

following equation [16], 

      ][1 ,,,, tQratQtQ su

iaisiais
su

iais
su

iais
     (2) 

where, 0 < α <1 is the learning rate of the secondary user group, 

and 
iaisr ,  is the reward function. Fig.2 provides a generalized 

flow of Q-learning algorithm. 

 

Fig.2. Q – Learning flow chart 
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3. PROPOSED SYSTEM 

At each time step, each secondary user uses the Q-learning 

scheme to select a spectrum band among all the bands. The aim 

of the SU is to learn a policy (band to be switched over) : SA 

for choosing the next action ai based on its current state si that 

gives the maximum reward. 

3.1 ACTOR CRITIC LEARNING SCHEME 

A function V: SR is defined for each state–action (si, ai) 

pair as the maximum reward that can be achieved when taking 

action ai from state si according to the ε–greedy exploration 

strategy and a Preference table (P) which stores the preference of 

state dependent actions are defined for each SU. Actor critic 

learning scheme learns by selecting actions and observing the 

following state and the resulting reward. With this information, 

V is updated via the following equation, 

      ][1 , tvratvtv
g

isiais
g

is

g

is
     (3) 

where, 0 < α < 1 is the learning rate of the secondary user group 

g and 
iaisr , is the associated reward function. 

Actor critic learning uses state values to update the 

preference table.  

        tPtvratvtP u

iais
u

isiais
u

is
u

iais ,,, ][1     (4) 

Usage of state values speeds up the learning process. With 

the help of the P-table, the SUs can optimally select actions that 

have highest preference at each state. Fig.3 provides a flow chart 

of Actor-Critic Learning algorithm. 

3.2 CONTINUOUS ACTOR CRITIC LEARNING 

AUTOMATON SCHEME 

A function V: SR is defined for each state – action (si, ai) 

pair as the maximum reward that can be achieved when taking 

action ai from state si according to the ε–greedy exploration 

strategy and a Preference table (P) which stores the preference of 

state dependent actions and an Action (A) table which stores the 

actions from each state (band) defined for each SU. Continuous 

actor critic learning automaton algorithm acquires knowledge by 

selecting actions and observing the following state and the 

resulting reward. With this information, V is updated via Eq.(5) 

as it is a variation of Actor Critic Learning scheme. 

Continuous actor critic learning automaton uses state values 

to update the A-table. To update to these action values, one 

observes the update to the state value of the last state. If this 

update increased the value of the state, the action that was 

performed was a good action and is updated in A-table. 

If, 

    tvtv
g

is

g

is
1    (5) 

then 

 i
u

is aA     (6) 

Continuous actor critic learning automaton uses state values 

to update the A-table, therefore it is considered to be the fastest 

of all the reinforcement learning algorithms. Fig.4 provides a 

complete flow of CACLA algorithm. 

 

Fig.3. Actor Critic flow chart 

4. EVALUATION OF CACLA SCHEMES 

The CACLA algorithm was simulated using MATLAB 

v.2010. Table.1 shows the main simulation parameters. The 

performance of proposed system is compared with the existing 

Q- learning scheme. 

Table.1. Main simulation parameters 

Parameter Value 

Number of bands  6 

Number of SU 1 - 6 

Probability of PU returning to band 0.1 - 0.6  

Bandwidth 2kHz – 12kHz 

SNR 5dB to 15dB 
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Fig.4. CACLA flow chart 

4.1 EXECUTION TIME 

The time taken by SU to switch over from one band to 

another was observed during simulation. As shown in Fig.5 the 

execution time of CACLA is lesser than that of Actor–Critic 

learning and Q–learning schemes. The reason behind this time 

saving is that in Q–learning the Q–table is updated every time 

and value table is not used to update the Q-table, but in CALCA 

and Actor Critic learning schemes the value table is used 

periodically. Usage of value table speeds up the learning 

process. In Actor Critic learning scheme value table is used to 

update the preference table. Therefore, the execution time of 

CACLA and Actor Critic learning is always lesser than that of 

Q–learning. The execution of CACLA is still lesser than Actor 

Critic learning scheme. This is because in CALCA scheme the 

action table is updated based on value table. First value V- table 

is updated. If the current V is greater than previous then action 

table is updated. But this is not the case in Actor Critic learning 

and Q–learning, because the Q–table and the preference table is 

updated every time during the learning process. The variance of 

execution time of Q–learning is less when compared to other 

two schemes (Fig.6). It is also observed that the variance in 

execution time of CACLA is higher compared to other two 

schemes. 

4.2 SUM BIT RATE  

The bit rate is estimated using Shannon’s channel capacity 

theorem during simulation process. The sum of bit rate observed 

in case of Actor Critic learning is merely equivalent to Q–

learning, but for the CACLA scheme it is appreciable higher for 

the larger number of SUs (Fig.7). This is because in Q–learning/ 

Actor Critic learning first we update the Q–table/ preference 

table then the band is assigned to the SU based on the updated Q 

table/preference table which has maximum quality/preference. 

But in CACLA scheme only the best actions are used to update 

the action table. Incidentally, as shown in Fig.7, the bit rates 

achieved initially under all the schemes are similar. It is also 

noted that when the number of SU increases, the sum of bit rate 

accomplished under CACLA scheme increases proportionally 

than other two schemes. 

The Fig.8 shows the variance of sum data rate observed for 

all the schemes. It is higher for CACLA for larger number of 

SUs compared to other two schemes. In case of Actor Critic 

learning scheme and Q–learning scheme it is mere equivalent. 

 

Fig.5. Average execution time 
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Fig.6. Variance of the execution time 

 

Fig.7. Average sum of bit rate 

 

Fig.8. Variance of the bit rate 

 

4.3 AVERAGE THROUGHPUT 

The throughput during simulation was observed for each 

scheme for the incremental number of SUs (Fig.9). Due to the 

lesser execution time of CALCA compared to other two 

schemes, the throughput accomplished under CACLA scheme is 

appreciably higher than Q–learning and Actor Critic learning 

schemes. Though the bit rate of Actor Critic learning scheme is 

equivalent as Q–learning, the throughput achieved under Actor 

Critic learning scheme is slightly higher than Q–learning. This is 

because execution time of Actor Critic learning scheme is less in 

comparison with Q–learning scheme.  

The Fig.10 shows that the variance of the throughput for Q–

learning and Actor Critic learning scheme reduces as the number 

of users increases but in CACLA the variance is much higher 

with a certain degree of unpredictability. 

 

Fig.9. Average throughput 

 

Fig.10. Variance of throughput 

5. CONCLUSION 

The proposed Continuous Actor Critic Learning Automaton 
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1 2 3 4 5 6
0

1

2

3

4

5

6

7
x 10

-5

Number of secondary users

V
a

ri
a

n
ce

 o
f 

th
e 

ex
ec

u
ti

o
n

 t
im

e(
se

co
n

d
s)

 

 

Q learning

CACLA

Actor Critic Learning

1 2 3 4 5 6
1

2

3

4

5

6

7

8

9

10

11

12
x 10

4

Number of secondary users

A
v

er
a

g
e 

su
m

 o
f 

th
e 

b
it

 r
a

te
 (

k
b

p
s)

 

 

Q learning

CACLA

Actor Critic Learning

1 2 3 4 5 6
0

1

2

3

4

5

6
x 10

8

Number of secondary users

V
a

ri
a

n
ce

 o
f 

th
e 

b
it

 r
a

te
 (

k
b

p
s)

 

 

Q learning

CACLA

Actor Critic Learning

1 2 3 4 5 6
5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

5

Number of secondary users

A
v

er
a

g
e 

th
ro

u
g

h
p

u
t(

k
b

p
s)

 

 

Q learning

CACLA

Actor Critic Learning

1 2 3 4 5 6
1

2

3

4

5

6

7

8

9
x 10

10

Number of secondary users

V
a

ri
a

n
ce

 o
f 

th
ro

u
g

h
p

u
t(

k
b

p
s)

 

 

Q learning

CACLA

Actor Critic Learning



ISSN: 2229-6948 (ONLINE)               ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2013, VOLUME: 04, ISSUE: 03 

795 

 

scheme, performed better than the existing Actor–Critic and Q-

learning methods. Although the variance of the observed 

performance parameters of CACLA were higher, the two main 

parameters i.e., the sum bit rate and throughput were appreciably 

high than the other two methods. There is need to incorporate 

suitable modification in CACLA that reduces variance of the 

observed performance parameters, which could be the future 

work.   
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