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Abstract 

Data Compression may be defined as the science and art of the 

representation of information in a crisply condensed form. For 

decades, Data compression has been one of the critical enabling 

technologies for the ongoing digital multimedia revolution. There are 

a lot of data compression algorithms which are available to compress 

files of different formats. This paper provides a survey of different 

basic lossless data compression algorithms.  Experimental results and 

comparisons of the lossless compression algorithms using Statistical 

compression techniques and Dictionary based compression 

techniques were performed on text data. Among the Statistical coding 

techniques, the algorithms such as Shannon-Fano Coding, Huffman 

coding, Adaptive Huffman coding, Run Length Encoding and 

Arithmetic coding are considered. Lempel Ziv scheme which is a 

dictionary based technique is divided into two families: one derived 

from LZ77 (LZ77, LZSS, LZH, LZB and LZR) and the other derived 

from LZ78 (LZ78, LZW, LZFG, LZC and LZT). A set of interesting 

conclusions are derived on this basis. 
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1. INTRODUCTION

Data compression refers to reducing the amount of space 

needed to store data or reducing the amount of time needed to 

transmit data. The size of data is reduced by removing the 

excessive information. The goal of data compression is to 

represent a source in digital form with as few bits as possible 

while meeting the minimum requirement of reconstruction of the 

original.  

Data compression can be lossless, only if it is possible to 

exactly reconstruct the original data from the compressed 

version.  Such a lossless technique is used when the original data 

of a source are so important that we cannot afford to lose any 

details. Examples of such source data are medical images, text 

and images preserved for legal reason, some computer 

executable files, etc. 

Another family of compression algorithms is called lossy as 

these algorithms irreversibly remove some parts of data and only 

an approximation of the original data can be reconstructed. 

Approximate reconstruction may be desirable since it may lead 

to more effective compression. However, it often requires a good 

balance between the visual quality and the computation 

complexity. Data such as multimedia images, video and audio 

are more easily compressed by lossy compression techniques 

because of the way human visual and hearing systems work. 

Lossy algorithms achieve better compression effectiveness 

than lossless algorithms, but lossy compression is limited to 

audio, images, and video, where some loss is acceptable.  

To brand either “lossless” or “lossy” the better technique of 

the two is rather forced and misplaced as each has a distinctive 

edge over the other in being useful as each has its own uses with 

lossless techniques better in some cases and lossy technique 

better in others. 

There are quite a few lossless compression techniques 

nowadays, and most of them are based on dictionary or 

probability and entropy. In other words, they all try to utilize the 

occurrence of the same character/string in the data to achieve 

compression. The performance of statistical compression 

techniques such as Shannon- Fano Coding, Huffman coding, 

Adaptive Huffman coding, Run Length Encoding and 

Arithmetic coding and the Dictionary based compression 

technique Lempel-Ziv scheme is subdivided into two families: 

one derived from LZ77 (LZ77, LZSS, LZH, LZB and LZR) and 

the other from LZ78 (LZ78, LZW, LZFG, LZC and LZT) is 

being explored critically in this paper. 

The paper is organized as follows: Section I contains a brief 

Introduction about Compression and its types, Section II 

presents a brief explanation about Statistical compression 

techniques, Section III discusses Dictionary-based compression 

techniques, Section IV has its focus on comparing the 

performance of Statistical coding techniques and Lempel Ziv 

techniques and the final section contains the Conclusion. 

2. STATISTICAL COMPRESSION TECHNIQUES

2.1 RUN LENGTH ENCODING TECHNIQUE (RLE) 

One of the simplest compression techniques known as the 

Run-Length Encoding (RLE) is created especially for data with 

strings of repeated symbols (the length of the string is called a 

run). The main idea behind this is to encode repeated symbols as 

a pair: the length of the string and the symbol. For example, the 

string ‘abbaaaaabaabbbaa’ of length 16 bytes (characters) is 

represented as 7 integers plus 7 characters, which can be easily 

encoded on 14 bytes (as for example ‘1a2b5a1b2a3b2a’). The 

biggest problem with RLE is that in the worst case the size of 

output data can be two times more than the size of input data. To 

eliminate this problem, each pair (the lengths and the strings 

separately) can be later encoded with an algorithm like Huffman 

coding. 

2.2 SHANNON FANO CODING 

Shannon – Fano algorithm was simultaneously developed by 

Claude Shannon (Bell labs) and R.M. Fano (MIT)[3,16]. It is 

used to encode messages depending upon their probabilities. It 
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allots less number of bits for highly probable messages and more 

number of bits for rarely occurring messages. The algorithm is 

as follows: 

i. Construct a frequency or probability table for the symbols

listed.

ii. Arrange the table, placing at the top the symbol that figures

most frequently.

iii. Bifurcate the tables into two halves, keeping as close as

possible the total frequency count of the upper half and the

total frequency count of the bottom half.

iv. Organise the divided tables in such a way assigning  the

upper half of the list a binary digit ‘0’ and the lower half a

‘1’.

v. Apply repeatedly the steps 3 and 4 to each of the two

halves, subdividing groups and adding bits to the codes until

each symbol has become a corresponding leaf on the tree.

Generally, Shannon-Fano coding does not guarantee that an 

optimal code is generated. Shannon – Fano algorithm is more 

efficient when the probabilities are closer to inverses of powers 

of 2. 

2.3 HUFFMAN CODING 

The Huffman coding algorithm [6] is named after its 

inventor, David Huffman, who developed this algorithm as a 

student in a class on information theory at MIT in 1950. It is a 

more successful method used for text compression. The 

Huffman coding algorithm is proven to be helpful in decreasing 

the overall length of the data by assigning shorter codewords to 

the more frequently occurring symbols, employing a strategy of 

replacing fixed length codes (such as ASCII) by variable length 

codes. A word of caution to those who use variable length 

codewords is to try to create a uniquely decipherable prefix-code 

precluding the need for creation of a separator to determine 

codeword boundaries. Huffman coding creates such a code. 

Huffman algorithm is not very different from Shannon - 

Fano algorithm. Both the algorithms employ a variable bit 

probabilistic coding method. The two algorithms significantly 

differ in the manner in which the binary tree is built. Huffman 

uses bottom-up approach and Shanon-Fano uses Top-down 

approach. 

The Huffman algorithm is simple and can be described in 

terms of creating a Huffman code tree. The procedure for 

building this tree is: 

i. Start with a list of free nodes, where each node corresponds

to a symbol in the alphabet.

ii. Select two free nodes with the lowest weight from the list.

iii. Create a parent node for these two nodes selected and the

weight is equal to the weight of the sum of two child nodes.

iv. Remove the two child nodes from the list and the parent

node is added to the list of free nodes.

v. Repeat the process starting from step-2 until only a single

tree remains.

After building the Huffman tree, the algorithm creates a 

prefix code for each symbol from the alphabet simply by 

traversing the binary tree from the root to the node, which 

corresponds to the symbol. It assigns 0 for a left branch and 1 for 

a right branch. 

The algorithm presented above is called as a semi-adaptive 

or semi-static Huffman coding as it requires knowledge of 

frequencies for each symbol from alphabet. Along with the 

compressed output, the Huffman tree with the Huffman codes 

for symbols or just the frequencies of symbols which are used to 

create the Huffman tree must be stored. This information is 

needed during the decoding process and it is placed in the header 

of the compressed file.  

2.4 ADAPTIVE HUFFMAN CODING 

The probability distribution of the input set is required to 

generate Huffman codes. The basic Huffman algorithm is 

handicapped by the drawback that such a probability distribution 

of the input set is often not available. Moreover it is not suitable 

to cases when probabilities of the input symbols are changing. 

The Adaptive Huffman coding technique was developed based 

on Huffman coding first by Newton Faller [2] and by Robert G. 

Gallager[5] and then improved by Donald Knuth [8] and 

Jefferey S. Vitter [20,21]. In this method, a different approach 

called sibling property is introduced to build a Huffman tree. 

Dynamically changing Huffman code trees, whose leaves are 

representative of the characters seen so far, are maintained by 

both the sender and receiver. Initially the tree contains only the 

0-node, a special node representing messages that have yet to be 

seen. Here, the Huffman tree includes a counter for each symbol 

and the counter is updated every time when a corresponding 

input symbol is coded. Huffman tree under construction is still a 

Huffman tree if it is ensured by checking whether the sibling 

property is retained. If the sibling property is violated, the tree 

has to be restructured to ensure this property. Usually this 

algorithm generates codes that are more effective than static 

Huffman coding. Storing Huffman tree along with the Huffman 

codes for symbols with the Huffman tree is not needed here. It is 

superior to Static Huffman coding in two aspects: It requires 

only one pass through the input and it adds little or no overhead 

to the output. But this algorithm has to rebuild the entire 

Huffman tree after encoding each symbol which becomes slower 

than the static Huffman coding.  

2.5 ARITHMETIC CODING 

Huffman and Shannon-Fano coding techniques suffer from 

the fact that an integral value of bits is needed to code a 

character. Arithmetic coding completely bypasses the idea of 

replacing every input symbol with a codeword. Instead it 

replaces a stream of input symbols with a single floating point 

number as output. The basic concept of arithmetic coding was 

developed by Elias in the early 1960’s and further developed 

largely by Pasco [11], Rissanen [13, 14] and Langdon [ 9]. 

The primary objective of Arithmetic coding is to assign an 

interval to each potential symbol. Later this interval is assigned a 

decimal number. The algorithm commences with an interval of 

0.0 and 1.0. The interval is subdivided into a smaller interval, 

based on the proportion to the input symbol’s probability, after 

each input symbol from the alphabet is read. This subinterval 

then becomes the new interval and is divided into parts 

according to probability of symbols from the input alphabet. 

This is repeated for each and every input symbol. And, at the 

end, any floating point number from the final interval uniquely 

determines the input data. 
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3. DICTIONARY BASED COMPRESSION 

TECHNIQUES 

Arithmetic algorithms as well as Huffman algorithms are 

based on a statistical model, namely an alphabet and the 

probability distribution of a source. Dictionary coding 

techniques rely upon the observation that there are correlations 

between parts of data (recurring patterns). The basic idea is to 

replace those repetitions by (shorter) references to a "dictionary" 

containing the original. 

3.1 LEMPEL ZIV ALGORITHMS 

The Lempel Ziv Algorithm is an algorithm for lossless data 

compression.  This algorithm is an offshoot of the two 

algorithms proposed by Jacob Ziv and Abraham Lempel in their 

landmark papers in 1977 and 1978. Fig.1 represents 

diagrammatically the family of Lempel Ziv algorithms. 

 

Fig.1. The family of Lempel Ziv algorithms 

3.1.1 LZ77: 

Jacob Ziv and Abraham Lempel have presented their 

dictionary-based scheme in 1977 for lossless data compression 

[23]. Today this technique is much remembered by the name of 

the authors and the year of implementation of the same.  

LZ77 exploits the fact that words and phrases within a text 

file are likely to be repeated. When there is repetition, they can 

be encoded as a pointer to an earlier occurrence, with the pointer 

accompanied by the number of characters to be matched. It is a 

very simple adaptive scheme that requires no prior knowledge of 

the source and seems to require no assumptions about the 

characteristics of the source. 

In the LZ77 approach, the dictionary functions merely as a 

portion of the previously encoded sequence. The examination of 

the input sequence is carried out by the encoder, pressing into 

service a sliding window which consists of two parts: a search 

buffer that contains a portion of the recently encoded sequence 

and a look-ahead buffer that contains the next portion of the 

sequence to be encoded. The algorithm searches the sliding 

window for the longest match with the beginning of the look-

ahead buffer and outputs a reference (a pointer) to that match. It 

is possible that there is no match at all, so the output cannot 

contain just pointers. In LZ77 the representation of the reference 

is always in the form of a triple <o,l,c>, where ‘o’ stands for an 

offset to the match, ‘l’ represents length of the match, and ‘c’ 

denotes the next symbol after the match. A null pointer is 

generated as the reference in case of absence of the match (both 

the offset and the match length equal to 0) and the first symbol 

in the look-ahead buffer [7]. 

The values of an offset to a match and length must be limited 

to some maximum constants. Moreover the compression 

performance of LZ77 mainly depends on these values. Usually 

the offset is encoded on 12–16 bits, so it is limited from 0 to 

65535 symbols. So, there is no need to remember more than 

65535 last seen symbols in the sliding window. The match 

length is usually encoded on 8 bits, which gives maximum 

match length equal to 255[12]. 

The LZ77 algorithm is given below: 
 

 

With regard to other algorithms the time for compression and 

decompression is just the same. In LZ77 encoding process one 

reference (a triple) is transmitted for several input symbols and 

hence it is very fast. The decoding is much faster than the 

encoding in this process and it is one of the important features of 

this process. In LZ77, most of the LZ77 compression time is, 

however, used in searching for the longest match, whereas the 

LZ77 algorithm decompression is quick as each reference is 

simply replaced with the string, which it points to.  

LZ77 scheme can be made to function more efficiently 

through several ways. Efficient encoding with the triples forms 

the basis for many of the improvements. There are several 

variations on LZ77 scheme, the best known are LZSS, LZH and 

LZB.  

LZSS which was published by Storer and Szymanksi [17] 

removes the requirement of mandatory inclusion of the next non-

matching symbol into each codeword. Their algorithm uses fixed 

length codewords consisting of offset and length to denote 

references. They propose to include an extra bit (a bit flag) at 

each coding step to indicate whether the output code represents a 

pair (a pointer and a match length) or a single symbol.  

LZH is the scheme that combines the Ziv – Lempel and 

Huffman techniques. Here coding is performed in two passes. 

The first is essentially same as LZSS, while the second uses 

statistics measured in the first to code pointers and explicit 

characters using Huffman coding. 

LZB was published by Mohammad Banikazemi[10] uses an 

elaborate scheme for encoding the references and lengths with 

varying sizes. The size of every LZSS pointer remains the same 

despite the length of the phrase it represents. Different sized 

pointers prove to be efficacious in practice as they help achieve a 

better compression since some phrase lengths are prone to occur 

more frequently than others. LZB is a technique that uses a 

different coding for both components of the pointer. LZB 

achieves a better compression than LZSS and has the added 

virtue of being less sensitive to the choice of parameters. 

LZR, developed by Michael Rodeh et al. [15] in the year 

1991, is a modification of LZ77. It is projected to be linear time 

While (lookAheadBuffer not empty) { 

get a reference (position, length) to longest match; 

if (length > 0)  

{ 

  output (position, length, next symbol); 

  shift the window length+1 positions along; 

  }  

else { 

output (0, 0, first symbol in the lookahead buffer); 

shift the window 1 character along; 

  } 

} 
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alternative to LZ77. It is markedly different from the already 

existing algorithm in its capacity to allow pointers to denote any 

position in the encoded part of the text. However, it should be 

mentioned that LZR consumes considerably larger amount of 

memory than the others do. Here, the dictionary grows without 

any limit. The two major drawbacks of this algorithm are  

a) More and more memory is required as encoding proceeds; 

no more of the input is remembered if the memory is full or 

the memory should be cleared for resumption of the coding 

process.  

b) It also suffers from a drawback of the increase in the size of 

the text in which the matches are sought. As it is a 

unfeasible variant its performance is found to be not 

satisfactory. 

3.1.2 LZ78: 

In 1978 Jacob Ziv and Abraham Lempel presented their 

dictionary based scheme [24], which is known as LZ78. It is a 

dictionary based compression algorithm that maintains an 

explicit dictionary. This dictionary has to be built both at the 

encoding and decoding side and they must follow the same rules 

to ensure that they use an identical dictionary. The codewords 

output by the algorithm consists of two elements <i,c> where ‘i’ 

is an index referring to the longest matching dictionary entry and 

the first non-matching symbol. In addition to outputting the 

codeword for storage / transmission the algorithm also adds the 

index and symbol pair to the dictionary. When a symbol that is 

not yet found in the dictionary, the codeword has the index value 

0 and it is added to the dictionary as well. The algorithm 

gradually builds up a dictionary with this method. The algorithm 

for LZ78 is given below: 
 

 
 

LZ78 algorithm has the ability to capture patterns and hold 

them indefinitely but it also has a serious drawback. The 

dictionary keeps growing forever without bound. There are 

various methods to limit dictionary size, the easiest being to stop 

adding entries and continue like a static dictionary coder or to 

throw the dictionary away and start from scratch after a certain 

number of entries has been reached. The encoding done by LZ78 

is fast, compared to LZ77, and that is the main advantage of 

dictionary based compression. The important property of LZ77 

that the LZ78 algorithm preserves is the decoding is faster than 

the encoding. The decompression in LZ78 is faster compared to 

the process of compression.  

Terry Welch has presented his LZW (Lempel–Ziv–Welch) 

algorithm in 1984[22], which is based on LZ78. It basically 

applies the LZSS principle of not explicitly transmitting the next 

non-matching symbol to LZ78 algorithm. The dictionary has to 

be initialized with all possible symbols from the input alphabet. 

It guarantees that a match will always be found. LZW would 

only send the index to the dictionary. The input to the encoder is 

accumulated in a pattern ‘w’ as long as ‘w’ is contained in the 

dictionary. If the addition of another letter ‘K’ results in a 

pattern ‘w*K’ that is not in the dictionary, then the index of ‘w’ 

is transmitted to the receiver, the pattern ‘w*K’ is added to the 

dictionary and another pattern is started with the letter ‘K’. The 

algorithm then proceeds as follows: 

 

12 bits are set as the size of the pointer, making provision for 

up to 4096 dictionary entries. The dictionary becomes static as 

soon as the optimum limit of 4096 is reached.  

What distinguishes LZFG which was developed by Fiala and 

Greene [4], is the fact that encoding and decoding is fast and 

good compression is achieved without undue storage 

requirements. This algorithm uses the original dictionary 

building technique as LZ78 does but the only difference is that it 

stores the elements in a trie data structure. Here, the encoded 

characters are placed in a window (as in LZ77) to remove the 

oldest phrases from the dictionary. 

Lempel Ziv Compress (LZC) developed by Thomas et 

al.[18]  in 1985, which finds its application in UNIX Compress 

utility, is a slight modification of LZW. It has as its origin the 

implementation of LZW and subsequently stands modified as 

LZC with the specific objective of achieving faster and better 

compression. It has earned the distinction of being a high 

performance scheme as it is found to be one of the most 

practically and readily available schemes. A striking difference 

between LZW and LZC is that the latter, LZC, monitors the 

compression ratio of the output whereas the former, LZW, does 

not. It’s value lies in its utility to rebuild the dictionary from the 

scratch, clearing it completely if it crosses a threshold value.  

Lempel Ziv Tischer (LZT) developed by Tischer [19] in 

1987, is a modification of LZC. The main difference between 

LZT and LZC is that it creates space for new entries by 

discarding least recently used phrases (LRU replacement) if the 

dictionary is full.  

4. EXPERIMENTAL RESULTS 

In this section we focus our attention to compare the 

performance of various Statistical compression techniques (Run 

Length Encoding, Shannon-Fano coding, Huffman coding, 

Adaptive Huffman coding and Arithmetic coding), LZ77 family 

algorithms (LZ77, LZSS, LZH, LZB and LZR) and LZ78 family 

algorithms (LZ78, LZW, LZFG, LZC and LZT). Research 

works done to evaluate the efficiency of any compression 

w := NIL; 

while ( there is input ) { 

   K := next symbol from input; 

   if (wK exists in the dictionary) { 

       w := wK; 

   } else { 

    output (index(w)); 

    add wK to the dictionary; 

    w := k; 

   }   

} 

w := NIL; 

while ( there is input ) { 

   K := next symbol from input; 

   if (wK exists in the dictionary) { 

       w := wK; 

   } else { 

    output (index(w), K); 

    add wK to the dictionary; 

    w := NIL; 

   }   

} 
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algorithm are carried out having two important parameters.  One 

is the amount of compression achieved and the other is the time 

used by the encoding and decoding algorithms. We have tested 

several times the practical performance of the above mentioned 

techniques on files of Canterbury corpus and have found out the 

results of various Statistical coding techniques and Lempel -Ziv   

techniques selected for this study. Also, the comparative 

functioning and the compression ratio are presented in the tables 

given below.  

4.1 PRACTICAL COMPARISON OF STATISTICAL 

COMPRESSION TECHNIQUES 

Table.1 shows the comparative analysis between various 

Statistical compression techniques discussed above. 

As per the results shown in Table.1, for Run Length 

Encoding, for most of the files tested, this algorithm generates 

compressed files larger than the original files. This is due to the 

fewer amount of runs in the source file. For the other files, the 

compression rate is less. The average BPC obtained by this 

algorithm is 7.93. So, it is inferred that this algorithm can reduce 

on an average of about 4% of the original file. This cannot be 

considered as a significant improvement.  

BPC and amount of compression achieved for Shannon-Fano 

algorithm is presented in Table.1. The compression ratio for 

Shannon-Fano algorithm is in the range of 0.60 to 0.82 and the 

average BPC is 5.50.  

Compression ratio for Huffman coding algorithm falls in the 

range of 0.57 to 0.81. The compression ratio obtained by this 

algorithm is better compared to Shannon-Fano algorithm and the 

average Bits per character is 5.27.  

The amount of compression achieved by applying Adaptive 

Huffman coding is shown in Table.1. The adaptive version of 

Huffman coding builds a statistical model of the text being 

compressed as the file is read. From Table.1 it can be seen that, 

it differs a little from the Shannon-Fano coding algorithm and 

Static Huffman coding algorithm in the compression ratio 

achieved and the range is between 0.57 and 0.79. On an average 

the number of bits needed to code a character is 5.21. Previous 

attempts in this line of research make it clear that compression 

and decompression times are relatively high for this algorithm 

because the dynamic tree used in this algorithm has to be 

modified for each and every character in the source file.  

Arithmetic coding has been shown to compress files down to 

the theoretical limits as described by Information theory. Indeed, 

this algorithm proved to be one of the best performers among 

these methods based on compression ratio. It is clear that the 

amount of compression achieved by Arithmetic coding lies 

within the range of 0.57 to 0.76 and the average bits per 

character is 5.15.   

The overall performance in terms of average BPC of the 

above referred Statistical coding methods are shown in Fig.2 

comparative functioning and the compression ratio are presented 

in the tables given below.  

The overall behaviour of Shannon-Fano coding, Static 

Huffman coding and Adaptive Huffman coding is very similar 

with Arithmetic coding achieving the best average compression. 

The reason for this is the ability of this algorithm to keep the 

coding and the modeler separate. Unlike Huffman coding, no 

code tree needs to be transmitted to the receiver. Here, encoding 

is done to a group of symbols, not symbol by symbol, which 

leads to higher compression ratios. One more reason is its use of 

fractional values which leads to no code waste.  

 

Table.1. Comparison of BPC for different Statistical Compression techniques 

Sl. No. 
File 

names 

File 

Size 

RLE 

Shannon 

Fano 

coding 

Huffman 

coding 

Adaptive 

Huffman 

coding 

Arithmetic 

coding 

BPC BPC BPC BPC BPC 

1. Bib 111261 8.16 5.56 5.26 5.24 5.23 

2. book1 768771 8.17 4.83 4.57 4.56 4.55 

3. book2 610856 8.16 5.08 4.83 4.83 4.78 

4. news 377109 7.98 5.41 5.24 5.23 5.19 

5. obj1 21504 7.21 6.57 6.45 6.11 5.97 

6. obj2 246814 8.05 6.50 6.33 6.31 6.07 

7. paper1 53161 8.12 5.34 5.09 5.04 4.98 

8. paper2 82199 8.14 4.94 4.68 4.65 4.63 

9. progc 39611 8.10 5.47 5.33 5.26 5.23 

10. progl 71646 7.73 5.11 4.85 4.81 4.76 

11. progp 49379 7.47 5.28 4.97 4.92 4.89 

12. trans 93695 7.90 5.88 5.61 5.58 5.49 

 Average BPC 7.93 5.50 5.27 5.21 5.15 
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Fig.2. Chart showing Compression rates for various Statistical 

Compression techniques 

4.2 PRACTICAL COMPARISON OF LEMPEL ZIV  

ALGORITHMS 

This section deals with comparing the performance of 

Lempel-Ziv algorithms. LZ algorithms considered here are 

divided into two categories: those derived from LZ77 and those 

derived from LZ78. Table.2 shows the comparison of various 

algorithms that are derived from LZ77 (LZ77, LZSS, LZH, LZB 

and LZR). Table.3 shows the comparative analysis of algorithms 

that are derived from LZ78 (LZ78, LZW, LZFG, LZC and 

LZT). The BPC values that are referred from [1] are based on 

the following parameters.  The main parameter for LZ77 family 

is the size of the window on the text. Compression is best if the 

window is as big as possible but not bigger than the text, in 

general. Nevertheless, larger windows yield diminishing returns. 

A window as small as 8000 characters will perform much better, 

and give a result nearly as good as the ones derived from the 

larger windows. Another parameter which limits the number of 

characters is needed for some algorithms belonging to LZ 

family. Generally a limit of around 16 may work well. For 

LZ77, LZSS and LZB the storage (characters in window) were 

assumed to be of 8 KB, for LZH it was assumed as 16 KB and 

for LZR it was unbounded.  

Regarding LZ78 family, most of the algorithm requires one 

parameter to denote the maximum number of phrases stored. For 

the above mentioned LZ78 schemes, except LZ78 a limit of 

4096 phrases was used. 

Table.2. Comparison of BPC for the different LZ77 variants 

Sl. 

No. 

File 

names 

File 

Size 

LZR LZ77 LZSS LZH LZB 

BPC BPC BPC BPC BPC 

1. bib 111261 3.59 3.75 3.35 3.24 3.17 

2. book1 768771 4.61 4.57 4.08 3.73 3.86 

3. book2 610856 3.97 3.93 3.41 3.34 3.28 

4. news 377109 4.26 4.37 3.79 3.84 3.55 

5. obj1 21504 6.37 5.41 4.57 4.58 4.26 

6. obj2 246814 4.21 3.81 3.30 3.19 3.14 

7. paper1 53161 4.47 3.94 3.38 3.38 3.22 

8. paper2 82199 4.56 4.10 3.58 3.57 3.43 

9. progc 39611 4.39 3.84 3.24 3.25 3.08 

10. progl 71646 3.05 2.90 2.37 2.20 2.11 

11. progp 49379 2.97 2.93 2.36 2.17 2.08 

12. trans 93695 2.50 2.98 2.44 2.12 2.12 

 Average BPC 4.08 3.88 3.32 3.22 3.11 

The output of Table.2 reveals that the Bits Per Character is 

significant and most of the files have been compressed to a little 

less than half of the original size. Of LZ77 family, the 

performance of LZB is significant compared to LZ77, LZSS, 

LZH and LZR. The average BPC which is significant as shown 

in Table.2, which are 3.11.   

Amongst the performance of the LZ77 family, LZB 

outperforms LZH. This is because, LZH generates an optimal 

Huffman code for pointers whereas LZB uses a fixed code.  

Fig.3 shows a comparison of the compression rates for the 

different LZ77 variants.  

 

Fig.3. Chart showing Compression rates for the LZ77 family 

Table.3. Comparison of BPC for the different LZ78 variants 

Sl. 

No. 

File 

names 

File 

Size 

LZ78 LZW LZFG LZC LZT 

BPC BPC BPC BPC BPC 

1. bib 111261 3.95 3.84 2.90 3.89 3.76 

2. book1 768771 3.92 4.03 3.62 4.06 3.90 

3. book2 610856 3.81 4.52 3.05 4.25 3.77 

4. news 377109 4.33 4.92 3.44 4.90 4.36 

5. obj1 21504 5.58 6.30 4.03 6.15 4.93 

6. obj2 246814 4.68 9.81 2.96 5.19 4.08 

7. paper1 53161 4.50 4.58 3.03 4.43 3.85 

8. paper2 82199 4.24 4.02 3.16 3.98 3.69 

9. progc 39611 4.60 4.88 2.89 4.41 3.82 

10. progl 71646 3.77 3.89 1.97 3.57 3.03 

11. progp 49379 3.84 3.73 1.90 3.72 3.09 

12. trans 93695 3.92 4.24 1.76 3.94 3.46 

 Average BPC 4.26 4.90 2.89 4.37 3.81 
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Fig.4. Chart showing compression rates for the LZ78 family 

We have tried to infer from Table.3 the compression 

performance of LZ78 family. Most of the ASCII files are 

compressed to just less than half of the original size and within 

each file the amount of compression is consistent. The LZW 

method, having no boundary, accepts phrases and so the 

compression expands the file ‘obj2’ by 25%, which is 

considered as a weakness of this approach. Also from Table.3 it 

is obvious that the performance of LZFG is the best amongst 

these methods, giving an average BPC of 2.89 which is really 

significant.  Amongst LZ78 family, LZFG’s performance is the 

best because the scheme that it uses is carefully selected codes to 

represent pointers which are like the best scheme in the LZ77 

family. Fig.4 represents a comparison of the compression rates 

for the LZ78 family. 

5. CONCLUSION 

We have taken up Statistical compression techniques and 

Lempel Ziv algorithms for our study to examine the performance 

in compression. In the Statistical compression techniques, 

Arithmetic coding technique outperforms the rest with an 

improvement of 1.15% over Adaptive Huffman coding, 2.28% 

over Huffman coding, 6.36% over Shannon-Fano coding and 

35.06% over Run Length Encoding technique. LZB outperforms 

LZ77, LZSS, LZH and LZR to show a marked compression, 

which is 23.77% improvement over LZR, 19.85% improvement 

over LZ77, 6.33% improvement over LZSS and 3.42% 

improvement over LZH, amongst the LZ77 family. LZFG shows 

a significant result in the average BPC compared to LZ78, LZW, 

LZC and LZT. From the result it is evident that LZFG has 

outperformed the others with an improvement of 41.02% over 

LZW, 33.87% over LZC, 32.16% over LZ78 and 24.15% over 

LZT.   
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