
S SENTHIL AND L ROBERT: TEXT COMPRESSION ALGORITHMS – A COMPARATIVE STUDY

444

TEXT COMPRESSION ALGORITHMS - A COMPARATIVE STUDY

S. Senthil
1
 and L. Robert

2

1
Department of Computer Science, Vidyasagar College of Arts and Science, Tamil Nadu, India

E-mail: senthil_udt@rediffmail.com
2
Department of Computer Science & Information System, Community College in Al-Qwaiya, Shaqra University, KSA (Government Arts

College, Coimbatore),Tamil Nadu, India

E-mail: robert_lourdes@yahoo.com

Abstract

Data Compression may be defined as the science and art of the

representation of information in a crisply condensed form. For

decades, Data compression has been one of the critical enabling

technologies for the ongoing digital multimedia revolution. There are

a lot of data compression algorithms which are available to compress

files of different formats. This paper provides a survey of different

basic lossless data compression algorithms. Experimental results and

comparisons of the lossless compression algorithms using Statistical

compression techniques and Dictionary based compression

techniques were performed on text data. Among the Statistical coding

techniques, the algorithms such as Shannon-Fano Coding, Huffman

coding, Adaptive Huffman coding, Run Length Encoding and

Arithmetic coding are considered. Lempel Ziv scheme which is a

dictionary based technique is divided into two families: one derived

from LZ77 (LZ77, LZSS, LZH, LZB and LZR) and the other derived

from LZ78 (LZ78, LZW, LZFG, LZC and LZT). A set of interesting

conclusions are derived on this basis.

Keywords:

Encoding, Decoding, Lossless Compression, Dictionary Methods

1. INTRODUCTION

Data compression refers to reducing the amount of space

needed to store data or reducing the amount of time needed to

transmit data. The size of data is reduced by removing the

excessive information. The goal of data compression is to

represent a source in digital form with as few bits as possible

while meeting the minimum requirement of reconstruction of the

original.

Data compression can be lossless, only if it is possible to

exactly reconstruct the original data from the compressed

version. Such a lossless technique is used when the original data

of a source are so important that we cannot afford to lose any

details. Examples of such source data are medical images, text

and images preserved for legal reason, some computer

executable files, etc.

Another family of compression algorithms is called lossy as

these algorithms irreversibly remove some parts of data and only

an approximation of the original data can be reconstructed.

Approximate reconstruction may be desirable since it may lead

to more effective compression. However, it often requires a good

balance between the visual quality and the computation

complexity. Data such as multimedia images, video and audio

are more easily compressed by lossy compression techniques

because of the way human visual and hearing systems work.

Lossy algorithms achieve better compression effectiveness

than lossless algorithms, but lossy compression is limited to

audio, images, and video, where some loss is acceptable.

To brand either “lossless” or “lossy” the better technique of

the two is rather forced and misplaced as each has a distinctive

edge over the other in being useful as each has its own uses with

lossless techniques better in some cases and lossy technique

better in others.

There are quite a few lossless compression techniques

nowadays, and most of them are based on dictionary or

probability and entropy. In other words, they all try to utilize the

occurrence of the same character/string in the data to achieve

compression. The performance of statistical compression

techniques such as Shannon- Fano Coding, Huffman coding,

Adaptive Huffman coding, Run Length Encoding and

Arithmetic coding and the Dictionary based compression

technique Lempel-Ziv scheme is subdivided into two families:

one derived from LZ77 (LZ77, LZSS, LZH, LZB and LZR) and

the other from LZ78 (LZ78, LZW, LZFG, LZC and LZT) is

being explored critically in this paper.

The paper is organized as follows: Section I contains a brief

Introduction about Compression and its types, Section II

presents a brief explanation about Statistical compression

techniques, Section III discusses Dictionary-based compression

techniques, Section IV has its focus on comparing the

performance of Statistical coding techniques and Lempel Ziv

techniques and the final section contains the Conclusion.

2. STATISTICAL COMPRESSION TECHNIQUES

2.1 RUN LENGTH ENCODING TECHNIQUE (RLE)

One of the simplest compression techniques known as the

Run-Length Encoding (RLE) is created especially for data with

strings of repeated symbols (the length of the string is called a

run). The main idea behind this is to encode repeated symbols as

a pair: the length of the string and the symbol. For example, the

string ‘abbaaaaabaabbbaa’ of length 16 bytes (characters) is

represented as 7 integers plus 7 characters, which can be easily

encoded on 14 bytes (as for example ‘1a2b5a1b2a3b2a’). The

biggest problem with RLE is that in the worst case the size of

output data can be two times more than the size of input data. To

eliminate this problem, each pair (the lengths and the strings

separately) can be later encoded with an algorithm like Huffman

coding.

2.2 SHANNON FANO CODING

Shannon – Fano algorithm was simultaneously developed by

Claude Shannon (Bell labs) and R.M. Fano (MIT)[3,16]. It is

used to encode messages depending upon their probabilities. It

DOI: 10.21917/ijct.2011.0062

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2011, VOLUME: 02, ISSUE: 04

445

allots less number of bits for highly probable messages and more

number of bits for rarely occurring messages. The algorithm is

as follows:

i. Construct a frequency or probability table for the symbols

listed.

ii. Arrange the table, placing at the top the symbol that figures

most frequently.

iii. Bifurcate the tables into two halves, keeping as close as

possible the total frequency count of the upper half and the

total frequency count of the bottom half.

iv. Organise the divided tables in such a way assigning the

upper half of the list a binary digit ‘0’ and the lower half a

‘1’.

v. Apply repeatedly the steps 3 and 4 to each of the two

halves, subdividing groups and adding bits to the codes until

each symbol has become a corresponding leaf on the tree.

Generally, Shannon-Fano coding does not guarantee that an

optimal code is generated. Shannon – Fano algorithm is more

efficient when the probabilities are closer to inverses of powers

of 2.

2.3 HUFFMAN CODING

The Huffman coding algorithm [6] is named after its

inventor, David Huffman, who developed this algorithm as a

student in a class on information theory at MIT in 1950. It is a

more successful method used for text compression. The

Huffman coding algorithm is proven to be helpful in decreasing

the overall length of the data by assigning shorter codewords to

the more frequently occurring symbols, employing a strategy of

replacing fixed length codes (such as ASCII) by variable length

codes. A word of caution to those who use variable length

codewords is to try to create a uniquely decipherable prefix-code

precluding the need for creation of a separator to determine

codeword boundaries. Huffman coding creates such a code.

Huffman algorithm is not very different from Shannon -

Fano algorithm. Both the algorithms employ a variable bit

probabilistic coding method. The two algorithms significantly

differ in the manner in which the binary tree is built. Huffman

uses bottom-up approach and Shanon-Fano uses Top-down

approach.

The Huffman algorithm is simple and can be described in

terms of creating a Huffman code tree. The procedure for

building this tree is:

i. Start with a list of free nodes, where each node corresponds

to a symbol in the alphabet.

ii. Select two free nodes with the lowest weight from the list.

iii. Create a parent node for these two nodes selected and the

weight is equal to the weight of the sum of two child nodes.

iv. Remove the two child nodes from the list and the parent

node is added to the list of free nodes.

v. Repeat the process starting from step-2 until only a single

tree remains.

After building the Huffman tree, the algorithm creates a

prefix code for each symbol from the alphabet simply by

traversing the binary tree from the root to the node, which

corresponds to the symbol. It assigns 0 for a left branch and 1 for

a right branch.

The algorithm presented above is called as a semi-adaptive

or semi-static Huffman coding as it requires knowledge of

frequencies for each symbol from alphabet. Along with the

compressed output, the Huffman tree with the Huffman codes

for symbols or just the frequencies of symbols which are used to

create the Huffman tree must be stored. This information is

needed during the decoding process and it is placed in the header

of the compressed file.

2.4 ADAPTIVE HUFFMAN CODING

The probability distribution of the input set is required to

generate Huffman codes. The basic Huffman algorithm is

handicapped by the drawback that such a probability distribution

of the input set is often not available. Moreover it is not suitable

to cases when probabilities of the input symbols are changing.

The Adaptive Huffman coding technique was developed based

on Huffman coding first by Newton Faller [2] and by Robert G.

Gallager[5] and then improved by Donald Knuth [8] and

Jefferey S. Vitter [20,21]. In this method, a different approach

called sibling property is introduced to build a Huffman tree.

Dynamically changing Huffman code trees, whose leaves are

representative of the characters seen so far, are maintained by

both the sender and receiver. Initially the tree contains only the

0-node, a special node representing messages that have yet to be

seen. Here, the Huffman tree includes a counter for each symbol

and the counter is updated every time when a corresponding

input symbol is coded. Huffman tree under construction is still a

Huffman tree if it is ensured by checking whether the sibling

property is retained. If the sibling property is violated, the tree

has to be restructured to ensure this property. Usually this

algorithm generates codes that are more effective than static

Huffman coding. Storing Huffman tree along with the Huffman

codes for symbols with the Huffman tree is not needed here. It is

superior to Static Huffman coding in two aspects: It requires

only one pass through the input and it adds little or no overhead

to the output. But this algorithm has to rebuild the entire

Huffman tree after encoding each symbol which becomes slower

than the static Huffman coding.

2.5 ARITHMETIC CODING

Huffman and Shannon-Fano coding techniques suffer from

the fact that an integral value of bits is needed to code a

character. Arithmetic coding completely bypasses the idea of

replacing every input symbol with a codeword. Instead it

replaces a stream of input symbols with a single floating point

number as output. The basic concept of arithmetic coding was

developed by Elias in the early 1960’s and further developed

largely by Pasco [11], Rissanen [13, 14] and Langdon [9].

The primary objective of Arithmetic coding is to assign an

interval to each potential symbol. Later this interval is assigned a

decimal number. The algorithm commences with an interval of

0.0 and 1.0. The interval is subdivided into a smaller interval,

based on the proportion to the input symbol’s probability, after

each input symbol from the alphabet is read. This subinterval

then becomes the new interval and is divided into parts

according to probability of symbols from the input alphabet.

This is repeated for each and every input symbol. And, at the

end, any floating point number from the final interval uniquely

determines the input data.

S SENTHIL AND L ROBERT: TEXT COMPRESSION ALGORITHMS – A COMPARATIVE STUDY

446

3. DICTIONARY BASED COMPRESSION

TECHNIQUES

Arithmetic algorithms as well as Huffman algorithms are

based on a statistical model, namely an alphabet and the

probability distribution of a source. Dictionary coding

techniques rely upon the observation that there are correlations

between parts of data (recurring patterns). The basic idea is to

replace those repetitions by (shorter) references to a "dictionary"

containing the original.

3.1 LEMPEL ZIV ALGORITHMS

The Lempel Ziv Algorithm is an algorithm for lossless data

compression. This algorithm is an offshoot of the two

algorithms proposed by Jacob Ziv and Abraham Lempel in their

landmark papers in 1977 and 1978. Fig.1 represents

diagrammatically the family of Lempel Ziv algorithms.

Fig.1. The family of Lempel Ziv algorithms

3.1.1 LZ77:

Jacob Ziv and Abraham Lempel have presented their

dictionary-based scheme in 1977 for lossless data compression

[23]. Today this technique is much remembered by the name of

the authors and the year of implementation of the same.

LZ77 exploits the fact that words and phrases within a text

file are likely to be repeated. When there is repetition, they can

be encoded as a pointer to an earlier occurrence, with the pointer

accompanied by the number of characters to be matched. It is a

very simple adaptive scheme that requires no prior knowledge of

the source and seems to require no assumptions about the

characteristics of the source.

In the LZ77 approach, the dictionary functions merely as a

portion of the previously encoded sequence. The examination of

the input sequence is carried out by the encoder, pressing into

service a sliding window which consists of two parts: a search

buffer that contains a portion of the recently encoded sequence

and a look-ahead buffer that contains the next portion of the

sequence to be encoded. The algorithm searches the sliding

window for the longest match with the beginning of the look-

ahead buffer and outputs a reference (a pointer) to that match. It

is possible that there is no match at all, so the output cannot

contain just pointers. In LZ77 the representation of the reference

is always in the form of a triple <o,l,c>, where ‘o’ stands for an

offset to the match, ‘l’ represents length of the match, and ‘c’

denotes the next symbol after the match. A null pointer is

generated as the reference in case of absence of the match (both

the offset and the match length equal to 0) and the first symbol

in the look-ahead buffer [7].

The values of an offset to a match and length must be limited

to some maximum constants. Moreover the compression

performance of LZ77 mainly depends on these values. Usually

the offset is encoded on 12–16 bits, so it is limited from 0 to

65535 symbols. So, there is no need to remember more than

65535 last seen symbols in the sliding window. The match

length is usually encoded on 8 bits, which gives maximum

match length equal to 255[12].

The LZ77 algorithm is given below:

With regard to other algorithms the time for compression and

decompression is just the same. In LZ77 encoding process one

reference (a triple) is transmitted for several input symbols and

hence it is very fast. The decoding is much faster than the

encoding in this process and it is one of the important features of

this process. In LZ77, most of the LZ77 compression time is,

however, used in searching for the longest match, whereas the

LZ77 algorithm decompression is quick as each reference is

simply replaced with the string, which it points to.

LZ77 scheme can be made to function more efficiently

through several ways. Efficient encoding with the triples forms

the basis for many of the improvements. There are several

variations on LZ77 scheme, the best known are LZSS, LZH and

LZB.

LZSS which was published by Storer and Szymanksi [17]

removes the requirement of mandatory inclusion of the next non-

matching symbol into each codeword. Their algorithm uses fixed

length codewords consisting of offset and length to denote

references. They propose to include an extra bit (a bit flag) at

each coding step to indicate whether the output code represents a

pair (a pointer and a match length) or a single symbol.

LZH is the scheme that combines the Ziv – Lempel and

Huffman techniques. Here coding is performed in two passes.

The first is essentially same as LZSS, while the second uses

statistics measured in the first to code pointers and explicit

characters using Huffman coding.

LZB was published by Mohammad Banikazemi[10] uses an

elaborate scheme for encoding the references and lengths with

varying sizes. The size of every LZSS pointer remains the same

despite the length of the phrase it represents. Different sized

pointers prove to be efficacious in practice as they help achieve a

better compression since some phrase lengths are prone to occur

more frequently than others. LZB is a technique that uses a

different coding for both components of the pointer. LZB

achieves a better compression than LZSS and has the added

virtue of being less sensitive to the choice of parameters.

LZR, developed by Michael Rodeh et al. [15] in the year

1991, is a modification of LZ77. It is projected to be linear time

While (lookAheadBuffer not empty) {

get a reference (position, length) to longest match;

if (length > 0)

{

 output (position, length, next symbol);

 shift the window length+1 positions along;

 }

else {

output (0, 0, first symbol in the lookahead buffer);

shift the window 1 character along;

 }

}

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2011, VOLUME: 02, ISSUE: 04

 447

alternative to LZ77. It is markedly different from the already

existing algorithm in its capacity to allow pointers to denote any

position in the encoded part of the text. However, it should be

mentioned that LZR consumes considerably larger amount of

memory than the others do. Here, the dictionary grows without

any limit. The two major drawbacks of this algorithm are

a) More and more memory is required as encoding proceeds;

no more of the input is remembered if the memory is full or

the memory should be cleared for resumption of the coding

process.

b) It also suffers from a drawback of the increase in the size of

the text in which the matches are sought. As it is a

unfeasible variant its performance is found to be not

satisfactory.

3.1.2 LZ78:

In 1978 Jacob Ziv and Abraham Lempel presented their

dictionary based scheme [24], which is known as LZ78. It is a

dictionary based compression algorithm that maintains an

explicit dictionary. This dictionary has to be built both at the

encoding and decoding side and they must follow the same rules

to ensure that they use an identical dictionary. The codewords

output by the algorithm consists of two elements <i,c> where ‘i’

is an index referring to the longest matching dictionary entry and

the first non-matching symbol. In addition to outputting the

codeword for storage / transmission the algorithm also adds the

index and symbol pair to the dictionary. When a symbol that is

not yet found in the dictionary, the codeword has the index value

0 and it is added to the dictionary as well. The algorithm

gradually builds up a dictionary with this method. The algorithm

for LZ78 is given below:

LZ78 algorithm has the ability to capture patterns and hold

them indefinitely but it also has a serious drawback. The

dictionary keeps growing forever without bound. There are

various methods to limit dictionary size, the easiest being to stop

adding entries and continue like a static dictionary coder or to

throw the dictionary away and start from scratch after a certain

number of entries has been reached. The encoding done by LZ78

is fast, compared to LZ77, and that is the main advantage of

dictionary based compression. The important property of LZ77

that the LZ78 algorithm preserves is the decoding is faster than

the encoding. The decompression in LZ78 is faster compared to

the process of compression.

Terry Welch has presented his LZW (Lempel–Ziv–Welch)

algorithm in 1984[22], which is based on LZ78. It basically

applies the LZSS principle of not explicitly transmitting the next

non-matching symbol to LZ78 algorithm. The dictionary has to

be initialized with all possible symbols from the input alphabet.

It guarantees that a match will always be found. LZW would

only send the index to the dictionary. The input to the encoder is

accumulated in a pattern ‘w’ as long as ‘w’ is contained in the

dictionary. If the addition of another letter ‘K’ results in a

pattern ‘w*K’ that is not in the dictionary, then the index of ‘w’

is transmitted to the receiver, the pattern ‘w*K’ is added to the

dictionary and another pattern is started with the letter ‘K’. The

algorithm then proceeds as follows:

12 bits are set as the size of the pointer, making provision for

up to 4096 dictionary entries. The dictionary becomes static as

soon as the optimum limit of 4096 is reached.

What distinguishes LZFG which was developed by Fiala and

Greene [4], is the fact that encoding and decoding is fast and

good compression is achieved without undue storage

requirements. This algorithm uses the original dictionary

building technique as LZ78 does but the only difference is that it

stores the elements in a trie data structure. Here, the encoded

characters are placed in a window (as in LZ77) to remove the

oldest phrases from the dictionary.

Lempel Ziv Compress (LZC) developed by Thomas et

al.[18] in 1985, which finds its application in UNIX Compress

utility, is a slight modification of LZW. It has as its origin the

implementation of LZW and subsequently stands modified as

LZC with the specific objective of achieving faster and better

compression. It has earned the distinction of being a high

performance scheme as it is found to be one of the most

practically and readily available schemes. A striking difference

between LZW and LZC is that the latter, LZC, monitors the

compression ratio of the output whereas the former, LZW, does

not. It’s value lies in its utility to rebuild the dictionary from the

scratch, clearing it completely if it crosses a threshold value.

Lempel Ziv Tischer (LZT) developed by Tischer [19] in

1987, is a modification of LZC. The main difference between

LZT and LZC is that it creates space for new entries by

discarding least recently used phrases (LRU replacement) if the

dictionary is full.

4. EXPERIMENTAL RESULTS

In this section we focus our attention to compare the

performance of various Statistical compression techniques (Run

Length Encoding, Shannon-Fano coding, Huffman coding,

Adaptive Huffman coding and Arithmetic coding), LZ77 family

algorithms (LZ77, LZSS, LZH, LZB and LZR) and LZ78 family

algorithms (LZ78, LZW, LZFG, LZC and LZT). Research

works done to evaluate the efficiency of any compression

w := NIL;

while (there is input) {

 K := next symbol from input;

 if (wK exists in the dictionary) {

 w := wK;

 } else {

 output (index(w));

 add wK to the dictionary;

 w := k;

 }

}

w := NIL;

while (there is input) {

 K := next symbol from input;

 if (wK exists in the dictionary) {

 w := wK;

 } else {

 output (index(w), K);

 add wK to the dictionary;

 w := NIL;

 }

}

S SENTHIL AND L ROBERT: TEXT COMPRESSION ALGORITHMS – A COMPARATIVE STUDY

448

algorithm are carried out having two important parameters. One

is the amount of compression achieved and the other is the time

used by the encoding and decoding algorithms. We have tested

several times the practical performance of the above mentioned

techniques on files of Canterbury corpus and have found out the

results of various Statistical coding techniques and Lempel -Ziv

techniques selected for this study. Also, the comparative

functioning and the compression ratio are presented in the tables

given below.

4.1 PRACTICAL COMPARISON OF STATISTICAL

COMPRESSION TECHNIQUES

Table.1 shows the comparative analysis between various

Statistical compression techniques discussed above.

As per the results shown in Table.1, for Run Length

Encoding, for most of the files tested, this algorithm generates

compressed files larger than the original files. This is due to the

fewer amount of runs in the source file. For the other files, the

compression rate is less. The average BPC obtained by this

algorithm is 7.93. So, it is inferred that this algorithm can reduce

on an average of about 4% of the original file. This cannot be

considered as a significant improvement.

BPC and amount of compression achieved for Shannon-Fano

algorithm is presented in Table.1. The compression ratio for

Shannon-Fano algorithm is in the range of 0.60 to 0.82 and the

average BPC is 5.50.

Compression ratio for Huffman coding algorithm falls in the

range of 0.57 to 0.81. The compression ratio obtained by this

algorithm is better compared to Shannon-Fano algorithm and the

average Bits per character is 5.27.

The amount of compression achieved by applying Adaptive

Huffman coding is shown in Table.1. The adaptive version of

Huffman coding builds a statistical model of the text being

compressed as the file is read. From Table.1 it can be seen that,

it differs a little from the Shannon-Fano coding algorithm and

Static Huffman coding algorithm in the compression ratio

achieved and the range is between 0.57 and 0.79. On an average

the number of bits needed to code a character is 5.21. Previous

attempts in this line of research make it clear that compression

and decompression times are relatively high for this algorithm

because the dynamic tree used in this algorithm has to be

modified for each and every character in the source file.

Arithmetic coding has been shown to compress files down to

the theoretical limits as described by Information theory. Indeed,

this algorithm proved to be one of the best performers among

these methods based on compression ratio. It is clear that the

amount of compression achieved by Arithmetic coding lies

within the range of 0.57 to 0.76 and the average bits per

character is 5.15.

The overall performance in terms of average BPC of the

above referred Statistical coding methods are shown in Fig.2

comparative functioning and the compression ratio are presented

in the tables given below.

The overall behaviour of Shannon-Fano coding, Static

Huffman coding and Adaptive Huffman coding is very similar

with Arithmetic coding achieving the best average compression.

The reason for this is the ability of this algorithm to keep the

coding and the modeler separate. Unlike Huffman coding, no

code tree needs to be transmitted to the receiver. Here, encoding

is done to a group of symbols, not symbol by symbol, which

leads to higher compression ratios. One more reason is its use of

fractional values which leads to no code waste.

Table.1. Comparison of BPC for different Statistical Compression techniques

Sl. No.
File

names

File

Size

RLE

Shannon

Fano

coding

Huffman

coding

Adaptive

Huffman

coding

Arithmetic

coding

BPC BPC BPC BPC BPC

1. Bib 111261 8.16 5.56 5.26 5.24 5.23

2. book1 768771 8.17 4.83 4.57 4.56 4.55

3. book2 610856 8.16 5.08 4.83 4.83 4.78

4. news 377109 7.98 5.41 5.24 5.23 5.19

5. obj1 21504 7.21 6.57 6.45 6.11 5.97

6. obj2 246814 8.05 6.50 6.33 6.31 6.07

7. paper1 53161 8.12 5.34 5.09 5.04 4.98

8. paper2 82199 8.14 4.94 4.68 4.65 4.63

9. progc 39611 8.10 5.47 5.33 5.26 5.23

10. progl 71646 7.73 5.11 4.85 4.81 4.76

11. progp 49379 7.47 5.28 4.97 4.92 4.89

12. trans 93695 7.90 5.88 5.61 5.58 5.49

 Average BPC 7.93 5.50 5.27 5.21 5.15

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2011, VOLUME: 02, ISSUE: 04

 449

Fig.2. Chart showing Compression rates for various Statistical

Compression techniques

4.2 PRACTICAL COMPARISON OF LEMPEL ZIV

ALGORITHMS

This section deals with comparing the performance of

Lempel-Ziv algorithms. LZ algorithms considered here are

divided into two categories: those derived from LZ77 and those

derived from LZ78. Table.2 shows the comparison of various

algorithms that are derived from LZ77 (LZ77, LZSS, LZH, LZB

and LZR). Table.3 shows the comparative analysis of algorithms

that are derived from LZ78 (LZ78, LZW, LZFG, LZC and

LZT). The BPC values that are referred from [1] are based on

the following parameters. The main parameter for LZ77 family

is the size of the window on the text. Compression is best if the

window is as big as possible but not bigger than the text, in

general. Nevertheless, larger windows yield diminishing returns.

A window as small as 8000 characters will perform much better,

and give a result nearly as good as the ones derived from the

larger windows. Another parameter which limits the number of

characters is needed for some algorithms belonging to LZ

family. Generally a limit of around 16 may work well. For

LZ77, LZSS and LZB the storage (characters in window) were

assumed to be of 8 KB, for LZH it was assumed as 16 KB and

for LZR it was unbounded.

Regarding LZ78 family, most of the algorithm requires one

parameter to denote the maximum number of phrases stored. For

the above mentioned LZ78 schemes, except LZ78 a limit of

4096 phrases was used.

Table.2. Comparison of BPC for the different LZ77 variants

Sl.

No.

File

names

File

Size

LZR LZ77 LZSS LZH LZB

BPC BPC BPC BPC BPC

1. bib 111261 3.59 3.75 3.35 3.24 3.17

2. book1 768771 4.61 4.57 4.08 3.73 3.86

3. book2 610856 3.97 3.93 3.41 3.34 3.28

4. news 377109 4.26 4.37 3.79 3.84 3.55

5. obj1 21504 6.37 5.41 4.57 4.58 4.26

6. obj2 246814 4.21 3.81 3.30 3.19 3.14

7. paper1 53161 4.47 3.94 3.38 3.38 3.22

8. paper2 82199 4.56 4.10 3.58 3.57 3.43

9. progc 39611 4.39 3.84 3.24 3.25 3.08

10. progl 71646 3.05 2.90 2.37 2.20 2.11

11. progp 49379 2.97 2.93 2.36 2.17 2.08

12. trans 93695 2.50 2.98 2.44 2.12 2.12

 Average BPC 4.08 3.88 3.32 3.22 3.11

The output of Table.2 reveals that the Bits Per Character is

significant and most of the files have been compressed to a little

less than half of the original size. Of LZ77 family, the

performance of LZB is significant compared to LZ77, LZSS,

LZH and LZR. The average BPC which is significant as shown

in Table.2, which are 3.11.

Amongst the performance of the LZ77 family, LZB

outperforms LZH. This is because, LZH generates an optimal

Huffman code for pointers whereas LZB uses a fixed code.

Fig.3 shows a comparison of the compression rates for the

different LZ77 variants.

Fig.3. Chart showing Compression rates for the LZ77 family

Table.3. Comparison of BPC for the different LZ78 variants

Sl.

No.

File

names

File

Size

LZ78 LZW LZFG LZC LZT

BPC BPC BPC BPC BPC

1. bib 111261 3.95 3.84 2.90 3.89 3.76

2. book1 768771 3.92 4.03 3.62 4.06 3.90

3. book2 610856 3.81 4.52 3.05 4.25 3.77

4. news 377109 4.33 4.92 3.44 4.90 4.36

5. obj1 21504 5.58 6.30 4.03 6.15 4.93

6. obj2 246814 4.68 9.81 2.96 5.19 4.08

7. paper1 53161 4.50 4.58 3.03 4.43 3.85

8. paper2 82199 4.24 4.02 3.16 3.98 3.69

9. progc 39611 4.60 4.88 2.89 4.41 3.82

10. progl 71646 3.77 3.89 1.97 3.57 3.03

11. progp 49379 3.84 3.73 1.90 3.72 3.09

12. trans 93695 3.92 4.24 1.76 3.94 3.46

 Average BPC 4.26 4.90 2.89 4.37 3.81

0

1

2

3

4

5

6

7

8

9

B
it

s
P

e
r
 C

h
a

r
a

c
te

r
(B

P
C

)

File Names

RLE

Shannon Fano coding

Huffman coding

Adaptive Huffman coding

0

1

2

3

4

5

6

7

B
it

s
P

e
r
 C

h
a

r
a

c
te

r
(B

P
C

)

File Names

LZR LZ77

LZSS LZH

LZB

S SENTHIL AND L ROBERT: TEXT COMPRESSION ALGORITHMS – A COMPARATIVE STUDY

450

Fig.4. Chart showing compression rates for the LZ78 family

We have tried to infer from Table.3 the compression

performance of LZ78 family. Most of the ASCII files are

compressed to just less than half of the original size and within

each file the amount of compression is consistent. The LZW

method, having no boundary, accepts phrases and so the

compression expands the file ‘obj2’ by 25%, which is

considered as a weakness of this approach. Also from Table.3 it

is obvious that the performance of LZFG is the best amongst

these methods, giving an average BPC of 2.89 which is really

significant. Amongst LZ78 family, LZFG’s performance is the

best because the scheme that it uses is carefully selected codes to

represent pointers which are like the best scheme in the LZ77

family. Fig.4 represents a comparison of the compression rates

for the LZ78 family.

5. CONCLUSION

We have taken up Statistical compression techniques and

Lempel Ziv algorithms for our study to examine the performance

in compression. In the Statistical compression techniques,

Arithmetic coding technique outperforms the rest with an

improvement of 1.15% over Adaptive Huffman coding, 2.28%

over Huffman coding, 6.36% over Shannon-Fano coding and

35.06% over Run Length Encoding technique. LZB outperforms

LZ77, LZSS, LZH and LZR to show a marked compression,

which is 23.77% improvement over LZR, 19.85% improvement

over LZ77, 6.33% improvement over LZSS and 3.42%

improvement over LZH, amongst the LZ77 family. LZFG shows

a significant result in the average BPC compared to LZ78, LZW,

LZC and LZT. From the result it is evident that LZFG has

outperformed the others with an improvement of 41.02% over

LZW, 33.87% over LZC, 32.16% over LZ78 and 24.15% over

LZT.

REFERENCES

[1] Bell T.C, Cleary J.G, and Witten I.H., “Text Compression”,

Prentice Hall, Upper Saddle River, NJ, 1990.

[2] Faller N, “An adaptive system for data compression”, In

Record of the 7th Asilornar, IEEE Conference on Circuits,

Systems and Computers, pp.593-597, Piscataway, NJ, 1973.

[3] Fano R.M, “The Transmission of Information”, Technical

Report No. 65, Research Laboratory of Electronics, M.I.T.,

Cambridge, Mass, 1949.

[4] Fiala E.R, and D.H. Greene, “Data Compression with finite

windows”, Communications of the ACM, Vol. 32, No.4, pp.

490-505, 1989.

[5] Gallager R.G., “Variations on a theme by Huffman”, IEEE

Transactions on Information Theory, Vol. 24, No. 6, pp.

668-674, 1978.

[6] Huffman D.A., “A method for the construction of

minimum-redundancy codes”, Proceedings of the Institute

of Radio Engineers, Vol. 40, No.9, pp. 1098–1101, 1952.

[7] Khalid Sayood, “Introduction to Data Compression”, 2
nd

Edition, San Francisco, CA, Morgan Kaufmann, 2000.

[8] Knuth D.E., “Dynamic Huffman coding”, Journal of

Algorithms, Vol. 6, No. 2, pp. 163-180, 1985.

[9] Langdon G.G., “An introduction to arithmetic coding”, IBM

Journal of Research and Development, Vol. 28, No. 2, pp.

135–149, 1984.

[10] Mohammad Banikazemi, “LZB: Data Compression with

Bounded References”, Proceedings of the 2009 Data

Compression Conference, IEEE Computer Society, pp. 436,

2009.

[11] Pasco.R., “Source coding algorithms for fast data

compression”, Ph.D thesis, Department of Electrical

Engineering, Stanford University, 1976.

[12] Przemyslaw Skibinski, “Reversible Data transforms that

improve effectiveness of universal lossless data

compression”, Ph.D thesis, Department of Mathematics and

Computer Science, University of Wroclaw, 2006.

[13] Rissanen J., “Generalised Kraft inequality and arithmetic

coding”, IBM Journal of Research and Development, Vol.

20, No. 3, pp. 198–203, 1976.

[14] Rissanen J and Langdon G.G., “Arithmetic coding”, IBM

Journal of Research and Development, Vol. 23, No. 2, pp.

149–162, 1979.

[15] Rodeh M., Pratt V. R., and Even S, “Linear algorithm for

data compression via string matching”, Journal of the ACM,

Vol. 28, No. 1 pp. 16-24, 1981.

[16] Shannon C.E., “A mathematical theory of communication,”

The Bell System Technical Journal, Vol. 27, pp. 398-403,

1948.

[17] Storer J and Szymanski T.G., “Data compression via textual

substitution”, Journal of the ACM, Vol. 29, pp. 928–951,

1982.

[18] Thomas S. W., Mckie J., Davies S., Turkowski K., Woods

J. A., and Orost J. W. , “Compress (Version 4.0) program

and documentation”, Available from joe@petsd.UUCP,

1985.

[19] Tischer P., “A modified Lempel-Ziv-Welch data

compression scheme”, Australian Computer Science

Communication, Vol. 9, No. 1, pp. 262-272, 1987.

[20] Vitter J.S., “Design and analysis of dynamic Huffman

codes”, Journal of the ACM, Vol. 34, No. 4, pp.825-845,

1987.

0

2

4

6

8

10

12

B
it

s
P

e
r
 C

h
a

r
a

c
te

r
(B

P
C

)

File Names

LZ78 LZW LZFG

LZC LZT

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2011, VOLUME: 02, ISSUE: 04

 451

[21] Vitter J.S., “Dynamic Huffman coding”, ACM Transactions

on Mathematical Software, Vol. 15, No.2, pp. 158-167,

1989.

[22] Welch T.A., “A technique for high-performance data

compression”, IEEE Computer, Vol. 17, No. 6, pp. 8–19,

1984.

[23] Ziv. J and Lempel A., “A Universal Algorithm for

Sequential Data Compression”, IEEE Transactions on

Information Theory, Vol. 23, No. 3, pp. 337–342, 1977.

[24] Ziv. J and Lempel A., “Compression of Individual

Sequences via Variable-Rate Coding”, IEEE Transactions

on Information Theory, Vol. 24, No. 5, pp. 530–536, 1978.

