
G S MAHALAKSHMI AND S SENTHIL KUMAR: HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH

SCATTERNETS

412

HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET

SCHEDULING FOR BLUETOOTH SCATTERNETS

G.S. Mahalakshmi
1
 and S. Senthilkumar

2

Department of Computer Science and Engineering, Anna University, Chennai, India

E-mail:
1
mahalakshmi@cs.annauniv.edu and

2
 senthil_ssk@hotmail.com

Abstract

Scheduling in piconets has emerged as a challenging research area.

Interpiconet scheduling focuses on when a bridge is switched among

various piconets and how a bridge node communicates with the

masters in different piconets. This paper proposes an interpiconet

scheduling algorithm named, hold mode based dynamic traffic

priority load adaptive scheduling. The bridges are adaptively switched

between the piconets according to various traffic loads. The main goal

is to maximize the utilization of the bridge by reducing the bridge

switch wastes, utilize intelligent decision making algorithm, resolve

conflict between the masters, and allow negotiation for bridge

utilization in HDPLIS using bridge failure-bridge repair procedure .

The Hold mode - dynamic traffic - priority based - load adaptive

scheduling reduces the number of bridge switch wastes and hence

increases the efficiency of the bridge which results in increased

performance of the system.

Keywords:

Bridge, Interpiconet Scheduling, Scatternet

1. INTRODUCTION

Bluetooth is a low-cost, low-power, and short-range radio

technology used for wireless personal area networks. It operates

in the unlicensed 2.4 GHz ISM band, frequency hopping spread

spectrum (FHSS). The hopping frequencies cover 79 channels,

each channel being 1 MHz wide. A piconet is a basic structure in

bluetooth, which is constructed in an ad hoc fashion by one

master and up to seven active slaves. A piconet can only contain

one master and the master administers the whole piconet. A

slave may connect to more than one master. A slave connecting

to two or more masters is called a bridge. A set of piconets that

are interconnected by bridges is referred as a scatternet.

Although a bridge can participate in two or more piconets, it can

only serve in one piconet at a time. The bridge will switch

among all connected piconets in a time-sharing fashion. Several

piconets can be interconnected via bridge nodes to create a

Scatternet. Bridge nodes are capable of time-sharing between

multiple piconets, receiving packets from one piconet and

forwarding them to another .A bridge node can be a master in

one piconet and act as slave in other piconets called

Master/Slave Bridge. Alternatively, if a bridge node acts as a

slave in all the piconets in which it is connected to, it is called

Slave/Slave Bridge.

The scheduling of bridge switching among piconets is

referred to as interpiconet scheduling. Obviously, an ill-

considered scheduling may cause severe system degradation. An

interpiconet scheduling algorithm can be developed and be well

designed so as to help the bridge switch efficiently among

piconets. On the other hand, the intrapiconet scheduling is

referred to as the scheduling of a master serving the slaves

connected by that master. Polling is a general scheme adopted

for intrapiconet scheduling.

The main issue in inter-piconet scheduling is the switching of

bridge node between piconets. Since each bluetooth device has

one transceiver, it can participate only in one piconet at a time.

As each master uses its own local clock, a bridge node has to re-

synchronize with new master when it switches to a new piconet.

The switch between two piconets may result in a slot loss.

Another problem occurs when two masters try to access the

bridge node simultaneously. This is referred to as bridge node

conflict. Since a bridge node can listen to only one master at a

time, the other master will not be able to communicate with the

bridge node and will waste slots for polling operations.

In this paper we propose HDPLIS to eliminate bridge node

conflicts and bridge switch wastes. In multi bridge scheme, a

master adapts to increase traffic at a particular bridge i.e. by

making a transfer to another bridge containing medium traffic

via dynamic traffic procedure. This is done by calculating the

overall traffic of the master. In the topology there are 3 piconets

sharing a bridge, when two masters try to access the bridge node

simultaneously, assuming a single bridge scenario, traffic value

is calculated with respect to load adaption in every master. Then,

the masters communicate their traffic value to the bridge, for

predicting which master has maximum load as per the topology.

If more than two masters have the same load, master conflict is

said to occur. In a multi bridge scenario, much similar to single

bridge scenario, the master conflict problem arises, but here each

master maintain its‘ own dynamic traffic value. When this

information is sent to the bridge, the bridge checks the dynamic

table value from its piconets. If more than one master has the

same dynamic traffic value, every such master attempts to access

the bridge simultaneously. In this situation the master conflict is

said to occur.

This paper eliminates master conflicts by using negotiation

based bridge switch procedure. To avoid this master conflict

problem in a single bridge scenario, we utilize the total traffic

time (current load) and queue consume time of all masters. From

this we calculate the bridge slot time for every master.

Total traffic value is associated with its estimate upcoming

traffic value. If master 101 is greater than 102 means the bridge

continue with 101. If not, bridge checks the traffic value from its

piconets. If any one of them has max traffic (102), the bridge

switches to 102 from 101. Thus, the bridge is switched among

the piconets based on traffic value, as a measure to avoid master

conflict problem.

In multi-bridge bluetooth scenario the master conflict

resolution is calculated based on dynamic traffic values. Here,

the problem lies in association with active masters!. If more than

one active master has equal traffic then it is allowed to enter into

the negotiation procedure. This is followed by bit vector

DOI: 10.21917/ijct.2011.0058

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2011, VOLUME: 02, ISSUE: 03

413

procedure. As per this procedure 0 is assigned to a bridge which

is not willing to allow the other bridge‘s master due to high

congestion. 1 is assigned to a bridge if it is willing to allow other

bridge‘s master which is an indicative of low congestion.

Negotiation procedure analyses which master has maximum

dynamic threshold value via intelligent decision approach and

informs the same to the bridge.

2. RELATED WORK

The interpiconet scheduling problem has been extensively

addressed in the past, and several scheduling algorithms on this

issue have been developed [1], [5], [8], [10], [11]. These

algorithms schedule the presence, sequence and duration for

which the bridge stays in every associated piconet and should

coordinate with intrapiconet scheduling algorithms. In [13]

Zhang and Cao proposed a ‗Credit Based Scheduling (CBS)‘

scheme, which focuses on the fair link bandwidth allocation in

node. Each node assigns credits to each of the connected link.

The credits are allocated according to link utilization. Since each

node makes its own decision to communicate with other node

according to local share of the bandwidth, bridge node conflict

may occur sometimes.

In [10] Vojislav Misic et al proposed a ‗scatternet scheduling

algorithm‘, which utilizes a pseudo random sequence to define

the start time for all the meetings between two nodes. In

addition, individual node will skip some of the meeting time

based on traffic change. However since two nodes do not

guarantee the meet at the same time, it may result as a miss of

meeting time between two nodes.

In [14] Raymond Lee and Vincent Wong proposed the

utilization of a ‗flexible scatternet-wide scheduling‘ scheme,

which places an adjustable switch table on each bridge node and

master. Both bridge node and master decide when they can

communicate with each other. Since this scheme gives a higher

priority for the traffic on bridge nodes, it may not maintain

fairness among all nodes.

In [12] Cordeiro et al proposed a ‗locally coordinated

scheduling algorithm‘ scheme which schedules the meeting time

based on the traffic conditions. Each time before a node

terminates the meeting with the connected node, they will

negotiate the start time and duration time for the next meeting.

This scheme does not consider the fairness among the nodes.

In [5] Har-Shai et al proposed a ‗load adaptive algorithm‘,

which utilizes decision variables to determine the period for a

bridge node to stay in each piconet. Although the time for a

bridge node to spend on a piconet can be adapted to traffic

change, this scheme focuses on small-scale scatternets.

In [10] Racz et al proposed a ‗distributed scatternet-

scheduling algorithm‘, which allocates bandwidth to every link

based on traffic estimation. Each time when a master meets with

a bridge node, they will negotiate their next meeting time based

on local traffic estimation. However in a dynamic environment,

it is difficult to predict accurately the future traffic. Traffic

estimation will affect the performance.

In [6] Jang-ping Sheu et al proposed a ‗traffic aware

scheduling‘ for bluetooth scatternets, in which serving master is

responsible for making a decision when to switch the bridge.

Bridge can be switched between the masters effectively based on

the traffic conditions. But this is applicable for only small-scale

scatternets where a single bridge is shared by multiple piconets.

In [1] Baatz et al proposed a Priority based Inter piconet

scheduling algorithm for bluetooth scatternets, which maintains

a priority queue at the bridge node for taking decisions to switch

the bridge among various piconets. The Priority queue maintains

the priorities of piconet masters based on current traffic

conditions. Bridge is intelligently switched among various

piconets with respect to traffic loads and reduces the packet

transmission delays.

In [5] Har-Shai et al proposed a ‗Load adaptive Inter piconet

scheduling algorithm‘ which utilizes the hold mode, and its

implementation does not require modifications to the Bluetooth

specifications. It manages the scheduling mechanism of the

bridge. It determines the duration of bridge activity in the

different piconets such that the delay incurred by packets

requiring inter-piconet routing is reduced. The algorithm adapts

to varying values of load by using information regarding the

bridge's queues to different masters.

In [9] Lin and Tseng proposed an ‗Adaptive Interpiconet

Scheduling Algorithm‘ Based on Sniff Mode in Bluetooth

Scatternets to reduce the average interpiconet packet delay while

increasing the utilization of a bridge. This scheme estimates the

time duration for which the bridge should stay in each piconet

according to the traffic pattern so that the bridge can avoid being

idled as possible.

In [4] Ching-Fang Hsu, and Shu-Ming Hsu proposed an

adaptive interpiconet scheduling algorithm based on HOLD

mode in bluetooth scatternets. Motivated by the above literature,

here we propose a new interpiconet scheduling algorithm based

on the HOLD mode—a power-saving mode of Bluetooth—

which includes dynamic load priorities to reduce the average

interpiconet packet delay while increasing the utilization of a

bridge. This scheme estimates the time duration for which the

bridge should stay in each piconet according to the traffic pattern

so that the bridge can avoid being idle as possible.

3. MOTIVATION

Existing work records poor bridge usage and performance

due to transmission delays. A bridge wastes lot of memory for

calculating static threshold. The goal of this paper is to

dynamically switch the bridge according to its master‘s traffic

conditions thereby reducing bridge switch wastes. In [5], Har-

Shai et al. proposed a scheduling algorithm based on the HOLD

mode, another power-saving mode in Bluetooth. Nevertheless,

this innovative algorithm only works in a two-piconet scatternet.

The HOLD mode is the choice of a power-saving mode that can

be employed to implement interpiconet scheduling algorithm.

Comparing the SNIFF mode with the HOLD mode [9], the

major difference is that the hold period is negotiated by ‗a

master and the bridge‘ each time the bridge enters the HOLD

mode, whereas the sniff interval of the SNIFF mode is set only

once and does not change for a long time [5]. Consequently, as

applied to interpiconet scheduling, HOLD mode based

algorithms provide more flexibility than SNIFF mode-based

algorithms, although it comes with the price of one extra slot for

the negotiation of hold period.

G S MAHALAKSHMI AND S SENTHIL KUMAR: HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH

SCATTERNETS

414

Moreover, the most critical issue that HOLD-mode-based

interpiconet algorithms have to deal with is how to accurately

predict the hold period for an individual associated piconet. In

our proposed work we consider both large and small scale

scatternets. For study, we have taken 2 bridges with 6 piconets, a

sort of multi bridge scenario.

According to [6] serving master is responsible for making a

decision when to switch the bridge. Bridge can be switched

between the masters effectively based on the static traffic

conditions. But this is applicable for only small-scale scatternets

where a single bridge is shared by multiple piconets but our

proposed scheme achieves multi bridge scenario where a single

bridge might be shared by multiple piconets.

In [5] the serving master manages the scheduling mechanism

of the bridge. It determines the duration of bridge activity in the

different piconets such that the delay incurred by packets

requiring inter-piconet routing is reduced. The algorithm adapts

to varying values of load by using information regarding the

bridge's queues to different masters. In a nutshell, the ideas were

a combination of priority based scheduling and load adaptive

inter piconet scheduling algorithm.

In the proposed work, the bridge is adaptively switched

between the piconets with various traffic loads. The main goal is

to maximize the utilization of the bridge by reducing the bridge

switch wastes. We make use of intelligent decision making

algorithm for resolving conflict between the masters, and

providing for negotiation for bridge utilization in multi bridge

scenario. Negotiation between the bridges is done to implement

bridge switch procedure between the bridges and reduces the

master conflict problem in multi bridge scenario. The Hold

mode based dynamic priority load adaptive scheduling reduces

the number of bridge switch wastes and hence increases the

efficiency of the bridge, and thereby the performance of the

system.

Fig.1. HDPLIS Architecture

Priority based Current

master intra-piconet

scheduling protocol

Master

Polling

mechanism

Load adaptation

Priority

information

Load

Prediction

Total traffic

threshold

prediction

Master conflict

resolution

Bridge handover

procedure

Serving master

procedure

Waiting master

procedure

Bridge handover

procedure

Negotiation based master

conflict resolution

Single bridge traffic aware protocol

Load adaptation

Priority

information

Load

Prediction

Dynamic

threshold

prediction

Multi bridge traffic aware protocol

Negotiation

based bridge

failure and

repair

Bridge switch

waste protocol Master

downlink

queue

Slave

uplink

queue

Slave n

Slave 1

Hold

Mode

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2011, VOLUME: 02, ISSUE: 03

415

4. HDPLIS ARCHITECTURE

The key modules of the HDPLIS system are:- serving master

process, bridge handover process (normal & negotiation based

master conflict resolution), waiting master process, single and

multi bridge traffic aware protocol based on intelligent decision

making algorithm, Negotiation based bridge switch process in

multi bridge scenario. All the modules take the traffic threshold

information and the scheduling table from their repositories.

When we integrate all these modules overall packet transmission

delays and bridge switch wastes are reduced thus increasing the

efficiency of the bridge and hence the throughput.

4.1 HDPLIS SYSTEM DESIGN

Under the following conditions, serving master i has to

release the usage of the bridge to the waiting master j.

(C1): WTj >WTth, (TIME event),

(C2): (QCTj + αj *WTj) > (QCTi + Qcthold) (QUEUE event).

(C1) implies that master j has been waiting for the bridge

past the WTth. (C2) implies that all the data required to be

transmitted completely between master j and the bridge is larger

than those between masters i and the bridge plus Qcthold. The

Qcthold is designed for avoiding the ping-pong effect when

QCTi and QCTj are too close to each other. (C1) is used to avoid

excessive transmission delay of the waiting master. The released

event triggered by this condition is termed as TIME event. (C2)

is used to allocate more service time to the link with high traffic

loads. The released event triggered by this condition is termed as

QUEUE event.

If none of the two conditions are satisfied, then the serving

master i can keep using the bridge. This is termed an EXTEND

event. It is worth mentioning that an EXTEND event will result

in a failed unhold for the waiting master which has the highest

possibility of getting the usage of the bridge in the near future

(here, this implies waiting master j).

However, the EXTEND event implies that the traffic load for

waiting master j is not larger than the load of serving master i by

a prespecified threshold. To improve the throughput of a

scatternet, the master with high traffic loads will be allocated

more service time. However, when an EXTEND event is

triggered, it also implies that the LTj of the waiting master j

expires. Therefore, master j will try to unhold the bridge on the

hold slots in the future. Consequently, the LTj in the scheduling

table of the serving master i must reset to Thold. The bridge

receiving the scheduling table and dynamic table and being

informed by the serving master i to switch to another piconet to

serve the new serving master j.

If any one of the bridge handles over traffic, the master is

handed over to the next bridge using dynamic table information.

In this hand over procedure, we have 2 types of solution: Single

bridge master conflict resolution and multi bridge negotiation

based master conflict resolution. In this paper an interpiconet

scheduling algorithm based on the power saving mode HOLD

without any modifications to the bluetooth specification has

been proposed. Our approach addresses the reduction of packet

delay time and improvement on the utilization of a bridge.

Negotiation based bridge switching procedure (in multi-

bridge) suggests which bridge will have to serve first using

dynamic traffic threshold value. If any one of the serving bridges

is under traffic over flow (like failure), the serving bridge‘s

active masters switch to other bridges under negotiation

procedure. In multi bridge scenario, scatternets resolve master

conflict problems by following the bridge hand over procedure.

The serving and waiting master procedures are used when

the serving master decides to release the usage of the bridge; it

has to update its traffic information in the scheduling table. The

bridge will transfer the scheduling table from the old serving

master to the new serving master. According to the scheduling

table, the new serving master can figure out the time it can use

the bridge, and the waiting master can calculate the time it need

not to poll the bridge in the following hold slots. In this paper we

predict the total and dynamic traffic value from current load of

the master, estimate the upcoming load, and also analyses the

historical traffic information of each master.

5. HDPLIS TABLES

HDPLIS is operated on a constructed scatternet. Only ACL

(Asynchronous Connectionless) link is considered for the

connection between a master and a slave. In HDPLIS, the hold

mode is used as the operating mode for the bridge to switch

among piconets. The hold interval negotiated by a bridge with

its serving master is Thold. In HDPLIS, each master maintains a

scheduling table and dynamic traffic table.

5.1 SCHEDULING TABLE

Scheduling table contains the traffic information of all

masters that the bridge is connected to. When the serving master

decides to release the usage of the bridge, it has to update its

traffic information in the scheduling table. The bridge will

transfer the scheduling table from the old serving master to the

new serving master. According to the scheduling table, the new

serving master can figure out the time it can use the bridge, and

the waiting master can calculate the time it should avoid polling

the bridge in the following hold slots. Therefore, with the

scheduling table, each master can record its traffic information

in the table and obtain the traffic information of the neighboring

masters at the same time. The scheduling table is very helpful in

designing the HDPLIS scheme.

A scheduling table is shown in Table 1, where MID

represents the identity of the master and LTi, QCTi, WTi, and αi

are the traffic information of master i. The details of the fields in

the scheduling table are described below. The scheduling table

includes the following fields: MID: the identity of the master,

QCT: (Queue Consuming Time): the estimated time that a link

will need the bridge to serve, LT: (Lost Time): the estimated

time that a master cannot get the usage of the bridge, WT:

(Waiting Time): the time that a master has been waiting for the

usage of the bridge. α : the historical information of, on average,

the traffic generation rate per slot between the master and the

bridge.

G S MAHALAKSHMI AND S SENTHIL KUMAR: HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH

SCATTERNETS

416

Table.1. Scheduling Table (Initial state)

MID QCT WT LT α

1100 22.0 0.0 22.0 0.2

1101 88.0 12.0 0.0 11.0

1102 44.0 9.0 4.0 00.5

1200 55.0 11.0 12.0 00.5

1201 55.0 10.0 0.0 00.8

1202 22.0 3.0 4.0 00.8

QCT is defined as the time that a link needs to transmit all

the data packets in the queues of the master and the bridge.

There is a queue agent to monitor the status of the queue on

either side of a link. The bridge will notify the master about this

information at each communication with the master. Based on

this information, the master can obtain the QCT.

5.1.1 Scheduling Table Parameters:

LT is defined as the time that a master cannot use the bridge.

The QCTs of all masters connected by the bridge are stored in

the scheduling table. When the serving master has to release the

usage of the bridge, according to the QCTs, the serving master

can predict the duration from the time it releases the bridge to

the time it obtains the bridge next time. This duration is called

LT. LT can be used to reduce the number of failed unholds of

the waiting masters. For example, when master‘ A‘ has to

release the usage of the bridge to master ‗B‘, master ‗A‘ will

compute the LTA to predict how many time slots that it may lose

the usage of the bridge in the future. Thus, after master ‗A‘

releases the usage of the bridge, master ‗A‘ will skip the hold

slots during the LTA. Therefore, master ‗A‘ can reduce the

number of failed unholds.

WT is the time that a master has been waiting to acquire the

usage of the bridge since its previous release. ‗Α‘ represents the

history of traffic loads, which is defined as the historical

information, on the average, i.e. traffic generation rate per slot

between the master and the bridge. Since the decision of the

master to release the bridge depends mainly on the value of

QCT, the precision of QCT will influence the performance of

HDPLIS. Therefore, to obtain a precise QCT, the history of

traffic loads is counted so as to evaluate the QCT due to the

temporal locality of the traffic. Let α be the increment of the

traffic in queue during a fixed time period, say T. The queue

agent responds to maintain q. Thus, α can be obtained as q/T.

After α is obtained, the queue agent will reset q to zero.

When the serving master has to release the usage of the

bridge, it records α in the scheduling table. Hence, when the new

serving master gets the usage of the bridge, it can evaluate the

QCT more precisely for a waiting master. We have introduced

how to obtain QCT precisely by means of α. In the ensuing

paragraphs, we will explain how to obtain LT by means of QCT

and α. LT refers to the time that the serving master will not get

the bridge after it releases the usage of the bridge. When the

serving master i has to release the usage of the bridge, it will

find a candidate to be the new serving master, say ‘j‘, and will

update the LTi. The serving master i first find the minimum LTj

from the scheduling table for some ‗j‘.

If there exists more than one minimum LT, then it selects the

one with the maximum WT. This means that the waiting master

‗j‘ has the highest priority to get the usage of the bridge once the

serving master releases the bridge. The serving master has to

update LTi once it decides to release the usage of the bridge to

the new serving master ‗j‘. However, QCTj in the scheduling

table of master ‗i ‗is an outdated value since it was recorded

when the master ‗j‘ has released the usage of the bridge.

Therefore, it does not stand for the current traffic loads of master

‗j‘. As a result, we can use αj to roughly estimate QCTj.

Therefore, the time that the serving master i will not get the

usage of the bridge, let‘s call it LT, can be obtained as follows:

 LT = QCTj + j * WTj (1)

If a serving master ‗i‘ gets the usage of the bridge, it first

finds the minimum LTj from the scheduling table, for some ‗j‘.

According to this information, master ‗i‘ will know how much

time it has been allowed to use the bridge freely. In addition,

master ‗i‘ is responsible for the maintenance of the scheduling

table. That is to say, serving master ‗i‘ should add 1 to each WT

and subtract 1 from each LT, per slot, in the scheduling table.

When LTj = 0, master ‗i‘ must check if it has to release the

bridge to the waiting master ‗j‘. When the release condition is

satisfied, the serving master i has to release the usage of the

bridge to the waiting master ‗j‘. Serving master i then perform

the serving master part of the bridge release procedure. As

described above, once serving master i intends to release the

bridge, it will calculate LTi by means of the scheduling table.

After the LTi is calculated, master ‗i‘ updates LTi in the

scheduling table and resets the WTi to zero. Master ‗i‘ then

transmits the scheduling table to the bridge, and informs the

bridge to serve the new serving master ‗j‘. The role of master ‗i‘

is turned from being a serving master to that of a waiting master.

Therefore, afterwards, master ‗i‘ will perform the bridgeless

phase. The bridge receiving the scheduling table will perform

the bridge part of the bridge release procedure as well. The

bridge then waits for being unholded by the new serving master

‗j‘ and maintains the scheduling table during this waiting period.

Maintenance period means that the bridge will record the

time slot count (sc) during the period from the time it returns an

ACK to the old serving master to the time it returns another

ACK to the new serving master, acknowledging the unhold of

the new serving master. The period should include the guard

time difference between the old and the new serving masters.

When the bridge is unholded by the new serving master, it

subtracts slot count from each LT, adds sc to each WT in the

scheduling table, and then transmits the scheduling table to the

new serving master.

5.2 DYNAMIC TABLE

Dynamic table contains each master‘s total traffic, along with

that of dynamic traffic. The dynamic table is shown in Table.2

which includes MID (master identity number for all masters in

all bridges), total_traffic (all masters total traffic (calculating

from estimated traffic and historical traffic), dynamic traffic

(including all masters for using negotiation procedure).

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2011, VOLUME: 02, ISSUE: 03

417

Table.2. Dynamic table (Initial state)

MID Total_Traffic Dynamic_Traffic

100 8.6 2.8

101 2.2 3.6

102 5.2 5.3

200 5.2 1.7

201 4.8 3.3

202 7.8 5.9

5.2.1 Dynamic Table Parameters:

Total_ Traffic is defined by calculating the masters‘ traffic

from its history of traffic; estimating the upcoming traffic, and

also taking into account the current traffic load. The purpose

behind calculating Total_ Traffic is to find the dynamic traffic.

Master‘s total traffic is calculated as,

 Total_Traffic (TM) = фM + ET (2)

where,

ФM is historical traffic of master

 ET is estimated traffic of master‘s upcoming traffic

Dynamic traffic threshold is defined by calculating the

masters‘ dynamic traffic load based on its total traffic. In this

method, the traffic calculated is used for negation based bridge

switch procedure which is performed to solve master conflict

problem in a multi-bridge scenario.

 DTT= avg [PT{(CLi +фM) + ∑(CLj +фM)}] (3)

where,

DT (dynamic traffic table) contains all masters traffic info

CLi is Current load of master

фM is history traffic info of master

 Estimated traffic is calculated as ET = 2 * α (4)

α is the historical information of the traffic generation rate

per slot between the master and the bridge taken on average.

Algorithm 1: Serving Master Procedure

This procedure is proposed by [6] TASS

{The serving master should execute the algorithm per slot}

Step 1: The serving master, say i, maintains the scheduling

table. The task performed is to add 1 to every WT,

subtract1 from every LT (for all waiting masters), and

update the QCTi in the scheduling table according to its

queue status.

Step 2: If there is no data to send between the serving master i

and the bridge then

 Execute the Bridge Release Procedure.

 End if

Step 3: If no other LT except LTi in the scheduling table is equal

to zero then

Go to Step 8.

 End if

Step 4: Choose a waiting master j with LTj = 0.

 If there are more than one waiting master with LT = 0

 then

Select the waiting master j with the largest WT and the

other LTs are reset to Thold

End if

Step 5: if WTj >WTth then

Execute the Bridge Release Procedure

Go to Step 8.

End if

Step 6: if ((QCTj + αj ∗ WTj) > (QCTi + Qcthold)) then

Execute the Bridge Release Procedure

Go to Step 8.

End if

Step 7: Reset LTj to Thold Go to Step 8.

Step 8: End.

Algorithm 2: Serving Master Bridge Release Procedure

This procedure is proposed by [6] TASS

The part to be executed by the serving master.

{The serving master i deciding to release the usage of the bridge

will perform the following operations}

Step 1: Calculate LTi.

Step 2: Update LTi and reset WTi to zero in the scheduling table.

Step 3: Transfer the scheduling table to the bridge and inform

the bridge to be unholded by the new serving master.

Step 4: Wait for the ACK from the bridge.

Go to the waiting master procedure

The bridge executes the following procedure.

{The bridge receiving the scheduling table and dynamic table

and being informed by the serving master i to switch to another

piconet to serve the new serving master j .if any one of the

bridge goes to over traffic , the master hand over the next bridge

using dynamic table information will perform the following

operations}.

Algorithm 3: Scheduling Table Handover Procedure

In this hand over procedure, we have 2 types of solution. They

are,

 Single bridge, master conflict resolution algorithm

 Negotiation based multi bridge master conflict

resolution algorithm

Tm = master‘s traffic

DTTm = dynamic traffic threshold of all masters

ST = scheduling table of master

QCT = queue consuming time of total bridge utilization

st = slot time of every master

ET = estimated traffic

B0 = active bridge

Bi = other bridges

BD = common master

Single bridge:

Predicting all masters(Tm) traffic from ST calculate QCT of

all masters

G S MAHALAKSHMI AND S SENTHIL KUMAR: HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH

SCATTERNETS

418

Calculate the st of every master (technique used)

Predicting the ET = 2 *

If (Ti is greater than Tj) then

 the bridge continue the active master

Else switch to master with high traffic

Else if the active master is less than some other master, then

the bridge switch to max traffic of master

Else if (active master is less than some other master but the

other masters has same traffic)

The bridge will decide to alter the priority based on the

concept of ageing

The master with the highest priority will serve the bridge

Else the bridge goes to FCFS procedure

End if

Multi bridge:

For (B=1; B<=n; B++)

Calculate DTT

If check Bi [DTT] < B0

Add Bi to bit vector procedure

Else

Skip the bridge

Else if

Some Bi [DTT] < B0 and Bi [DTT] are same

add Bi to bit vector procedure

Goto bit vector procedure

{

In bit vector procedure

0 represent bridge is not willing to allow the B0‗s masters

1 represent bridge is willing to allow to B0‗s masters

}

Assign 0 has max congestion

Assign 1 has min congestion

For (i=1; i<=n; i++)

If (B[i]=0) then

Goto next bridge until B[i]=1

Check B[i]=1 then

Assign B[i] = B0

 else if

All B[i] = 0 then

Goto negotiation procedure

else if

Some B[i] equal with 1‘s then

Goto negotiation procedure

Negotiation procedure:

All B[i] assign to 0 or assign 1

BD has all priority information of all bridges

Assign i= no of bridges

While (i)

{

Delay (1000) // millisecond

For each bridge in the network

 Store the details of that bridge in a temporary variable

}

Store the temp value into BD

B0 = send request to BD

On receiving the request from B0 , BD will send the priority

information to B0

If (any one bridge has max priority on comparison with

others) then

B0 switch to highest priority of bridge

From the scheduling table, traffic from all masters is

estimated. The parameters used to do the same are LT, WT,

QCT, and Traffic coefficient. Following this, the calculation of

QCT is performed. Every master then will calculate their slot

time following which a value for estimated traffic is generated.

This value of estimated traffic is used to find the total traffic.

Algorithm 4: Waiting Master Algorithm

This procedure is proposed by [6] TASS

{

The waiting master should execute the algorithm per slot.

Suppose the waiting master is master j, for some j.

}

 if LTj > 0 then

LTj = LTj − 1

else

Back to the normal operation of hold mode.

{

It implies that the master j will try to unhold the bridge on

the following hold slots.

}

End if

If master j unholds the bridge successfully then

Go to the serving master procedure

End if

Algorithm 5: Negotiation Based Multi Bridge Master

Conflict Resolution

Bi [T] = traffic status of bridge

Assign i = number of bridges

BD = common master

Bc = activate bridge

The traffic information of all bridges is stored in BD

While(i)

{

Delay (1000) // millisecond

For each bridge in the network

Store the details of that bridge in a temporary variable

Assign Bc = temp

}

Store all the Bc‗s values

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2011, VOLUME: 02, ISSUE: 03

419

Check all bridges‘ traffic value and identify the bridge with

maximum traffic

Assign the max traffic value of bridge into Bc

If (Bi [T] has max traffic, i is identified as having more

traffic on comparison with the others) then

Bc = Bi [T]

Else if (some Bi [T] has same traffic) then

Goto BD table

Assign number of jobs per slot = st

{

For all i calculate traffic value based on QCT & st

Update priority of bridge per delay (1000)

Predict priority of each bridge before & after the time

intervals

Store the priority value of each bridge in BD

}

Predict max priority of bridge (aging technique) from BD

Assign max priority of bridge into Bc

Else

Check total number of masters served by each bridge

Assign bridge with maximum number of masters to Bc

End if

6. RESULTS

In multi-bridge bluetooth scatternet simulation scenario

multiple bridges exist with their piconets. If any one of the

bridge fails, the failed bridge‘s working masters have to transfer

their packets via other bridges optionally. As a case study, our

multi bridge bluetooth scenario has 2 bridges with 6 piconets

each has 3 piconets individually. In this piconet topology master

handles average load. QCT values are assumed normally.

Fig.2. Efficiency of the bridge Vs WTth

Fig.2 shows the efficiency of the bridge at QCTthold=5,

QCTthold=10, QCTthold=15. Since the total activity ratio will

increase with the increase of WTth, the efficiency of the bridge

also increases with increase in WTth. Similarly, the throughput

for the low QCTthold value is worse than those for the high

QCTthold values. However, if the QCTthold is too large, it will

cause the serving master with a low traffic load not to release the

bridge. Therefore, the best performance is recorded when

QCTthold is 10 and when the WTth is large enough. From the

above experimental results, we find that when WTth and

QCTthold are large enough (in the above experiment, WTth > 40

and QCTthold > 5), the results are very close to each other and

varying both parameters would not affect the performance

significantly.

Fig.3. HDPLIS: Average Load interpiconet behavior

Fig.3 considers QCT values with average and peak load.

Master with average load QCTth=10 has maximum activity ratio

compared to that with 5 and 15. For 3 masters with average load

and queue consume time value at 10, the activity ratio is

increased. For master level 2 HDPLIS is performed well when

compared with TASS. For 3 masters with peak load and queue

consume time value 15, the activity ratio is increased at master

level 2. Peak load activity ratio is increased while increasing

QCTth value. Master level 2 has high bridge activity compared

to that of 3 masters. So HDPLIS perform well compared to

TASS.

Fig.4. HDPLIS: Peak load interpiconet behavior

75

80

85

90

95

100

5 10 15 20 25

E
ff

ic
ie

n
cy

 o
f

 B
ri

d
g

e

WTth values (sec)

QCTth=5

QCTth=10

QCTth=15

0

0.2

0.4

0.6

0.8

1 2 3

A
ct

iv
it

y
 R

a
ti

o

Bridge Degree

3 Masters With Average Load

HDPLIS QCTth=5

HDPLIS QCTth=10

HDPLIS QCTth=15

0

0.2

0.4

0.6

0.8

1 2 3

A
ct

iv
it

y
 R

a
ti

o

Bridge Degree

3 Masters With Peak Load
HDPLIS QCTth=5

HDPLIS QCTth=10

HDPLIS QCTth=15

G S MAHALAKSHMI AND S SENTHIL KUMAR: HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH

SCATTERNETS

420

Fig.5. Bridge delay behavior

In Fig.5 by increasing QCT values with average load the

bridge delay for bridge 1 is decreased with increasing

consuming time. But for bridge 2 there is no immediate

reflection in bridge delay. It has to change slowly to increase the

consuming time. Bridge delay for bridge 1 and bridge 2 are very

closer for both QCTth values assigned as 10, 15. but the

behavior for QCTth value 5 is very different because by

increasing the queue time the traffic load is decreased. In peak

load, bridge 2 did not changed with increased QCT values. But

the delay of bridge 1 is decreased with increasing QCT values.

Fig.6. total traffic Vs dynamic traffic with consume time 5 sec

Fig.7a. Total traffic Vs dynamic traffic with consume time 15sec

Fig.7b. Total traffic Vs dynamic traffic with consume time 10sec

In Fig.6, 7a, 7b, Master dynamic traffic depends with total

traffic values; i.e. it continuously changes with queue time. The

bridge transfers between the master using scheduling table

parameters. If bridge is working with current master 101, the

current master transfers its data to the bridge. The bridge

receives the data, at last current master exceeds its serving time,

and the master sends bridge release procedure to the bridge. The

bridge receives the message and sends the polling message to

other master. The bridge checks which master has the minimum

lost time and allows that master to serve it at that instant. If the

master 102 has minimum lost time, this implies that the bridge

will now proceed to work with 102. The same procedure works

in bridge 2. Master calculates its total traffic values from its

upcoming traffic and history of masters. From the total traffic

we have to estimate the dynamic traffic (average of all masters

within the bridges. Here bridge1, bridge 2 are available with

each 3 masters). The master displays its dynamic and total traffic

to send to the bridge1. Bridge1 identifies masters‘ traffic values,

if any one of the bridges are dropped due to heavy traffic the

bridge1 identifies which bridge is available to transfers its

master information through the network. Here bridge 2 is

available to receive the bridge 1 traffic.

HDPLIS illustrates the effects of total traffic and QCTthold

on the delay of the bridge. Since the total activity ratio will

increase with the increase of QCTthold, the delay of the bridge

also decreases with increase in QCTthold. Similarly, the

throughput for the low QCTthold value is worse than those for

the high QCTthold values. However, if the QCTthold is too

large, it will cause the serving master with a low traffic load not

to release the bridge. Therefore, the best performance is recorded

at QCTthold = 10. In this situation the total traffic was found to

slowly increase when compared to when the QCTthold value

was 5. If the total traffic is reduced the delay of the bridge is also

reduced.

The comparisons between HDPLIS and TASS (Traffic

Aware Scatternet Scheduling [6]) on throughput, activity ratio

are presented as well (Fig.8a and Fig.8b). The packet generation

rates of the masters follow a constant bit rate (CBR). Among

these masters, the packet generation rate of one master is fixed

on 300kbps and those for the others are fixed to 60kbps. A high

0

10

20

30

40

50

5 10 15

B
ri

d
g

e
d

el
a

y

QCTth

Bridge1

Bridge2

0

3

6

9

12

15

18

8.1 16.2 12.6 15.3 17.1 21.6

D
y

n
a

m
ic

 t
ra

ff
ic

Total traffic

Dynamic traffic

0

50

100

150

200

250

90 180 140 170 190 240

D
y

n
a

m
ic

 t
ra

ff
ic

Total traffic

Dynamic traffic

0

30

60

90

120

150

180

75.6 151.2 117.6 142.8 159.6 201.6

D
y

n
a

m
ic

 t
ra

ff
ic

Total traffic

Dynamic traffic

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2011, VOLUME: 02, ISSUE: 03

421

packet generation rate implies that the master would need more

bridge service time. The bridge does not generate any packets at

all and the destinations of all packets are to the bridge. The

simulation time is 100 seconds.

Fig.8a. Comparison of behaviors between 4 masters with

average load

Fig.8b. Comparison of behaviors between 3 masters with

average load

Fig.9a. The impact of the various traffic loads on the total

throughput when a bridge connects to three masters average load

Fig.9b. The impact of the various traffic loads on the total

throughput when a bridge connects to three masters maximum

load

Fig.8a and 8b show the impact of the degree of the bridge on

the activity ratio and the throughput (Fig.9) of the master whose

packet generation rate equals 300kbps, respectively. The activity

ratio means the ratio of the total bridge service time of the

master whose packet generation rate equals 300kbps to the total

simulation time. The throughput is evaluated by the data packets

received by the bridge per second. Obviously, HDPLIS can

allocate more bridge service time to the master with high traffic

loads. The master with high traffic loads can almost obtain the

maximum throughput. On the contrary, in TASS, the bridge

service time allocated to the master with high traffic loads

decreases seriously as the degree of the bridge increases.

Accordingly, the throughput of the master with high traffic loads

will decrease when the degree of the bridge increases as well. It

is because that, in TASS, the bridge service time allocated to the

masters is based on the link level fairness. That is, the chances of

the masters getting the usage of the bridge are the same, no

matter how heavy the traffic load of the master is. Therefore, the

bridge service time of the master with high traffic loads will

decrease seriously as the bridge degree increases. Contrarily, in

HDPLIS, the master with high traffic loads will have higher

probability to obtain the usage of the bridge due to QUEUE

event.

On the other hand, HDPLIS will not cause the master with

low traffic load to starve since the master with low traffic load

can obtain the usage of the bridge by TIME event. In 4 masters

with average load the activity ratio is highly increased with 2

masters. At the same time slowly it will decrease while adding

new masters, but TASS slightly decreases adding new masters.

For the case Bridge with 4 masters, the HDPLIS fails to compare

with TASS. So HDPLIS is well suitable for 2 piconet only.

Otherwise, activity behavior is same in both 3 and 4 masters

with average load.

Fig.9 illustrates the total throughputs of HDPLIS and TASS,

which are obtained from every 1600 slots (i.e., 1sec). As shown

in Fig.9a HDPLIS and TASS can reach the maximum

throughput in the first 20 seconds since the packet generation

rates of the three masters are the same. In the following 20

seconds, the packet generation rate of one master rises to

400kbps. Since TASS does not take traffic information into

0

0.2

0.4

0.6

0.8

1 2 3 4

A
ct

iv
it

y
 r

a
ti

o

Bridge Degree

HDPLIS TASS

0

0.2

0.4

0.6

0.8

1 2 3

A
ct

iv
it

y
 R

a
ti

o

Bridge Degree

3 Masters With Average Load

HDPLIS TASS

75

80

85

90

95

100

105

5 10 15 20 25 30 40 45 50 60 65 70 80 90 100E
ff

ic
ie

n
cy

 o
f

b
ri

d
g

es
 (

k
b

p
s)

Master's consume time (sec)

Average load

Bridge1

Bridge2

60

70

80

90

100

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

E
ff

ic
ie

n
cy

 o
f

b
ri

d
g

es

Master's consume time (sec)

Peak Load

Bridge1

Bridge2

G S MAHALAKSHMI AND S SENTHIL KUMAR: HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH

SCATTERNETS

422

consideration, it cannot adjust the switch scheduling according

to different traffic loads of masters.

Fig.9b Thus, HDPLIS can still keep the maximum total

throughput, but TASS cannot. At the last 20 seconds, the packet

generation rate of one master is reduced to 20kbps. As the figure

shows, HDPLIS can adapt to the real traffic rapidly, but TASS

still needs some time to adapt to the real traffic loads. Since

there are still a lot of data packets queued at the previous 20

seconds in TASS, hence, it needs additional time to consume the

queued packets. Therefore, the adaptability of HDPLIS is

superior to that of TASS.

Bridge 1 and bridge 2 comes with average load with 3

masters. Bridge 1 and bridge 2 in their initial stage are very

closer with equal efficiency but when time increases, bridge 1

has high efficiency compared to bridge 2. Because bridge 1 has

medium traffic, by increasing service time the efficiency of

bridge also increases, at the end of serving time bridge 1 and

bridge 2 are again it will closer to each other. Bridge 1 and

bridge 2 comes with peak load with 3 masters. Initially, both are

very closer with equal efficiency but with increase in time the

bridge 1 has high efficiency compare with bridge 2 because

bridge 1 has medium traffic so increasing service time the

efficiency of bridge also increases at the end of serving time

bridge 1 and bridge 2 are again it will closer to each other.

Fig.10a. Comparison of interpiconet behavior: 4 masters with

average load

Fig.10b. Comparison of interpiconet behavior: 3 masters with

average load

In Fig.10a and 10b, in the case of 4 masters with average

load, the activity ratio is increased while increasing QCTth

values, resulting in high performance. Activity ratio attains its

maximum only when QCTth=10. Changing QCTth values does

not increase activity ratio. Rather this gives poor performance. In

Fig.11a and 11b the bridge efficiency criteria for 4 masters with

average load is better than the case of 3 masters because

increasing the queue time the traffic is reduced heavily. Bridge 1

and bridge 2 curves are very closer. Bridge efficiency is

increased only at maximum consuming time of queue. Curves

are not closer to each other. Bridge 1 and 2 has maximum bridge

utilization compare than 4 masters.

Fig.11a. Comparison of efficiency: 4 masters with average load

Fig.11b. Comparison of efficiency: 3 masters with average load

7. CONCLUSION

This paper presents a hold mode based dynamic priority load

adaptive Interpiconet Scheduling (HDPLIS) scheme, which can

dynamically adjust the bridge service time according to a

master‘s traffic load, reduce the number of failed unholds time,

and further increase the system‘s throughput.

The primary idea of HDPLIS lies in estimating the dynamic

traffic to solve the problem of negotiation. That is, HDPLIS

allocates enough bridge service time to the master with a high

traffic load and reduces the bridge switch wastes. At the same

time, to avoid excessive transmission delay of the master with a

low traffic load, HDPLIS will allocate the bridge service time to

0

0.2

0.4

0.6

0.8

1 2 3 4

A
ct

iv
it

y
 R

a
ti

o

Bridge Degree

4 Masters With Average Load

HDPLIS QCTth=5

HDPLIS QCTth=10

HDPLIS QCTth=15

0

0.2

0.4

0.6

0.8

1 2 3

A
c
ti

v
it

y
 r

a
ti

o

Bridge degree

3 Masters With Average Load

HDPLIS QCTth=5

HDPLIS QCTth=10

HDPLIS QCTth=15

0

10

20

30

40

QCTth=5 QCTth=10 QCTth=15

B
ri

d
g

e
d

el
a

y

4 Masters With Average Load

Bridge1

Bridge2

0

5

10

15

20

25

5 10 15

B
ri

d
g

e
d

el
a

y

QCTth

3 Masters With Average Load

Bridge1

Bridge2

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2011, VOLUME: 02, ISSUE: 03

423

a master once that master has waited for a period of time, but no

longer than WTth. Dynamic traffic will reduce the master

service time if the current bridge fails.

Each master generates traffic values to transfer the bridge.

Bridge will need to handle negotiation process for its master

conflicts problem. (very large and very small values of WTth

result in poor efficiency of the bridge. In order to achieve

optimal efficiency, it is desired to choose an intermediate value

so as to keep the waiting period of the master normal). This hold

period is negotiated by a master and bridge, each time the bridge

enters the hold time for every slot period.

Once the slot period is encountered the bridge will change its

hold period each time. So finally we have to apply QCTthold.

WTth is kept at normal (no max and min values), to achieve good

efficiency of bridge throughput and reduced packet transmission

delay. In this paper, HDPLIS has been shown to perform well

for two bridges shared by multiple piconets. However, it is

possible that more masters share more than one bridge (bit

vector procedure for multi bridge scenario). Therefore, for the

sake of completeness, a comprehensive investigation should be

made in the future to find out how HDPLIS performs when

multiple bridges are shared by multiple piconets, at the same

time enabling masters (waiting masters) to remain in Hold mode

to do simultaneous Intra Piconet scheduling proposed for

efficient bridges in bluetooth scatternet, as well as a negotiation

based bridge-switch process between multiple bridges.

REFERENCES

[1] Baatz. S, Frank. M, Kuhl. C, Martini. P and Scholz. C,

―Bluetooth scatternets: An enhanced adaptive scheduling

scheme,”, in Proceedings of the IEEE INFOCOM, the

Annual Joint Conference of the IEEE Computer and

Communications Societies, Vol. 2, pp. 782–790, 2002.

[2] Capone. A, Gerla. M and Kapoor. R, ―Efficient polling

schemes Bluetooth Picocells‖, Proceedings of the IEEE

INFOCOM, the Annual Joint Conference of the IEEE

Computer and Communications Societies, Vol. 7, pp. 455-

460, 2001.

[3] Cordeiro. C, Abhyankar. S and Agrawal D.P, ―Design and

implementation of QoS-driven dynamic slot assignment and

piconet partitioning algorithms over Bluetooth WPANs‖, in

Proceedings of IEEE INFOCOM, pp. 1252–1263, 2004.
[4] Ching-Fang Hsu, Member, IEEE, and Shu-Ming Hsu, ―An

Adaptive Interpiconet Scheduling Algorithm Based on

HOLD Mode in Bluetooth Scatternets‖, IEEE Transactions

on Vehicular Technology, Vol. 57, No. 1, pp.475-489, 2008.
[5] Har-Shai. L, Kofman. R, Segall. A and Zussman. G,‖ Load

Adaptive Interpiconet Scheduling In Small-Scale Bluetooth

Scatternets”, IEEE commication Magazine, Vol. 42, No. 7,

pp. 136-142, 2004.

[6] Jang-ping Sheu, Kuei-ping shih, Shin-Chih Tu‖Traffic

aware scheduling in bluetooth Scatternets‖, IEEE

Transactions on Mobile computing, Vol. 5, No. 7, pp. 872-

883, 2006.

[7] Johansson. P, Kapoor. R, Kazantzidis. M and Gerla. M,

―Rendezvous scheduling in Bluetooth Scatternets‖ in

Proceedings of the IEEE Computer and Communications

Societies, pp. 318–324, 2002.

[8] Kim. J, Lim. Y, Kim. Y and J. S. Ma, ―An adaptive

Segmentation scheme for the Bluetooth-based wireless

channel,‖in Proceedings of the 10th IEEE International

Conference, pp 440-445, 2001.

[9] Lin. T.Y and Tseng Y. C, ―An adaptive sniff scheduling

scheme for power saving in Bluetooth‖, IEEE Wireless

Communication. Vol. 9, No. 6, pp. 92–103, 2002.

[10] Racz. A, Miklos. G, Kubinszky. F and Valko. A, ―A pseudo

random coordinated scheduling algorithm for Bluetooth

scatternets‖, in Proceedings of the 2nd ACM international

symposium on Mobile ad hoc networking & computing,

pp.193–203, 2001.

[11] Raymond Y.L.Lee and Vincent W.S.Wong, ―An Adaptive

Scheduling Algorithm for Bluetooth Ad-Hoc Networks”,

IEEE Transactions on Mobile Computing, Vol. 5, pp. 3532-

3537, 2005.

[12] Tan. G and Guttag. J, ―A Locally Coordinated Scatternet

Scheduling Algorithm‖, in Proc. of IEEE Conference on

Local Computer Networks, pp. 340-346, 2002.

