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Abstract 

Scheduling in piconets has emerged as a challenging research area. 

Interpiconet scheduling focuses on when a bridge is switched among 

various piconets and how a bridge node communicates with the 

masters in different piconets. This paper proposes an interpiconet 

scheduling algorithm named, hold mode based dynamic traffic 

priority load adaptive scheduling. The bridges are adaptively switched 

between the piconets according to various traffic loads. The main goal 

is to maximize the utilization of the bridge by reducing the bridge 

switch wastes, utilize intelligent decision making algorithm, resolve 

conflict between the masters, and allow negotiation for bridge 

utilization in HDPLIS using bridge failure-bridge repair procedure . 

The Hold mode - dynamic traffic - priority based - load adaptive 

scheduling reduces the number of bridge switch wastes and hence 

increases the efficiency of the bridge which results in increased 

performance of the system. 
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1. INTRODUCTION

Bluetooth is a low-cost, low-power, and short-range radio 

technology used for wireless personal area networks. It operates 

in the unlicensed 2.4 GHz ISM band, frequency hopping spread 

spectrum (FHSS). The hopping frequencies cover 79 channels, 

each channel being 1 MHz wide. A piconet is a basic structure in 

bluetooth, which is constructed in an ad hoc fashion by one 

master and up to seven active slaves. A piconet can only contain 

one master and the master administers the whole piconet. A 

slave may connect to more than one master. A slave connecting 

to two or more masters is called a bridge. A set of piconets that 

are interconnected by bridges is referred as a scatternet. 

Although a bridge can participate in two or more piconets, it can 

only serve in one piconet at a time. The bridge will switch 

among all connected piconets in a time-sharing fashion. Several 

piconets can be interconnected via bridge nodes to create a 

Scatternet. Bridge nodes are capable of time-sharing between 

multiple piconets, receiving packets from one piconet and 

forwarding them to another .A bridge node can be a master in 

one piconet and act as slave in other piconets called 

Master/Slave Bridge. Alternatively, if a bridge node acts as a 

slave in all the piconets in which it is connected to, it is called 

Slave/Slave Bridge.  

The scheduling of bridge switching among piconets is 

referred to as interpiconet scheduling. Obviously, an ill-

considered scheduling may cause severe system degradation. An 

interpiconet scheduling algorithm can be developed and be well 

designed so as to help the bridge switch efficiently among 

piconets. On the other hand, the intrapiconet scheduling is 

referred to as the scheduling of a master serving the slaves 

connected by that master. Polling is a general scheme adopted 

for intrapiconet scheduling. 

The main issue in inter-piconet scheduling is the switching of 

bridge node between piconets. Since each bluetooth device has 

one transceiver, it can participate only in one piconet at a time. 

As each master uses its own local clock, a bridge node has to re-

synchronize with new master when it switches to a new piconet. 

The switch between two piconets may result in a slot loss. 

Another problem occurs when two masters try to access the 

bridge node simultaneously. This is referred to as bridge node 

conflict. Since a bridge node can listen to only one master at a 

time, the other master will not be able to communicate with the 

bridge node and will waste slots for polling operations. 

In this paper we propose HDPLIS to eliminate bridge node 

conflicts and bridge switch wastes. In multi bridge scheme, a 

master adapts to increase traffic at a particular bridge i.e. by 

making a transfer to another bridge containing medium traffic 

via dynamic traffic procedure. This is done by calculating the 

overall traffic of the master. In the topology there are 3 piconets 

sharing a bridge, when two masters try to access the bridge node 

simultaneously, assuming a single bridge scenario, traffic value 

is calculated with respect to load adaption in every master. Then, 

the masters communicate their traffic value to the bridge, for 

predicting which master has maximum load as per the topology. 

If more than two masters have the same load, master conflict is 

said to occur. In a multi bridge scenario, much similar to single 

bridge scenario, the master conflict problem arises, but here each 

master maintain its‘ own dynamic traffic value. When this 

information is sent to the bridge, the bridge checks the dynamic 

table value from its piconets. If more than one master has the 

same dynamic traffic value, every such master attempts to access 

the bridge simultaneously. In this situation the master conflict is 

said to occur.  

This paper eliminates master conflicts by using negotiation 

based bridge switch procedure. To avoid this master conflict 

problem in a single bridge scenario, we utilize the total traffic 

time (current load) and queue consume time of all masters. From 

this we calculate the bridge slot time for every master.  

Total traffic value is associated with its estimate upcoming 

traffic value. If master 101 is greater than 102 means the bridge 

continue with 101. If not, bridge checks the traffic value from its 

piconets. If any one of them has max traffic (102), the bridge 

switches to 102 from 101. Thus, the bridge is switched among 

the piconets based on traffic value, as a measure to avoid master 

conflict problem.  

In multi-bridge bluetooth scenario the master conflict 

resolution is calculated based on dynamic traffic values. Here, 

the problem lies in association with active masters!. If more than 

one active master has equal traffic then it is allowed to enter into 

the negotiation procedure. This is followed by bit vector 
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procedure. As per this procedure 0 is assigned to a bridge which 

is not willing to allow the other bridge‘s master due to high 

congestion. 1 is assigned to a bridge if it is willing to allow other 

bridge‘s master which is an indicative of low congestion. 

Negotiation procedure analyses which master has maximum 

dynamic threshold value via intelligent decision approach and 

informs the same to the bridge.  

2. RELATED WORK

The interpiconet scheduling problem has been extensively 

addressed in the past, and several scheduling algorithms on this 

issue have been developed [1], [5], [8], [10], [11]. These 

algorithms schedule the presence, sequence and duration for 

which the bridge stays in every associated piconet and should 

coordinate with intrapiconet scheduling algorithms. In [13] 

Zhang and Cao proposed a ‗Credit Based Scheduling (CBS)‘ 

scheme, which focuses on the fair link bandwidth allocation in 

node. Each node assigns credits to each of the connected link. 

The credits are allocated according to link utilization. Since each 

node makes its own decision to communicate with other node 

according to local share of the bandwidth, bridge node conflict 

may occur sometimes. 

In [10] Vojislav Misic et al proposed a ‗scatternet scheduling 

algorithm‘, which utilizes a pseudo random sequence to define 

the start time for all the meetings between two nodes. In 

addition, individual node will skip some of the meeting time 

based on traffic change. However since two nodes do not 

guarantee the meet at the same time, it may result as a miss of 

meeting time between two nodes. 

In [14] Raymond Lee and Vincent Wong proposed the 

utilization of a ‗flexible scatternet-wide scheduling‘ scheme, 

which places an adjustable switch table on each bridge node and 

master. Both bridge node and master decide when they can 

communicate with each other. Since this scheme gives a higher 

priority for the traffic on bridge nodes, it may not maintain 

fairness among all nodes. 

In [12] Cordeiro et al proposed a ‗locally coordinated 

scheduling algorithm‘ scheme which schedules the meeting time 

based on the traffic conditions. Each time before a node 

terminates the meeting with the connected node, they will 

negotiate the start time and duration time for the next meeting. 

This scheme does not consider the fairness among the nodes. 

In [5] Har-Shai et al proposed a ‗load adaptive algorithm‘, 

which utilizes decision variables to determine the period for a 

bridge node to stay in each piconet. Although the time for a 

bridge node to spend on a piconet can be adapted to traffic 

change, this scheme focuses on small-scale scatternets. 

In [10] Racz et al proposed a ‗distributed scatternet-

scheduling algorithm‘, which allocates bandwidth to every link 

based on traffic estimation. Each time when a master meets with 

a bridge node, they will negotiate their next meeting time based 

on local traffic estimation. However in a dynamic environment, 

it is difficult to predict accurately the future traffic. Traffic 

estimation will affect the performance. 

In [6] Jang-ping Sheu et al proposed a ‗traffic aware 

scheduling‘ for bluetooth scatternets, in which serving master is 

responsible for making a decision when to switch the bridge. 

Bridge can be switched between the masters effectively based on 

the traffic conditions. But this is applicable for only small-scale 

scatternets where a single bridge is shared by multiple piconets. 

In [1] Baatz et al  proposed a Priority based Inter piconet 

scheduling algorithm for bluetooth scatternets, which maintains 

a priority queue at the bridge node for taking decisions to switch 

the bridge among various piconets. The Priority queue maintains 

the priorities of piconet masters based on current traffic 

conditions. Bridge is intelligently switched among various 

piconets with respect to traffic loads and reduces the packet 

transmission delays. 

In [5] Har-Shai et al proposed a ‗Load adaptive Inter piconet 

scheduling algorithm‘ which utilizes the hold mode, and its 

implementation does not require modifications to the Bluetooth 

specifications. It manages the scheduling mechanism of the 

bridge. It determines the duration of bridge activity in the 

different piconets such that the delay incurred by packets 

requiring inter-piconet routing is reduced. The algorithm adapts 

to varying values of load by using information regarding the 

bridge's queues to different masters. 

In [9] Lin and Tseng proposed an ‗Adaptive Interpiconet 

Scheduling Algorithm‘ Based on Sniff Mode in Bluetooth 

Scatternets to reduce the average interpiconet packet delay while 

increasing the utilization of a bridge. This scheme estimates the 

time duration for which the bridge should stay in each piconet 

according to the traffic pattern so that the bridge can avoid being 

idled as possible. 

In [4] Ching-Fang Hsu, and Shu-Ming Hsu proposed an 

adaptive interpiconet scheduling algorithm based on HOLD 

mode in bluetooth scatternets. Motivated by the above literature, 

here we propose a new interpiconet scheduling algorithm based 

on the HOLD mode—a power-saving mode of Bluetooth—

which includes dynamic load priorities to reduce the average 

interpiconet packet delay while increasing the utilization of a 

bridge. This scheme estimates the time duration for which the 

bridge should stay in each piconet according to the traffic pattern 

so that the bridge can avoid being idle as possible. 

3. MOTIVATION

Existing work records poor bridge usage and performance 

due to transmission delays. A bridge wastes lot of memory for 

calculating static threshold. The goal of this paper is to 

dynamically switch the bridge according to its master‘s traffic 

conditions thereby reducing bridge switch wastes. In [5], Har-

Shai et al. proposed a scheduling algorithm based on the HOLD 

mode, another power-saving mode in Bluetooth. Nevertheless, 

this innovative algorithm only works in a two-piconet scatternet. 

The HOLD mode is the choice of a power-saving mode that can 

be employed to implement interpiconet scheduling algorithm. 

Comparing the SNIFF mode with the HOLD mode [9], the 

major difference is that the hold period is negotiated by ‗a 

master and the bridge‘ each time the bridge enters the HOLD 

mode, whereas the sniff interval of the SNIFF mode is set only 

once and does not change for a long time [5]. Consequently, as 

applied to interpiconet scheduling, HOLD mode based 

algorithms provide more flexibility than SNIFF mode-based 

algorithms, although it comes with the price of one extra slot for 

the negotiation of hold period.  
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Moreover, the most critical issue that HOLD-mode-based 

interpiconet algorithms have to deal with is how to accurately 

predict the hold period for an individual associated piconet. In 

our proposed work we consider both large and small scale 

scatternets. For study, we have taken 2 bridges with 6 piconets, a 

sort of multi bridge scenario.  

According to [6] serving master is responsible for making a 

decision when to switch the bridge. Bridge can be switched 

between the masters effectively based on the static traffic 

conditions. But this is applicable for only small-scale scatternets 

where a single bridge is shared by multiple piconets but our 

proposed scheme achieves multi bridge scenario where a single 

bridge might be shared by multiple piconets.  

In [5] the serving master manages the scheduling mechanism 

of the bridge. It determines the duration of bridge activity in the 

different piconets such that the delay incurred by packets 

requiring inter-piconet routing is reduced. The algorithm adapts 

to varying values of load by using information regarding the 

bridge's queues to different masters. In a nutshell, the ideas were 

a combination of priority based scheduling and load adaptive 

inter piconet scheduling algorithm.  

In the proposed work, the bridge is adaptively switched 

between the piconets with various traffic loads. The main goal is 

to maximize the utilization of the bridge by reducing the bridge 

switch wastes. We make use of intelligent decision making 

algorithm for resolving conflict between the masters, and 

providing for negotiation for bridge utilization in multi bridge 

scenario. Negotiation between the bridges is done to implement 

bridge switch procedure between the bridges and reduces the 

master conflict problem in multi bridge scenario. The Hold 

mode based dynamic priority load adaptive scheduling reduces 

the number of bridge switch wastes and hence increases the 

efficiency of the bridge, and thereby the performance of the 

system.  

                                                                                                         

Fig.1. HDPLIS Architecture 
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4. HDPLIS ARCHITECTURE 

The key modules of the HDPLIS system are:- serving master 

process, bridge handover process (normal & negotiation based 

master conflict resolution), waiting master process, single and 

multi bridge traffic aware protocol based on intelligent decision 

making algorithm, Negotiation based bridge switch process in 

multi bridge scenario. All the modules take the traffic threshold 

information and the scheduling table from their repositories. 

When we integrate all these modules overall packet transmission 

delays and bridge switch wastes are reduced thus increasing the 

efficiency of the bridge and hence the throughput. 

4.1 HDPLIS SYSTEM DESIGN 

Under the following conditions, serving master i has to 

release the usage of the bridge to the waiting master j. 

(C1): WTj >WTth, (TIME event),  

(C2): (QCTj + αj *WTj ) > (QCTi + Qcthold) (QUEUE event). 

(C1) implies that master j has been waiting for the bridge 

past the WTth. (C2) implies that all the data required to be 

transmitted completely between master j and the bridge is larger 

than those between masters i and the bridge plus Qcthold. The 

Qcthold is designed for avoiding the ping-pong effect when 

QCTi and QCTj are too close to each other. (C1) is used to avoid 

excessive transmission delay of the waiting master. The released 

event triggered by this condition is termed as TIME event. (C2) 

is used to allocate more service time to the link with high traffic 

loads. The released event triggered by this condition is termed as 

QUEUE event. 

If none of the two conditions are satisfied, then the serving 

master i can keep using the bridge. This is termed an EXTEND 

event. It is worth mentioning that an EXTEND event will result 

in a failed unhold for the waiting master which has the highest 

possibility of getting the usage of the bridge in the near future 

(here, this implies waiting master j).  

However, the EXTEND event implies that the traffic load for 

waiting master j is not larger than the load of serving master i by 

a prespecified threshold. To improve the throughput of a 

scatternet, the master with high traffic loads will be allocated 

more service time. However, when an EXTEND event is 

triggered, it also implies that the LTj of the waiting master j 

expires. Therefore, master j will try to unhold the bridge on the 

hold slots in the future. Consequently, the LTj in the scheduling 

table of the serving master i must reset to Thold. The bridge 

receiving the scheduling table and dynamic table and being 

informed by the serving master i to switch to another piconet to 

serve the new serving master j. 

If any one of the bridge handles over traffic, the master is 

handed over to the next bridge using dynamic table information. 

In this hand over procedure, we have 2 types of solution: Single 

bridge master conflict resolution and multi bridge negotiation 

based master conflict resolution. In this paper an interpiconet 

scheduling algorithm based on the power saving mode HOLD 

without any modifications to the bluetooth specification has 

been proposed. Our approach addresses the reduction of packet 

delay time and improvement on the utilization of a bridge.  

Negotiation based bridge switching procedure (in multi-

bridge) suggests which bridge will have to serve first using 

dynamic traffic threshold value. If any one of the serving bridges 

is under traffic over flow (like failure), the serving bridge‘s 

active masters switch to other bridges under negotiation 

procedure. In multi bridge scenario, scatternets resolve master 

conflict problems by following the bridge hand over procedure.  

The serving and waiting master procedures are used when 

the serving master decides to release the usage of the bridge; it 

has to update its traffic information in the scheduling table. The 

bridge will transfer the scheduling table from the old serving 

master to the new serving master. According to the scheduling 

table, the new serving master can figure out the time it can use 

the bridge, and the waiting master can calculate the time it need 

not to poll the bridge in the following hold slots. In this paper we 

predict the total and dynamic traffic value from current load of 

the master, estimate the upcoming load, and also analyses the 

historical traffic information of each master. 

5. HDPLIS TABLES 

HDPLIS is operated on a constructed scatternet. Only ACL 

(Asynchronous Connectionless) link is considered for the 

connection between a master and a slave. In HDPLIS, the hold 

mode is used as the operating mode for the bridge to switch 

among piconets. The hold interval negotiated by a bridge with 

its serving master is Thold. In HDPLIS, each master maintains a 

scheduling table and dynamic traffic table. 

5.1 SCHEDULING TABLE 

Scheduling table contains the traffic information of all 

masters that the bridge is connected to. When the serving master 

decides to release the usage of the bridge, it has to update its 

traffic information in the scheduling table. The bridge will 

transfer the scheduling table from the old serving master to the 

new serving master. According to the scheduling table, the new 

serving master can figure out the time it can use the bridge, and 

the waiting master can calculate the time it should avoid polling 

the bridge in the following hold slots. Therefore, with the 

scheduling table, each master can record its traffic information 

in the table and obtain the traffic information of the neighboring 

masters at the same time. The scheduling table is very helpful in 

designing the HDPLIS scheme. 

A scheduling table is shown in Table 1, where MID 

represents the identity of the master and LTi, QCTi, WTi, and αi 

are the traffic information of master i. The details of the fields in 

the scheduling table are described below. The scheduling table 

includes the following fields: MID: the identity of the master, 

QCT: (Queue Consuming Time): the estimated time that a link 

will need the bridge to serve, LT: (Lost Time): the estimated 

time that a master cannot get the usage of the bridge, WT: 

(Waiting Time): the time that a master has been waiting for the 

usage of the bridge. α : the historical information of, on average, 

the traffic generation rate per slot between the master and the 

bridge. 
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Table.1. Scheduling Table (Initial state) 

MID QCT WT LT α 

1100 22.0 0.0 22.0 0.2 

1101 88.0 12.0 0.0 11.0 

1102 44.0 9.0 4.0 00.5 

1200 55.0 11.0 12.0 00.5 

1201 55.0 10.0 0.0 00.8 

1202 22.0 3.0 4.0 00.8 

QCT is defined as the time that a link needs to transmit all 

the data packets in the queues of the master and the bridge. 

There is a queue agent to monitor the status of the queue on 

either side of a link. The bridge will notify the master about this 

information at each communication with the master. Based on 

this information, the master can obtain the QCT. 

5.1.1 Scheduling Table Parameters: 

LT is defined as the time that a master cannot use the bridge. 

The QCTs of all masters connected by the bridge are stored in 

the scheduling table. When the serving master has to release the 

usage of the bridge, according to the QCTs, the serving master 

can predict the duration from the time it releases the bridge to 

the time it obtains the bridge next time. This duration is called 

LT. LT can be used to reduce the number of failed unholds of 

the waiting masters. For example, when master‘ A‘ has to 

release the usage of the bridge to master ‗B‘, master ‗A‘ will 

compute the LTA to predict how many time slots that it may lose 

the usage of the bridge in the future. Thus, after master ‗A‘ 

releases the usage of the bridge, master ‗A‘ will skip the hold 

slots during the LTA. Therefore, master ‗A‘ can reduce the 

number of failed unholds. 

WT is the time that a master has been waiting to acquire the 

usage of the bridge since its previous release. ‗Α‘ represents the 

history of traffic loads, which is defined as the historical 

information, on the average, i.e.  traffic generation rate per slot 

between the master and the bridge. Since the decision of the 

master to release the bridge depends mainly on the value of 

QCT, the precision of QCT will influence the performance of 

HDPLIS. Therefore, to obtain a precise QCT, the history of 

traffic loads is counted so as to evaluate the QCT due to the 

temporal locality of the traffic. Let α be the increment of the 

traffic in queue during a fixed time period, say T. The queue 

agent responds to maintain q. Thus, α can be obtained as q/T. 

After α is obtained, the queue agent will reset q to zero.  

When the serving master has to release the usage of the 

bridge, it records α in the scheduling table. Hence, when the new 

serving master gets the usage of the bridge, it can evaluate the 

QCT more precisely for a waiting master. We have introduced 

how to obtain QCT precisely by means of α. In the ensuing 

paragraphs, we will explain how to obtain LT by means of QCT 

and α. LT refers to the time that the serving master will not get 

the bridge after it releases the usage of the bridge. When the 

serving master i has to release the usage of the bridge, it will 

find a candidate to be the new serving master, say ‘j‘, and will 

update the LTi. The serving master i first find the minimum LTj 

from the scheduling table for some ‗j‘. 

If there exists more than one minimum LT, then it selects the 

one with the maximum WT. This means that the waiting master 

‗j‘ has the highest priority to get the usage of the bridge once the 

serving master releases the bridge. The serving master has to 

update LTi once it decides to release the usage of the bridge to 

the new serving master ‗j‘. However, QCTj in the scheduling 

table of master ‗i ‗is an outdated value since it was recorded 

when the master ‗j‘ has released the usage of the bridge. 

Therefore, it does not stand for the current traffic loads of master 

‗j‘. As a result, we can use αj to roughly estimate QCTj. 

Therefore, the time that the serving master i will not get the 

usage of the bridge, let‘s call it LT, can be obtained as follows: 

 LT = QCTj + j * WTj  (1) 

If a serving master ‗i‘ gets the usage of the bridge, it first 

finds the minimum LTj from the scheduling table, for some ‗j‘. 

According to this information, master ‗i‘ will know how much 

time it has been allowed to use the bridge freely. In addition, 

master ‗i‘ is responsible for the maintenance of the scheduling 

table. That is to say, serving master ‗i‘ should add 1 to each WT 

and subtract 1 from each LT, per slot, in the scheduling table. 

When LTj = 0, master ‗i‘ must check if it has to release the 

bridge to the waiting master ‗j‘. When the release condition is 

satisfied, the serving master i has to release the usage of the 

bridge to the waiting master ‗j‘. Serving master i then perform 

the serving master part of the bridge release procedure. As 

described above, once serving master i intends to release the 

bridge, it will calculate LTi by means of the scheduling table. 

After the LTi is calculated, master ‗i‘ updates LTi in the 

scheduling table and resets the WTi to zero. Master ‗i‘ then 

transmits the scheduling table to the bridge, and informs the 

bridge to serve the new serving master ‗j‘. The role of master ‗i‘ 

is turned from being a serving master to that of a waiting master. 

Therefore, afterwards, master ‗i‘ will perform the bridgeless 

phase. The bridge receiving the scheduling table will perform 

the bridge part of the bridge release procedure as well. The 

bridge then waits for being unholded by the new serving master 

‗j‘ and maintains the scheduling table during this waiting period.  

Maintenance period  means that the bridge will record the 

time slot count (sc) during the period from the time it returns an 

ACK to the old serving master to the time it returns another 

ACK to the new serving master, acknowledging the unhold of 

the new serving master. The period should include the guard 

time difference between the old and the new serving masters. 

When the bridge is unholded by the new serving master, it 

subtracts slot count from each LT, adds sc to each WT in the 

scheduling table, and then transmits the scheduling table to the 

new serving master. 

5.2 DYNAMIC TABLE 

Dynamic table contains each master‘s total traffic, along with 

that of dynamic traffic. The dynamic table is shown in Table.2 

which includes MID (master identity number for all masters in 

all bridges), total_traffic (all masters total traffic (calculating 

from estimated traffic and historical traffic), dynamic traffic 

(including all masters for using negotiation procedure). 
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Table.2. Dynamic table (Initial state) 

MID Total_Traffic Dynamic_Traffic 

100 8.6 2.8 

101 2.2 3.6 

102 5.2 5.3 

200 5.2 1.7 

201 4.8 3.3 

202 7.8 5.9 

5.2.1 Dynamic Table Parameters: 

Total_ Traffic is defined by calculating the masters‘ traffic 

from its history of traffic; estimating the upcoming traffic, and 

also taking into account the current traffic load. The purpose 

behind calculating Total_ Traffic is to find the dynamic traffic.  

Master‘s total traffic is calculated as,   

 Total_Traffic (TM) = фM + ET  (2) 

where,   

ФM is historical traffic of master  

 ET is estimated traffic of master‘s upcoming traffic 

Dynamic traffic threshold is defined by calculating the 

masters‘ dynamic traffic load based on its total traffic. In this 

method, the traffic calculated is used for negation based bridge 

switch procedure which is performed to solve master conflict 

problem in a multi-bridge scenario. 

 DTT= avg [PT{(CLi +фM) + ∑(CLj +фM )}]  (3)                                                    

where,  

DT (dynamic traffic table) contains all masters traffic info  

CLi is Current load of master       

фM is history traffic info of master 

 Estimated traffic is calculated as ET = 2 * α     (4)  

α is the historical information of the traffic generation rate 

per slot between the master and the bridge taken on average. 

Algorithm 1: Serving Master Procedure 

This procedure is proposed by [6] TASS 

{The serving master should execute the algorithm per slot}  

Step 1: The serving master, say i, maintains the scheduling 

table. The task performed is to add 1 to every WT, 

subtract1 from every LT (for all waiting masters), and 

update the QCTi in the scheduling table according to its 

queue status. 

Step 2: If there is no data to send between the serving master i 

and the bridge then 

             Execute the Bridge Release Procedure. 

             End if 

Step 3: If no other LT except LTi in the scheduling table is equal 

to zero then 

Go to Step 8. 

         End if 

Step 4: Choose a waiting master j with LTj = 0. 

       If there are more than one waiting master with LT = 0 

       then 

Select the waiting master j with the largest WT and the 

other LTs are reset to Thold 

End if 

Step 5: if WTj >WTth then 

Execute the Bridge Release Procedure   

Go to Step 8. 

End if 

Step 6: if ((QCTj + αj ∗ WTj ) > (QCTi + Qcthold)) then 

Execute the Bridge Release Procedure   

Go to Step 8. 

End if 

Step 7: Reset LTj to Thold  Go to Step 8. 

Step 8: End. 

Algorithm 2: Serving Master Bridge Release Procedure 

This procedure is proposed by [6] TASS 

The part to be executed by the serving master. 

{The serving master i deciding to release the usage of the bridge 

will perform the following operations} 

Step 1: Calculate LTi. 

Step 2: Update LTi and reset WTi to zero in the scheduling table. 

Step 3: Transfer the scheduling table to the bridge and inform 

the bridge to be unholded by the new serving master. 

Step 4: Wait for the ACK from the bridge. 

Go to the waiting master procedure 

The bridge executes the following procedure. 

{The bridge receiving the scheduling table and dynamic table  

and being informed by the serving master i to switch to another 

piconet to serve the new serving master j .if any one of the 

bridge goes to over traffic , the master hand over the next bridge 

using dynamic table information  will perform the following 

operations}. 

Algorithm 3: Scheduling Table Handover Procedure 

In this hand over procedure, we have 2 types of solution. They 

are, 

 Single  bridge,   master conflict  resolution algorithm   

 Negotiation based multi bridge  master conflict  

resolution algorithm  

Tm = master‘s traffic 

DTTm = dynamic traffic threshold of all masters 

ST = scheduling table of master 

QCT = queue consuming time of total bridge utilization 

st = slot time of every master 

ET  = estimated traffic 

B0 = active bridge 

Bi = other bridges 

BD = common master 

Single bridge: 

Predicting all masters(Tm) traffic from ST calculate QCT of 

all masters 
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Calculate the st of every master (technique used) 

Predicting the ET = 2 *   

If (Ti is greater than Tj) then  

      the bridge continue the active master 

Else switch to master with high traffic 

Else if the active master is less than some other master, then 

the bridge switch to max traffic of master 

Else if (active master is less than some other master but the 

other masters has same traffic) 

The bridge will decide to alter the priority based on the 

concept of ageing 

The master with the highest priority will serve the bridge 

Else the bridge goes to FCFS procedure 

End if  

Multi bridge: 

For (B=1; B<=n; B++) 

Calculate DTT 

If check Bi [DTT] < B0 

Add Bi to bit vector procedure 

Else 

Skip the bridge 

Else if 

Some Bi [DTT] < B0 and Bi [DTT] are same 

add Bi to bit vector procedure 

Goto bit vector procedure 

{ 

In bit vector procedure 

0 represent bridge is not willing to allow the B0‗s masters 

1 represent bridge is willing to allow to B0‗s masters 

} 

Assign 0 has max congestion  

Assign 1 has min congestion  

For (i=1; i<=n; i++) 

If (B[i]=0) then  

Goto next bridge until B[i]=1 

Check B[i]=1 then  

Assign B[i] = B0 

 else if   

All B[i] = 0 then  

Goto negotiation procedure 

else if 

Some B[i] equal with 1‘s then 

Goto negotiation procedure 

Negotiation procedure: 

All B[i] assign to 0 or assign 1 

BD has all priority information of all bridges 

Assign i= no of bridges 

While (i) 

{ 

Delay (1000) // millisecond 

For each bridge in the network 

 Store the details of that bridge in a temporary variable 

} 

Store the temp value into BD  

B0 = send request to BD  

On receiving the request from B0 , BD will send the priority 

information to B0   

If (any one bridge has max priority on comparison with 

others) then  

B0 switch to highest priority of bridge 

From the scheduling table, traffic from all masters is 

estimated. The parameters used to do the same are LT, WT, 

QCT, and Traffic coefficient. Following this, the calculation of 

QCT is performed. Every master then will calculate their slot 

time following which a value for estimated traffic is generated. 

This value of estimated traffic is used to find the total traffic. 

Algorithm 4: Waiting Master Algorithm 

This procedure is proposed by [6] TASS 

{ 

The waiting master should execute the algorithm per slot. 

Suppose the waiting master is master j, for some j. 

} 

 if LTj > 0 then 

LTj = LTj − 1 

else 

Back to the normal operation of hold mode. 

{ 

It implies that the master j will try to unhold the bridge on 

the following hold slots. 

} 

End if 

If master j unholds the bridge successfully then 

Go to the serving master procedure 

End if 

Algorithm 5: Negotiation Based Multi Bridge Master 

Conflict Resolution 

Bi [T] = traffic status of bridge 

Assign i = number of bridges 

BD = common master 

Bc = activate bridge 

The traffic information of all bridges is stored in BD  

While(i) 

{ 

Delay (1000)       // millisecond 

For each bridge in the network 

Store the details of that bridge in a temporary variable 

Assign Bc = temp 

} 

Store all the Bc‗s values 
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Check all bridges‘ traffic value and identify the bridge with 

maximum traffic 

Assign the max traffic value of bridge into Bc  

If (Bi [T] has max traffic, i is identified as having more 

traffic on comparison with the others) then 

Bc = Bi [T] 

Else if (some Bi [T] has same traffic) then  

Goto BD table 

Assign number of jobs per slot = st  

{ 

For all i calculate traffic value based on QCT & st  

Update priority of bridge per delay (1000)  

Predict priority of each bridge before & after the time 

intervals 

Store the priority value of each bridge in BD 

}  

Predict max priority of bridge (aging technique) from BD  

Assign max priority of bridge into Bc  

Else 

Check total number of masters served by each bridge 

Assign bridge with maximum number of masters to Bc   

End if  

6. RESULTS 

In multi-bridge bluetooth scatternet simulation scenario 

multiple bridges exist with their piconets. If any one of the 

bridge fails, the failed bridge‘s working masters have to transfer 

their packets via other bridges optionally. As a case study, our 

multi bridge bluetooth scenario has 2 bridges with 6 piconets 

each has 3 piconets individually. In this piconet topology master 

handles average load. QCT values are assumed normally.  

 

Fig.2. Efficiency of the bridge Vs WTth 

Fig.2 shows the efficiency of the bridge at QCTthold=5, 

QCTthold=10, QCTthold=15. Since the total activity ratio will 

increase with the increase of WTth, the efficiency of the bridge 

also increases with increase in WTth. Similarly, the throughput 

for the low QCTthold value is worse than those for the high 

QCTthold values. However, if the QCTthold is too large, it will 

cause the serving master with a low traffic load not to release the 

bridge. Therefore, the best performance is recorded when 

QCTthold is 10 and when the WTth is large enough. From the 

above experimental results, we find that when WTth and 

QCTthold are large enough (in the above experiment, WTth > 40 

and QCTthold > 5), the results are very close to each other and 

varying both parameters would not affect the performance 

significantly. 

 

Fig.3. HDPLIS: Average Load interpiconet behavior 

Fig.3 considers QCT values with average and peak load. 

Master with average load QCTth=10 has maximum activity ratio 

compared to that with 5 and 15. For 3 masters with average load 

and queue consume time value at 10, the activity ratio is 

increased. For master level 2 HDPLIS is performed well when 

compared with TASS. For 3 masters with peak load and queue 

consume time value 15, the activity ratio is increased at master 

level 2. Peak load activity ratio is increased while increasing 

QCTth value. Master level 2 has high bridge activity compared 

to that of 3 masters. So HDPLIS perform well compared to 

TASS.  

 

Fig.4. HDPLIS: Peak load interpiconet behavior 
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Fig.5. Bridge delay behavior 

In Fig.5 by increasing QCT values with average load the 

bridge delay for bridge 1 is decreased with increasing 

consuming time. But for bridge 2 there is no immediate 

reflection in bridge delay. It has to change slowly to increase the 

consuming time. Bridge delay for bridge 1 and bridge 2 are very 

closer for both QCTth values assigned as 10, 15. but the 

behavior for QCTth value 5 is very different because by 

increasing the queue time the traffic load is decreased. In peak 

load, bridge 2 did not changed with increased QCT values. But 

the delay of bridge 1 is decreased with increasing QCT values.  

 

Fig.6. total traffic Vs dynamic traffic with consume time 5 sec 

 

Fig.7a. Total traffic Vs dynamic traffic with consume time 15sec 

 

Fig.7b. Total traffic Vs dynamic traffic with consume time 10sec 

In Fig.6, 7a, 7b, Master dynamic traffic depends with total 

traffic values; i.e. it continuously changes with queue time. The 

bridge transfers between the master using scheduling table 

parameters. If bridge is working with current master 101, the 

current master transfers its data to the bridge. The bridge 

receives the data, at last current master exceeds its serving time, 

and the master sends bridge release procedure to the bridge. The 

bridge receives the message and sends the polling message to 

other master. The bridge checks which master has the minimum 

lost time and allows that master to serve it at that instant. If the 

master 102 has minimum lost time, this implies that the bridge 

will now proceed to work with 102. The same procedure works 

in   bridge 2. Master calculates its total traffic values from its 

upcoming traffic and history of masters. From the total traffic 

we have to estimate the dynamic traffic (average of all masters 

within the bridges. Here bridge1, bridge 2 are available with 

each 3 masters). The master displays its dynamic and total traffic 

to send to the bridge1. Bridge1 identifies masters‘ traffic values, 

if any one of the bridges are dropped due to heavy traffic the 

bridge1 identifies which bridge is available to transfers its 

master information through the network. Here bridge 2 is 

available to receive the bridge 1 traffic.  

HDPLIS illustrates the effects of total traffic and QCTthold 

on the delay of the bridge. Since the total activity ratio will 

increase with the increase of QCTthold, the delay of the bridge 

also decreases with increase in QCTthold. Similarly, the 

throughput for the low QCTthold value is worse than those for 

the high QCTthold values. However, if the QCTthold is too 

large, it will cause the serving master with a low traffic load not 

to release the bridge. Therefore, the best performance is recorded 

at QCTthold = 10. In this situation the total traffic was found to 

slowly increase when compared to when the QCTthold value 

was 5. If the total traffic is reduced the delay of the bridge is also 

reduced. 

The comparisons between HDPLIS and TASS (Traffic 

Aware Scatternet Scheduling [6]) on throughput, activity ratio 

are presented as well (Fig.8a and Fig.8b). The packet generation 

rates of the masters follow a constant bit rate (CBR). Among 

these masters, the packet generation rate of one master is fixed 

on 300kbps and those for the others are fixed to 60kbps. A high 
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packet generation rate implies that the master would need more 

bridge service time. The bridge does not generate any packets at 

all and the destinations of all packets are to the bridge. The 

simulation time is 100 seconds.  

 

Fig.8a. Comparison of behaviors between 4 masters with 

average load 

 

Fig.8b. Comparison of behaviors between 3 masters with 

average load 

 
Fig.9a. The impact of the various traffic loads on the total 

throughput when a bridge connects to three masters average load 

 

Fig.9b. The impact of the various traffic loads on the total 

throughput when a bridge connects to three masters   maximum 

load 

Fig.8a and 8b show the impact of the degree of the bridge on 

the activity ratio and the throughput (Fig.9) of the master whose 

packet generation rate equals 300kbps, respectively. The activity 

ratio means the ratio of the total bridge service time of the 

master whose packet generation rate equals 300kbps to the total 

simulation time. The throughput is evaluated by the data packets 

received by the bridge per second. Obviously, HDPLIS can 

allocate more bridge service time to the master with high traffic 

loads. The master with high traffic loads can almost obtain the 

maximum throughput. On the contrary, in TASS, the bridge 

service time allocated to the master with high traffic loads 

decreases seriously as the degree of the bridge increases. 

Accordingly, the throughput of the master with high traffic loads 

will decrease when the degree of the bridge increases as well. It 

is because that, in TASS, the bridge service time allocated to the 

masters is based on the link level fairness. That is, the chances of 

the masters getting the usage of the bridge are the same, no 

matter how heavy the traffic load of the master is. Therefore, the 

bridge service time of the master with high traffic loads will 

decrease seriously as the bridge degree increases. Contrarily, in 

HDPLIS, the master with high traffic loads will have higher 

probability to obtain the usage of the bridge due to QUEUE 

event.  

On the other hand, HDPLIS will not cause the master with 

low traffic load to starve since the master with low traffic load 

can obtain the usage of the bridge by TIME event. In 4 masters 

with average load the activity ratio is highly increased with 2 

masters. At the same time slowly it will decrease while adding 

new masters, but TASS slightly decreases adding new masters. 

For the case Bridge with 4 masters, the HDPLIS fails to compare 

with TASS. So HDPLIS is well suitable for 2 piconet only. 

Otherwise, activity behavior is same in both 3 and 4 masters 

with average load.  

Fig.9 illustrates the total throughputs of HDPLIS and TASS, 

which are obtained from every 1600 slots (i.e., 1sec). As shown 

in Fig.9a HDPLIS and TASS can reach the maximum 

throughput in the first 20 seconds since the packet generation 

rates of the three masters are the same. In the following 20 

seconds, the packet generation rate of one master rises to 

400kbps. Since TASS does not take traffic information into 
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consideration, it cannot adjust the switch scheduling according 

to different traffic loads of masters.  

Fig.9b Thus, HDPLIS can still keep the maximum total 

throughput, but TASS cannot. At the last 20 seconds, the packet 

generation rate of one master is reduced to 20kbps. As the figure 

shows, HDPLIS can adapt to the real traffic rapidly, but TASS 

still needs some time to adapt to the real traffic loads. Since 

there are still a lot of data packets queued at the previous 20 

seconds in TASS, hence, it needs additional time to consume the 

queued packets. Therefore, the adaptability of HDPLIS is 

superior to that of TASS.  

Bridge 1 and bridge 2 comes with average load with 3 

masters. Bridge 1 and bridge 2 in their initial stage are very 

closer with equal efficiency but when time increases, bridge 1 

has high efficiency compared to bridge 2. Because bridge 1 has 

medium traffic, by increasing service time the efficiency of 

bridge also increases, at the end of serving time bridge 1 and 

bridge 2 are again it will closer to each other. Bridge 1 and 

bridge 2 comes with peak load with 3 masters. Initially, both are 

very closer with equal efficiency but with increase in time the 

bridge 1 has high efficiency compare with bridge 2 because 

bridge 1 has medium traffic so increasing service time the 

efficiency of bridge also increases at the end of serving time 

bridge 1 and bridge 2 are again it will closer to each other. 

 

Fig.10a. Comparison of interpiconet behavior: 4 masters with 

average load 

 

Fig.10b. Comparison of interpiconet behavior: 3 masters with 

average load 

In Fig.10a and 10b, in the case of 4 masters with average 

load, the activity ratio is increased while increasing QCTth 

values, resulting in high performance. Activity ratio attains its 

maximum only when QCTth=10. Changing QCTth values does 

not increase activity ratio. Rather this gives poor performance. In 

Fig.11a and 11b the bridge efficiency criteria for 4 masters with 

average load is better than the case of 3 masters because 

increasing the queue time the traffic is reduced heavily. Bridge 1 

and bridge 2 curves are very closer. Bridge efficiency is 

increased only at maximum consuming time of queue. Curves 

are not closer to each other. Bridge 1 and 2 has maximum bridge 

utilization compare than 4 masters. 

 

Fig.11a. Comparison of efficiency: 4 masters with average load 

 

Fig.11b. Comparison of efficiency: 3 masters with average load 

7. CONCLUSION 

This paper presents a hold mode based dynamic priority load 

adaptive Interpiconet Scheduling (HDPLIS) scheme, which can 

dynamically adjust the bridge service time according to a 

master‘s traffic load, reduce the number of failed unholds time, 

and further increase the system‘s throughput.  

The primary idea of HDPLIS lies in estimating the dynamic 

traffic to solve the problem of negotiation. That is, HDPLIS 

allocates enough bridge service time to the master with a high 

traffic load and reduces the bridge switch wastes. At the same 

time, to avoid excessive transmission delay of the master with a 

low traffic load, HDPLIS will allocate the bridge service time to 
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a master once that master has waited for a period of time, but no 

longer than WTth.  Dynamic traffic will reduce the master 

service time if the current bridge fails.  

Each master generates traffic values to transfer the bridge. 

Bridge will need to handle negotiation process for its master 

conflicts problem. (very large and very small values of WTth  

result in poor efficiency of the bridge. In order to achieve 

optimal efficiency, it is desired to choose an intermediate value 

so as to keep the waiting period of the master normal). This hold 

period is negotiated by a master and bridge, each time the bridge 

enters the hold time for every slot period.  

Once the slot period is encountered the bridge will change its 

hold period each time. So finally we have to apply QCTthold. 

WTth is kept at normal (no max and min values), to achieve good 

efficiency of bridge throughput and reduced packet transmission 

delay. In this paper, HDPLIS has been shown to perform well 

for two bridges shared by multiple piconets. However, it is 

possible that more masters share more than one bridge (bit 

vector procedure for multi bridge scenario). Therefore, for the 

sake of completeness, a comprehensive investigation should be 

made in the future to find out how HDPLIS performs when 

multiple bridges are shared by multiple piconets, at the same 

time enabling masters (waiting masters) to remain in Hold mode 

to do simultaneous Intra Piconet scheduling proposed for 

efficient bridges in bluetooth scatternet, as well as a negotiation 

based bridge-switch process between multiple bridges. 
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